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Abstract. In recent years,massivelymultiplayer online games (MMOGs)
have become very popular by providing more entertainment and socia-
bility than single-player games. In order to prevent cheaters to gain un-
fair advantages in peer-to-peer (P2P)-based MMOGs, several cheat-proof
schemes have been proposed by using digital signatures. However, digital
signatures generally require large amount of computations and thus may
not be practical to achieve real-time playability. We propose an Efficient
and Secured Event Signature (EASES) protocol to efficiently sign dis-
crete event messages. Most messages need only two hash operations to
achieve non-repudiation and event agreement. The computation, mem-
ory, and bandwidth consumptions of EASES are low, which makes it
applicable to P2P-based MMOGs.

1 Introduction

Multiplayer online games are a rapidly growing segment of Internet applications
in recent years. By providing more entertainment and sociability than single-
player games, it is fast becoming a major form of digital entertainment. Earlier
multiplayer games adopt client-server architectures where all players establish
connections with the server to send and receive event updates. However, a single
server cannot support a large numbers of concurrent players at the same time,
so server-clusters were subsequently introduced to enable massively multiplayer
online games (MMOGs) where concurrent users may reach into the range of
hundreds of thousands [1]. Current MMOGs adopt server-cluster architectures
to provide better scalability than earlier architectures. However, a server-cluster
has only limited amount of resources such as CPU and bandwidth at a given
time and poses as a single point of failure. A distributed approach to MMOGs
thus may be more scalable if millions of concurrent users were to be supported. A
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number of recent peer-to-peer (P2P) virtual environment (VE) [2,3,4,5,6,7,8,9]
research thus seeks to further improve the scalability of existing MMOGs. The
key is to correctly and efficiently maintain the topology of all participating peers
by solving a neighbor discovery problem [9]. Unlike earlier fully-connected P2P
systems where the number of connections grow exponentially with users. In
scalable P2P-based VEs, it is unnecessary to establish contacts between every
pairs of player nodes but only with those that are within a player’s visibility
range.

Although P2P-based MMOG may provide better scalability, by distributing
server-side workload to clients, new issues such as maintaining consistency and
ensuring fairness are introduced [2,10,11]. In server-based MMOGs, game states
(e.g. user status, experience points, equipments, world items) are maintained and
updated via game logic executions on trusted servers. When a player makes an
action such as running, shooting, turning, etc., an event message is sent to the
server, which subsequently processes the events and updates the game states. The
server then periodically sends updated states to relevant players to keep their lo-
cal copies of the game states synchronized with the server’s. Under such event
processing model, the server maintains all the information to ensure a global or-
dering of event executions and fair gameplay. However, when we turn to a P2P
approach of MMOG, game states maintenance and game logic execution may be
distributed to each individual players, creating opportunities for players to cheat.

A player may gain various advantages by cheating in multiplayer games. It is
especially attractive as gaining valuable items or winning over other players is
central to the gameplay value in commercial MMOGs. Valuable virtual items can
even be sold in exchange for real-world money, which increases the motivations
for cheating. Therefore, cheat-prevention is very important to game designers.

To prevent cheating, games may adopt cryptographic techniques. Several
cheat types [11] occur when the actions of non-cheating players are known in
advance by cheaters, who can then respond unfairly to their advantages (i.e.
similar to in a real-life bridge game, if certain players deal their cards only af-
ter knowing what cards the opponents will choose, then they could have unfair
advantages). Cryptographic techniques have been proposed to prevent players’
actions from being known by others before each player submits the final deci-
sions [10]. A potential countermeasure is thus the adoption of a secured event
updating protocol that includes 1) a commitment scheme to ensure that players
do not change their actions after decisions are made; and 2) a digital signature
scheme to ensure that players cannot deny the actions they have done. If the
commitments are digitally signed, we can also prevent impersonation and dodg-
ing [12,13]. Commitment and digital signatures together therefore provide a fair
environment for games even when players do not trust each other [12, 13], as
signatures prevent any identity forging and commitments prevent a player from
changing the action decisions that are already made. However, there exists some
time-consuming exponential operators in public-key cryptography for signing
signatures, so significant computational power is required to sign and verify all
event updates.
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In existing cryptography schemes, when a large continuous document needs
to be signed, a hash function can be used instead of digital signatures to re-
duce the computations. The document is first hashed into a much smaller digest,
which is then signed by a digital signature. The digest is just one short mes-
sage, but it can be used to characterize the original message. As it is very hard
to find another document that can produce the same digest, signing the digest
can be seen as signing the original document. Unforgeability and verifiability are
the two requirements of digital signatures currently achievable only by public-
key cryptography. As digital signature is necessary to achieve non-repudiation
(i.e. undeniableness of user actions) due to its unforgeability and verifiability,
some event update protocols [11, 14] have been proposed to use digital signa-
tures to sign every event messages to avoid cheating in P2P-based MMOGs. A
player cannot repudiate his/her signature after signing a message under these
two properties. However, we cannot treat the the many discrete event messages
in MMOGs as a large document. How to sign many discrete event updates so
that unforgeability and verifiability can still be achieved without too much com-
putation is thus our main concern. We propose an Efficient and Secured Event
Signature (EASES) protocol to efficiently sign many event update messages. As
we will show, EASES has low computation costs and consumes little memory or
bandwidth. It is thus applicable to P2P-based MMOGs.

In the following sections, we first review related work for cheat-proof mech-
anisms in Section 2 and present a message transformation model in Section 3.
We propose the efficient one-time signature scheme in Section 4, and evaluate
its security and performance in Section 5. The paper is concluded in Section 6.

2 Related Work

Cheating in multiplayer games have been described by several papers. Yan [15]
examines several security requirements that impact the design of online games
by using a simple client-server bridge game. Kirmse and Kirmse [16] present the
security goals for online games in areas such as the protection of sensitive infor-
mation and the provision of a fair playing field. Smed et al. [17] describe issues
in multiplayer games such as network resources, communication architectures,
scalability and security. Besides the descriptions of cheats, several cheat-proof
mechanisms have also been proposed. GauthierDickey et al. proposed the New
Event Ordering (NEO) protocol [11] to improve on the work of Baughman and
Levine [10] and Cronin et al. [18]. NEO claims to prevent common protocol-level
cheats with low latency, such that the adversaries cannot gain any advantages
by modifying messages between players. Corman et al. [14] later show that NEO
cannot prevent all cheats as claimed, and present an improvement called Secure
Event Agreement (SEA). However, both protocols are not practical due to the
excessive use of cryptographic signatures. As shown by the NESSIE project [19],
digital signatures consume much more computations than hash functions and
symmetric encryptions. However, the use of digital signatures is unavoidable to
prevent users from denying their behaviors. A key question thus is how to use
digital signature only minimally while achieving the same cheat-proof properties.
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As we seek to present a more efficient protocol based on NEO and SEA, the two
protocols are first examined below.

2.1 Description of NEO

GauthierDicky et al. propose NEO to avoid cheating by adding a voting mech-
anism to compensate for packet loss in the environment [11]. NEO divides the
time into fixed-length rounds, where every player sends an event update in each
round. The event update of NEO is given in Formula (1), where {}Kr

A
represents

encryption, SA() is the signature function, U r
A is the update from player A for

round r, Kr−1
A is A’s key for the update from round r − 1, and V r−1

A is a bit
vector for voting. The voting is used to form a consensus on whether a given
player has sent an update within a round, in order to determine if an update by
that player should be accepted. When each player acts, an event update is signed
and encrypted before sending to other players. The encrypted event update and
its signature serve as a commitment, which is revealed in the next round when
the player sends the key. So players cannot modify their own actions after the
commitments are sent (i.e. after they have learned of others’ actions).

M r
A = {SA(U r

A)}Kr
A
, Kr−1

A , SA(V r−1
A ) (1)

However, Corman et al. show there are some problems in NEO (e.g. an at-
tacker can replay updates for another player, or send different updates to differ-
ent opponents [14]) and present an improvement called SEA.

2.2 Description of SEA

Corman et al. [14] present an improvement of NEO as described in Formula (2),
where H() is a hash function, U r

A is the update from player A for round r, nr is
a random value for round r, SessID is the session ID to prevent replaying this
message in a different session or with a different group of players, IDA is the
unique identity of player A, and V hr−1

A is the update from player A for round
r − 1 that includes a hash of the update.{

CommitrA = H(U r
A, nr, SessID, IDA),

M r
A = SA(CommitrA, U r−1

A , V hr−1
A , nr−1, r)

(2)

In order to achieve better performance and remove potential issues with key
tampering and selection, the SEA protocol replaces encryption with a crypto-
graphic hash function as the commitment method. When commitment is done
by encryption, the distribution, protection and selection of keys must be care-
fully considered, or problems would arise from poorly designed key management
schemes. However, if the commitment is made via hash functions, the above
key-related issues can be avoided.

Signing the entire message is used to authenticate the message creator, and the
hash serves to commit the player to the message sent in the next round. Every
player thus is forced to accept the actions already submitted. Player signatures
can also be checked to validate the players.
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3 Message Transformation Model

We seek to achieve both scalability and fairness for P2P-based MMOGs, the
proposed event signature protocol thus should be usable independent of the
underlying network topologies. Our method can also be treated simply as a more
efficient signature scheme. As public-key cryptosystem requires a large amount
of computations and time, to improve the efficiency, we compute the message’s
digest by a hash function before signing the message. By using a digest, not
only existential-forage is prevented, computation time is also greatly saved. The
original signature and its message is described in Formula (3).

⎧⎨
⎩

M the full message,
H(M) digest of M,
Ssk(H(M)) signature of message digest.

(3)

Although the above method is efficient for one message, it cannot sign many
discrete event updates across different time periods (i.e. rounds) as required in
a game scenario. We therefore try to find an efficient signature protocol usable
under such environment. The proposed efficient signature for discrete messages
adapts to different networks such as fully-connected or scalable P2P topologies,
and is described in Formula (4).

{
M1, M2, . . . , Mi, . . . , Mn discrete messages,
Ssk(Mi) signatures for message Mi.

(4)

To prevent other attacks such as eavesdropping using a network sniffer, au-
thenticated key exchange protocol [20] can be used to agree the session keys
to encrypt data between every pair of transmission parties. Adding a counter
number to the original message before encryption can also prevent eavesdrop-
ping, modification and fabrication attacks. However, this topic is beyond our
discussion.

4 The Proposed Scheme

One-time signature was proposed in 1981 [21] to authenticate remote users on
a computer network. In order to sign the discrete event updates efficiently, we
propose a one-time signature variant to achieve the same effects as the regular
signature scheme.

There are four phases in EASES: 1) Every player generates the keys for signing
event updates in the initialization phase. 2) Every player signs his/her event
update in the signing phase. 3) After the event updates are received from other
players, each player can verify these event updates in the verification phase. 4)
In the re-initialization phase, players can re-generate new signature keys when
the keys have been used up. The notations are listed in Table 1.
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Table 1. Notations

P layeri each player in the game, where i ∈ {1..m}
H(x) hash operator with input message x

OSKj
i playeri’s jth one-time signature key

Ssk(x) message signing x by secret key sk
x|y concatenation of the message x and y

δj
i signature signed by playeri’s jth OSK

Δ signature signed by secret key sk

4.1 Initialization Phase

Before starting the game, each player must first generate his/her one-time sig-
nature keys. The operation of generating a list of one-time signature keys can
be done before a user logins the game, or before the first event update is sent.

Basis: For each player playeri, an unpredictable random one-time master key
MKi is first picked to compute a series of the player’s one-time signature keys
OSKn

i = H(MKi), where n is a system parameter that specifies the maximum
number of times for signing updates by each player. Choosing larger n may save
computation time during the later updating stage, but it may also increase the
time to compute the one-time signature keys.

Induction: Every player subsequently computes the one-time signature keys
OSKj

i = H(OSKj−1
i ), where j ∈ 1..n − 1 is a one-time signature key.

After these one-time signature keys (i.e. a hash chain) are generated, every
player signs the first one-time signature key by the player’s secret key Δ =
Ssk(OSK1

i ). Those keys are then stored in the players’ computer.

=

=

=

=

=

=

=

=

=

Master key MKi

OSKn
i H(MKi)

OSKn−1
i H(OSKn

i )

OSKn−2
i H(OSKn−1

i )

.... ....

.... ....

OSK2
i H(OSK3

i )

OSK1
i H(OSK2

i )

Δi Ssk(OSK1
i )

Fig. 1. Generating OSKs in the initialization phase

4.2 Signing Phase

The player computes the signature of the event updates δj
i = H(OSKj

i |M j
i ),

where M j
i is the playeri’s jth event update. During each round, each player

sends an event update and its signature M |δj
i to other players. Note that if the
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situation requires (e.g. to re-initialize another list of one-time signature keys),
one should not use up all the keys, but to at least reserve the last two keys
OSKn

i and OSKn−1
i . Each round, the signature of the event update playeri has

to send is shown in Formula (5).
{

Δi, δ
1
i = H(OSK1

i |M1
i ) the first round,

δj
i = H(OSKj

i |M j
i ) the following rounds.

(5)

For instance, playeri sends the signature δ1
i = H(OSK1

i |M1
i ) in the first

round. In the second round, playeri sends δ2
i = H(OSK2

i |M2
i ), M1

i , OSK1
i ,

and Δi. In subsequent rounds, playeri sends δj
i = H(OSKj

i |M j
i ), M j−1

i , and
OSKj−1

i .

4.3 Verification Phase

When each player receives other players’ event updates, it is necessary to verify
those messages. Each player receives δ1

i = H(OSK1
i |M1

i ) in the first round, and
then receives and verifies the signature Δi in the second round. Subsequently,
each player receives and verifies H(OSKj

i |M j
i ) ?= δj

i in the (j + 1)th round.
Additionally, the signature Δi also needs to be verified when the first update is
received.

4.4 Re-initialization Phase

The signature keys have to be re-generated when they are used up. One ba-
sic method is for players to re-execute the initialization phase to generate new
signature keys. However, a more efficient way exists if we assume that the last
two keys are reserved: a player first generates the new one-time signature keys
NewOSK1..n and then signs the head of the new signature key by the previous
signature key Δreinit = H(OSKn−1

i |NewOSK1
i ).

5 Evaluation

5.1 Security Analysis

Unforgeability and verifiability are the two fundamental requirements for digital
signatures. Unforgeability means that no one can generate a legal signature for a
specific message except the signer. Signer is the only one who keeps the correct
private key for generating a legal signature verifiable by the corresponding public
key. Verifiability means that every one can verify whether a digital signature is
legal. We thus evaluate EASES according to these two requirements.

Unforgeability. One cannot claim that he has signed M j
i to get the signature δj

i

unless he can present OSKj
i . No one can show that he knows the signing key

OSKj
i for the current message M j

i before the original signer reveals it in the
next round. The cryptographic hash function also has the following secured
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properties: for any given hashed value, it is computationally infeasible to
find its pre-image due to the one-way property of hash functions. For any
given message x, it is computationally infeasible to find another message
that has the same hash value, such that H(x) = H(x′). Moreover, strong
collision resistance property exists in some hash functions, meaning that it is
computationally infeasible to find any pair of (x, y) such that H(x) = H(y).
EASES is unforgeable since it adopts a secured hash function that has the
properties mentioned above. With unforgeability, non-repudiation can be
achieved in EASES.

Verifiability. Cryptographic hash function is a public standard that can be
installed and executed on every player’s computers, so that everyone can
re-compute the hash value of a given signature key OSKj

i and message M j
i

to verify if it equals to the received signature H(OSKj
i |M j

i ) ?= δj
i .

5.2 Performance Analysis

Computational cost. The major benefit of the proposed scheme is computa-
tional efficiency. There is at least one signature operator and one verification
operator for each event update in the existing schemes (e.g. RSA, DSA, etc.).
In comparison, there are only three hash operators for each event update in
EASES: two for signing and one for verifying, and one traditional signature
operator during the initialization phase in EASES. The approximate CPU
cycles for some cryptographic functions are listed in Table 2.

Table 2. Approximate CPU cycles for some cryptographic functions [14,19]

Primitive type Example Clock cycles
Hash function SHA-1 15/byte + 1040
Symmetric encryption AES 25/byte + 504
Digital signature RSA-PSS 42,000,000

Memory consumption. EASES requires all players to prepare a block of
memory to store the list of one-time signature keys. It exact size depends
on the hash code length L(H) and the chosen n. For example, if SHA-1 is
used and n = 1000, then each player will need 1000 * 192 = 192,000 bits =
24,000 bytes of memory to store the one-time signature keys. The consumed
space is not needed in other existing digital signature schemes.

Bandwidth consumption. Except for the first update, EASES needs to trans-
fer the one-time signature for every event update, with the size of a hash
code. This is much shorter than the size of traditional digital signatures. For
example, SHA-1 uses 192 bits for each hash code, whereas 1024-RSA uses
1024 bits for each signature.
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5.3 Comparisons

We briefly compare EASES against NEO [11] and SEA [14], both of which adopt
traditional digital signatures. There are two signature operators in NEO and
one signature operator in SEA. Each event update in NEO is given in Formula
(1), and Formula (2) describes the update in SEA. With EASES, the signature
operators used in each event update can be replaced by just two hash operators.

5.4 Discussions

The proposed scheme in this paper is a signature protocol that can be used to sign
many discrete messages efficiently. It is thus inherently topology independent.
In fact, the event update protocol can be adopted to any topology easily [3], by
requiring the protocol be used between every pairs of connected players.

However, network topology may change constantly in P2P-based MMOGs.
Since existing signature schemes sign each event update independently, the event
updates can be sent to different targets directly even when the topology has
changed. In contrast, EASES adopts a sequence of hash values, signatures thus
are not independent to event updates. If a new target emerges, all one-time
signatures (i.e. sequence of hash values) and event updates up to the current
(i.e. jth) event have to re-sent to the new target. An alternative is for the player
to regenerate a new hash chain and sign its head by executing the initialization
phase, treating a new target as a newly joined player. EASES therefore cannot
fully eliminate traditional digital signatures, but it can be used to reduce the
signature operators used.

6 Conclusion

In this paper, an efficient and secured event signature (EASES) protocol for
P2P-based MMOGs is proposed. This protocol has the non-repudiation prop-
erty inherited from traditional signature schemes. Furthermore, the proposed
scheme requires much less computation, which makes it applicable to P2P-based
MMOGs. The security of EASES is shown to possess unforgeability and veri-
fiability as traditional digital signatures. By signing a hash chain, event com-
mitment can be implicitly achieved. The computation, memory and bandwidth
consumptions of EASES are also shown to be low. We have also shown how
EASES may be adapted to non-fully-connected and dynamically changing net-
work topologies such as P2P-based MMOGs.
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