
 1

�

Constructing Nondominated Local Coteries
for Distributed Resource Allocation

Jehn-Ruey Jiang
Department of Information

Management
Hsuan-Chuang University,

 Taiwan
E-mail: jrjiang@hcu.edu.tw

Cheng-Sheng Chou
Department of Computer Science
National Tsing-Hua University,

Taiwan

E-mail: g894371@oz.nthu.edu.tw

Shing-Tsaan Huang
Department of Computer Science

and Information Engineering
National Central University,

Taiwan
E-mail: sthuang@csie.ncu.edu.tw

Abstract

The resource allocation problem is a fundamental

problem in distributed systems. In this paper, we focus

on constructing nondominated (ND) local coteries to

solve the problem. Distributed algorithms using coteries

usually incur low communication overhead and have

high degree of fault-tolerance, and ND coteries are

candidates for the algorithms to achieve the highest

degree of fault-tolerance. We define a new type of

coteries, called p-coteries, to aid the construction of

local coteries. We then develop theorems about the

nondomination of p-coteries, and propose an operation,

called pairwise-union (p-union), to help generate ND

p-coteries from known ND coteries. ND p-coteries can

then be used to generate ND local coteries for solving

the distributed resource allocation problem.

1. Introduction

The resource allocation problem is a fundamental

problem in distributed systems. Consider a distributed

system consisting of a set of processes and a set of

distinct resources. The processes can communicate with

each other by exchanging messages, and from time to

time, a process may request to enter the critical section

(CS) to access some of the resources. Before entering

the CS, a process has to wait until all the desired

resources are acquired. The resource allocation problem

is concerned with how to ensure that all resources are

accessed in a mutually-exclusive way and that all

processes wishing to enter the CS can proceed in finite

time.

There are many problems related to the resource

allocation problem: the mutual exclusion problem [7],

the k-mutual exclusion problem [9], the h-out of-k

mutual exclusion problem [25], the dining philosophers

problem [8] and the drinking philosophers problem [4].

The mutual exclusion problem deals with the

mutually-exclusive sharing of a unique resource among

all processes. The k-mutual exclusion problem deals

with the sharing of k identical resources with the

restriction that one process can access any one resource

at a time. The h-out of-k mutual exclusion problem deals

with the sharing of k identical resources with the

restriction that one process can access any h, h≤k,

resources at a time. The dining philosophers problem

and the drinking philosophers problem describe the

resource sharing relation by conflict graph, in which a

vertex represents a process and an edge represents the

resource shared by the two processes incident to the

edge. In the dining philosophers problem, a process can

enter the CS when it has acquired all the resources

represented by the edges incident to it; while in the

drinking philosophers problem, a process can enter the

CS when it has acquired a subset of the resources.

There have been solutions [3, 5, 6, 20, 26] proposed

for solving the distributed resource allocation problem.

Among them, solutions in [6, 20] utilize a special

 2

structure called local coterie to solve the problem. The

local coterie is one of the extensions of the coterie

proposed in [10]. A coterie is a collection of mutually

disjoint minimal sets, each of which is called a quorum.

Except the distributed resource allocation problem, the

coterie and its extensions are applied to solve many

other problems. For example, the coterie is used to solve

the mutual exclusion problem [1, 19, 15], and the

k-coterie, another extension of the coterie, is used to

solve the k-mutual exclusion problem [11, 13, 14, 17]

and the h-out of-k mutual exclusion problem [16].

The solutions using coterie structures usually incur

low communication overhead and can tolerate process

and/or communication link failures. Among coterie

structures, nondominated (ND) coterie structures are

candidates for the solutions to achieve the highest

degree of fault-tolerance. Thus, we should always

concentrate on ND coterie structures if fault-tolerance is

significant. There are many researches investigating ND

coterie structures; for example, researches in [10, 15, 18]

study ND coteries and researches in [12, 13, 22, 23]

study ND k-coteries.

In this paper, we concentrate on constructing ND

local coteries to solve the distributed resource allocation

problem. We define a new type of coteries, called

p-coteries, to aid the construction of local coteries. We

then develop theorems about the nondomination of

p-coteries, and propose an operation, called

pairwise-union (p-union), to help generate ND

p-coteries from known ND coteries, such as the majority

coteries [27], the tree coteries [1], the hierarchical

coteries [19], the Lovasz coteries [21], the crumbling

walls coteries [24] and the cohorts coteries [15], etc. ND

p-coteries can then be used to construct ND local

coteries for solving the distributed resource allocation

problem.

The rest of this paper is organized as follows. In

Section 2, we elaborate some preliminaries of the

distributed resource allocation problem, including

coteries and local coteries. In Section 3, we propose the

definition of p-coteries and develop theorems for

checking their nondomination. We also show that the

p-union operation can help generate ND p-coteries for

the construction of ND local coteries. And finally, we

conclude this paper in Section 4.

2. Preliminaries

2.1. Distributed Resource Allocation

Consider a distributed system consisting of a set P

of processes and a set R of shared resources each of

which is of a different type and must be accessed in a

mutually exclusive way. Occasionally, processes may

request to enter the critical section (CS) to access some

of the resources. A process pi, pi∈P, enters the CS after it

acquires all the requested resources. Afterwards, pi

leaves the CS and releases all the acquired resources.

Processes are assumed to leave the CS in finite time. The

resource allocation problem is concerned with how to

ensure that all resources are accessed in a mutually

exclusive way and that all processes wishing to enter the

CS can proceed in a finite time.

The process-accessing-resource relation in the

resource allocation problem can be represented by a

resource allocation graph (RAG). A RAG for the system

with process set P and resource set R is a bipartite graph

G=(V, E), where V=P∪R is a set of vertices and E is a

set of edges. There is an edge e=(p, r)∈E if and only if

process p requests to access resource r. Let Ri = {r |

process pi requests to access resource r} be the set of all

the resources that process pi requests to access. If

Ri∩Rj≠∅, it means that process pi and process pj

compete for the same resources.

Figure-1 is an example of RAG for the system with

P={p1, p2, p3} and R={r1, r2}. With respect to the RAG,

R1={r1}, R2={r1, r2} and R3={r2}, which means that

process p1 requests to access resource r1, process p2

requests to access resources r1 and r2, and process p3

requests to access resource r2.

Figure 1. The resource allocation graph (RAG)

for the system with P={p1, p2, p3} and R={r1, r2}.

p1 p2 p3

r r

 3

In [20], Kakugawa and Yamashita introduced the

concept of local coteries and proposed an algorithm

using local coteries to solve the distributed resource

allocation problem. In [6], Cheng et al. proposed another

algorithm using local coteries to solve the distributed

resource allocation problem. Local coteries are the

extensions of coteries. Below, we introduce the concept

of coteries first. And then we introduce the concept of

local coteries.

2.2. Coteries

A coterie C under P is a family of subsets of P.

Each member in C is called a quorum and should

observe the following two properties [10]:

Intersection Property: ∀q1, q2 : q1, q2∈C : q1∩q2≠∅

Minimality Property: ∀q1, q2 : q1, q2∈C : q1⊄q2

For example, C ={{p1, p2}, {p1, p3}, {p2, p3}} is a

coterie under P={p1, p2, p3} because every pair of

quorums (members) in C have a non-empty intersection,

and no quorum is a super set of another quorum.

2.3. Local Coteries

Given a RAG of the system with a set P of

processes and a set R of resources. A local coterie

LC=(C1,…,C|P|) is a list1 of coteries under P. There is a

coterie Ci associated with each process pi∈P, 1≤i≤|P|
and all of the following conditions should hold [20]:

Non-emptiness Property: ∀pi : pi∈P : Ci≠∅

Intersection Property: If Ri∩Rj≠∅, then ∀q1, q2: q1∈Ci,

q2∈Cj : q1∩q2≠∅, where Ri = {r | process pi requests to

access resource r}.

Minimality Property: ∀pi, q1, q2 : pi∈P, q1, q2∈Ci : q1 ⊄

q2

For example, LC=({{p1}}, {{p1, p3}}, {{p3}}) is a

local coterie for the RAG in Figure-1. The reader can

check that there is a coterie associated with every

process (for example, C1={{p1}} for process p1, C2={{p1,

p3}} for process p2 and C3={{p3}} for process p3) and

1 A local coterie is defined to be a “set” of coteries in paper
[20]. Since the order of the coteries makes sense, we modify
the definition of the local coterie to be a “list” of coteries.

every quorum in C2 intersects with every quorum in C1

(resp. C3) because p2 and p1 (resp. p3) compete for the

same resource r1 (resp. r2).

The local coterie can be used to develop algorithms

solving the distributed resource allocation problem. To

enter the critical section, a process is required to form a

quorum, that is, to receive the permissions from all the

processes of some quorum of its associated coterie. If

we restrict that every process can grant its permission to

only one process at a time, then the mutually exclusive

access of resources is guaranteed because any two

quorums q1 and q2, q1∈Ci and q2∈Cj, must intersect

when pi and pj compete for the same resources. The

reader should note that the minimality property is not

necessary for the correctness of resource allocation but

is used to enhance efficiency.

Kakugawa and Yamashita proposed an algorithm

[20] to construct local coteries. In the algorithm, for

each process pi, its associated coterie Ci is {qi}, where

qi={pj|Ri∩Rj≠∅} (i.e., Ci has only one quorum

containing all the processes competing resources with

pi). For example, with respect to the RAG in Figure-1, a

local coterie constructed by the Kakugawa and

Yamashita’s algorithm is ({{p1, p2}}, {{p1, p2, p3}},

{{p2, p3}}). The local coterie is not so efficient since

each Ci has only one quorum. It also has the drawback

that it prohibits the concurrent CS entrances of the

processes not competing for the same resources. For

example, for the RAG in Figure-1, process p1 and

process p3 should be able to enter the CS concurrently

since they use no common resource. However, when we

apply the local coterie ({{p1, p2}}, {{p1, p2, p3}}, {{p2,

p3}}) constructed by the Kakugawa and Yamashita’s

algorithm to solve the distributed resource allocation

problem, process p1 and p3 are not allowed to enter the

CS concurrently.

Cheng et al. proposed another algorithm [6] to

construct local coteries, which are more efficient than

the ones constructed by the Kakugawa and Yamashita’s

algorithm and can allow no-competing processes to

enter the CS concurrently. Below, we describe the Cheng

et al.’s algorithm briefly. For each resource rj, the

algorithm first finds out Pj={p| process p accesses

 4

resource rj}, the set of all processes that access resource

rj. Then, for each resource rj, the algorithm constructs a

coterie Crj under Pj (note that in this paper, we use the

term “the coterie for resource rj” to refer to Crj).

Afterwards, for each process pi, a set Qi of quorums is

derived, where

Qi={q| q=U
m

j
jq

1=

, qj∈Crj and rj∈Ri}.

To be more precise, if process pi accesses resources

r1,…,rm, m>1, then each member q of Qi is of the form

q=q1∪…∪qm, where q1∈Cr1,…, qm∈Crm. At last, the

coterie Ci associated with pi is derived by removing

every non-minimal quorum of Qi (note that a quorum is

non-minimal if it is a superset of another quorum).

We observe that the Cheng et al.’s algorithm can

be improved. For example, for the RAG in Figure-2,

below is a possible local coterie construction by the

Cheng et al.’s algorithm:

P={p1, p2, p3, p4, p5}.

R={r1, r2}.

R1=R2=R3= R4=R5={r1, r2}.

Cr1={{p1, p2}, {p1, p3}, {p1, p4}, {p1, p5}, {p2, p3, p4,

p5}}.

Cr2={{p1, p2, p4}, {p1, p2, p5}, {p1, p3, p4}, {p1, p3, p5},

{p2, p3, p4}, {p2, p3, p5}, {p4, p5}}.

C1=C2=C3=C4=C5={{p1, p2, p4}, {p1, p2, p5}, {p1, p3, p4},

{p1, p3, p5}, {p1, p4, p5}, {p2, p3, p4, p5}}.

Since resources r1 and r2 are accessed by the same

set and only the same set of processes, we can regard

them as a virtual resource r3. For the virtual resource r3,

we can derive Cr3 by letting Cr3=Cr1 or Cr3=Cr2. Thus,

we have C1=C2=C3=C4=C5=Cr3=Cr1 or

C1=C2=C3=C4=C5=Cr3=Cr2. We can check that in either

case, the corresponding local coterie is better than the

original one. Thus, we can conclude that if some

resources are accessed by the same set and only the

same set of processes, then we should regard those

resources as one virtual resource. Note that we will refer

to the concept just mentioned the “virtual resource”

concept.

Figure 2. The RAG for a special case of the system in which

some resources are accessed by the same set and only the same

set of processes.

In addition to the improvement by the virtual

resource concept, we also find that there may be another

improvement for the Cheng et al.’s algorithm. The

improvement is based on the concept of nondominated

(ND) coteries. A coterie is always better than the coterie

it dominates in the sense that if a quorum can be formed

in the dominated one then a quorum can be formed in

the dominating one. Thus, we should always concentrate

on the nondominated (ND) coteries that no coterie can

dominate.

In the next section, we introduce the coterie

domination concept. We define a new type of coteries,

called p-coteries, to aid the construction of local coteries.

We then develop theorems about the nondomination of

p-coteries, and propose an operation, called

pairwise-union (p-union), to help generate ND

p-coteries from known ND coteries. ND p-coteries can

then be used to generate ND local coteries for solving

the distributed resource allocation problem.

3. Theorems for Local Coterie Domination

In this section, we give definition of the

nondominated local coteries and develop theorems about

the nondomination of local coteries. We first introduce

the concept of coterie domination.

Definition 1. (coterie domination) [10]

Let C and D be two distinct coteries. C is said to

dominate D iff ∀q, ∃q′: q∈D, q′∈C: q′⊆q. (We say that

q′ is the set that dominates q.)

For example, coterie C={{p1, p2}, {p1, p3}, {p1, p4},

{p2, p3, p4}} dominates coterie D={{p1, p2, p3}, {p1, p2,

p1 p2 p3 p4 p5

r1 r2

 5

p4}, {p1, p3, p4}, {p2, p3, p4}} because for every quorum

q in D we can find a quorum q′ in C such that q is a

super set of q′. A dominating coterie, such as C, is

always better than a dominated coterie, such as D, since

if a quorum can be formed in the dominated one then a

quorum can be formed in the dominating one. A coterie

is nondominated (ND) if no other coterie can dominate it.

ND coteries are candidates to achieve the highest

availability, which is the probability that a quorum can

be formed in an error-prone environment. Thus, we

should always concentrate on ND coteries if

fault-tolerance is one of the main concerns. Some

classes of coteries, such as the majority coteries [27], the

tree coteries [1], the hierarchical coteries [19], the

Lovasz coteries [21], the crumbling walls coteries [24]

and the cohorts coteries [15] have been shown to be ND.

Theorem 1 in the following is developed by

Garcia-Molina and Barbara in [10]. This theorem is

useful to check if a coterie is dominated or not.

Theorem 1. Let C be a coterie under P. Then, C is

dominated iff there exists a set x⊆P such that

L1. ∀q : q∈C: q⊄x.

L2. ∀q : q∈C: q∩x≠∅.

Following the definition of coterie domination, we

give the definition of local coterie domination below.

Definition 2. (local coterie domination)

Let C=(C1,…,Cn) and D=(C1′,…,Cn′) be two distinct

local coteries. C is said to dominate D iff Ci=Ci′ or Ci

dominates Ci′, for 1≤i≤n (i.e., every coterie in C equals

or dominates its corresponding coterie in D).

For example, let local coterie C be ({{p1}}, {{p1,

p3}}, {{p3}}) and local coterie D be ({{p1, p2}}, {{p1,

p2, p3}}, {{p3}}). We can see that C dominates D since

{{p1}} dominates {{p1, p2}}, {{p1, p3}} dominates {{p1,

p2, p3}}, and {{p3}} equals {{p3}}.

By Definition 2, the domination of two distinct

local coteries is based on the domination (or equality) of

each pair of corresponding coteries. When a process

accesses only one resource, we can apply Theorem 1 to

check the domination of the coterie associated with the

process since the coterie is exactly the same as defined

in [10]. However, when a process accesses more than

one resource, the coterie associated with the process has

inter-coterie quorum intersection relation with other

coteries. Below, we define a new type of coteries, called

p-coteries, to capture the inter-coterie quorum

intersection relation.

Definition 3. (p-coterie)

Given m, m>1, coteries Cr1,…,Crm, a p-coterie C from

Cr1,…,Crm is defined to be a coterie satisfying ∀q∀q′∀j:

q∈C, q′∈Crj, 1≤j≤m : q∩q′≠∅.

In the Cheng et al.’s algorithm, if coteries

Cr1,…,Crm are selected respectively to be the coteries

for resources r1,…,rm, then we can easily check that a

p-coterie from Cr1,…,Crm can be used as a coterie

associated with the process accessing resources r1,…,rm.

With the inference similar to that in [10] for

Theorem 1, we have the following theorem for checking

the domination of a p-coterie. Note that by definition a

p-coterie is also a coterie, which is a fact used in the

proof of Theorem 2.

Theorem 2. Let C be a p-coterie from coteries

Cr1,…,Crm, m>1. C is dominated if and only if there

exists a set x such that

L1. ∀q: q∈C: q⊄x

L2. ∀q: q∈C: q∩x≠∅

L3. ∀q∀j : q∈Crj, 1≤j≤m: q∩x≠∅

Proof :

(if part)

We first show that L1, L2 and L3 imply C is

dominated. There are two cases to consider. Case 1: If

there are one or more q1,...,ql∈C such that x⊂q1,…,x⊂ql,

then construct set S=(C−q1−…−ql)∪{x}. It is easy to see

that S is a p-coterie from Cr1,…,Crm and S dominates C.

Case 2: If there are no supersets of x in C, then S=C∪{x}

is a p-coteries from Cr1,…,Crm and S dominates C.

(only if part)

Now, assume that C is dominated by D, we show

that conditions L1, L2 and L3 hold by considering two

cases. Case 1: C⊂D. Let x be one of the elements in

D−C. Set x must satisfy conditions L1, L2 and L3 or else

D would not be a valid p-coterie from Cr1,…,Crm. Case

2: C⊄D. In such a case, there must be a set q∈C and a

set x∈D such that x⊂q (see Definition 1). If condition

L1 is false for x, then q′⊆x for some q′∈C and C is not a

coterie because q′ ⊆ x ⊂ q. Similarly, if condition L2

 6

doesn’t hold for x, then D would not be a coterie

because ¬L2 implies ∃q′: q′∈C: q′∩x=∅, which in turn

implies x∩x′=∅, where x′ is the set in D that dominates

q′. If condition L3 doesn’t hold for x, then D would not

be a p-coterie from Cr1,…,Crm because ¬L3 implies ∃q′:

q′∈Crj: q′∩x=∅ for some Crj, 1≤j≤m, which in turn

implies x∩x′=∅, where x′ is the set in D that dominates

q′. We can see that either in case 1 or in case 2, the

conditions L1, L2 and L3 should hold. ■

Inspired by the Cheng et al.’s algorithm, we

propose an operation, denoted by ⊗ and called

pairwise-union (p-union, for short), to generate

p-coteries from coteries. As will be shown later, we can

apply p-union operation on ND coteries to generate ND

p-coteries for the construction of ND local coteries.

Definition 4. (pairwise-union operation)

Let P1 and P2 be two non-empty sets of processes.

Also let G be a coterie under P1, and H be a coterie

under P2. The pairwise-union (p-union) operation ⊗ of

G and H is defined to be

G⊗H={g∪h |g∈G, h∈H}.

For example, let G={{p1, p2},{p2, p3},{p1, p3}} be a

coterie under P1={p1, p2, p3} and H={{p2, p3},{p3,

p4},{p2, p4}} be a coterie under P2={p2, p3, p4}. Then

G⊗H={ {p1, p2, p3}, {p1, p2, p3, p4}, {p1, p2, p4}, {p2, p3},

{p2, p3, p4}, {p2, p3, p4}, {p1, p2, p3}, {p1, p3, p4}, {p1, p2,

p3, p4} }.

Let F=Min(G⊗H), where Min(Q) is a function to

eliminate non-minimal quorums from a collection Q of

quorums. The following Theorem 3, Theorem 4 and

Theorem 5 are about properties of F.

Theorem 3. Let P1 and P2 be two non-empty sets of

processes. If G is a coterie under P1 and H is a coterie

under P2, then F=Min(G⊗H) is a p-coterie from G and

H under P1∪P2.

Proof:

The minimality property is satisfied after Min()

function is applied. Thus, to prove the theorem, we only

have to show (F1)∀f, ∀f′ : f, f′ ∈F: f∩f′≠∅ (F2) ∀f, ∀g:

f∈F, g∈G: f∩g≠∅ (F3) ∀f, ∀h: f∈F, h∈H: f∩h≠∅.

Let f and f′ be two sets in F. We have f=(g∪h) for

some g∈G and some h∈H, and f′=(g′∪h′) for some

g′∈G and some h′∈H. Assume f∩f′=∅. It follows that

(g∪h)∩(g′∪h′)=∅. And hence, we have g∩g′=∅ and

h∩h′=∅, which contradicts the fact that G and H are

coteries. So, the condition (F1) holds.

Let f be a set in F. We have f=(g∪h) for some g∈G

and some h∈H. Assume f∩g′=∅ for some g′∈G. It

follows that (g∪h)∩g′=∅. We have g∩g′=∅, which

contradicts the fact that G is a coterie. Thus, the

condition (F2) holds.

Let f be a set in F. We have f=(g∪h) for some g∈G

and some h∈H. Assume f∩h′=∅ for some h′∈H. It

follows that (g∪h)∩h′=∅. We have h∩h′=∅, which

contradicts the fact that H is a coterie. Thus, the

condition (F3) holds. ■

In Theorem 3, G and H are taken to be coteries.

However, G and H in Theorem 3 can also be taken to be

p-coteries because a p-coterie is also a coterie. Below,

we apply Theorem 3 with G being a p-coterie to prove

the following Theorem 4.

Theorem 4. Let P1,…,Pm , m>1, be non-empty sets of

processes. If Crj is a coterie under Pj, 1≤j≤m, then

Min(Cr1⊗…⊗Crm) is a p-coterie from Cr1,…,Crm under

P1∪…∪Pm.

Proof : (by induction on the value of m)

(1) Basis: (m=2)

By Theorem 3, the basis case holds.

(2) Induction hypothesis:

Assume that if Crj is a coterie under Pj for 1≤j≤m,

then G=Min(C1⊗…⊗Cm) is a p-coterie from Cr1,…,Crm

under P1∪…∪Pm.

(3) Induction step:

On the basis of the induction hypothesis, below we

show that if Crj is a coterie under Pj for 1≤j≤m+1, then

F=Min(Cr1⊗…⊗Crm+1) is a p-coterie from Cr1,…,Crm+1

under P1∪…∪Pm+1.

Let G be Min(Cr1⊗…⊗Crm). Then

F=Min(G⊗Crm+1). Since G is a p-coterie from

Cr1,…,Crm under P1∪…∪Pm (by the induction

hypothesis) and Crm+1 is a coterie under Pm+1, we have F

is a p-coterie from G and Crm+1 under P1∪…∪Pm+1 by

Theorem 3. Because G is a p-coterie from Cr1,…,Crm,

each quorum in G intersects every quorum in Cr1,…,Crm.

 7

And because F=Min(G⊗Crm+1), any quorum f in F must

be of the form f=g∪q, where g∈G and q∈Crm+1. It

follows that each quorum in F intersects every quorum

in Cr1,…,Crm+1. Hence, we have that F is a p-coterie

from Cr1,…,Crm+1 under P1∪…∪Pm+1.

Therefore, by the induction principle, we have

Min(C1⊗…⊗Cm) is a p-coterie from Cr1,…,Crm under

P1∪…∪Pm for m>1. ■

The following Theorem 5 is about the

nondomination of the p-coteries generated by the

p-union operation.

Theorem 5. Let P1,…,Pm , m>1, be non-empty sets of

processes. Also let Crj be a coterie under Pj for 1≤j≤m,

and F=Min(Cr1⊗…⊗Crm) be a p-coterie from

Cr1,…,Crm under P1∪…∪Pm. Then, F is ND if

Cr1,…,Crm are all ND.

Proof:

Assume F is dominated, then by Theorem 2, there

must exist a set x⊆(P1∪…∪Pm) such that (L1) ∀f : f∈F :

f⊄x, (L2) ∀f : f∈F : f∩x≠∅, (L3) ∀q∀j : q∈Crj, 1≤j≤m:

q∩x≠∅.

Let x1=x∩P1, x2=x∩P2, …, and xm=x∩Pm. Then, we

have ∀q: q∈Cr1: q∩x1≠∅ because q∩x1=q∩x∩P1≠∅ by

(L3) and (q∩x)⊆P1. Similarly, we have ∀q: q∈Cr2:

q∩x2≠∅ because q∩x2=q∩x∩P2≠∅ by (L3) and

(q∩x)⊆P2. … And we have ∀q: q∈Crm: q∩xm≠∅

because q∩xm=q∩x∩Pm≠∅ by (L3) and (q∩x)⊆Pm. To

sum up, we have ∀q∀j: q∈Crj, 1≤j≤m: q∩xj≠∅.

Suppose ∀q: q∈Cr1: q⊄x1. Then, we have

Cr1∪{x1} is a coterie dominating Cr1, which contradicts

the fact that Cr1 is ND. It follows that ∃q1: q1∈Cr1:

q1⊆x1. We can proceed with the same inference to have

∃q2: q2∈Cr2: q2⊆x2, …, and ∃qm: qm∈Crm: qm⊆xm. It

follows that (q1∪…∪qm)⊆x since

(q1∪…∪qm)⊆(x1∪…∪xm)=(x∩P1)∪…∪(x∩Pm)⊆x.

Because F=Min(Cr1⊗…⊗Crm), we have ∃f: f∈F:

f⊆(q1∪…∪qm) by ⊗ operation definition. We then have

∃f: f∈F: f⊆(q1∪…∪qm)⊆x, which contradicts (L1).

The assumption that F is dominated cannot stand.

Hence, the theorem holds. ■

Note that we do not know whether the “only if”

part of Theorem 5 (i.e., F is ND only if Cr1,…,Crm are

all ND) is true or not; we leave it as an open problem.

Fortunately, Theorem 5 itself is sufficient to guide us to

derive ND p-coteries for the construction of ND local

coteries.

4. Concluding Remarks

In this paper, we have defined a new type of

coteries, called p-coteries, to aid the construction of

local coteries. We have developed theorems about the

nondomination of p-coteries, and proposed an operation,

called pairwise-union (p-union), to help generate ND

p-coteries from known ND coteries. By the virtual

resource concept discussed in Section 2 and all the

theorems developed in Section 3, we now have the

following 3 steps to construct an ND local coterie

LC=(C1,…,C|P|) to solve the distributed resource

allocation problem for the system with process set P and

resource set R:

Step 1. Treat a set S of resources that are accessed by the

same set and only the same set of processes as a virtual

resource v and let R=(R-S)∪{v}. This step should be

repeated until no S exists.

Step 2. For each resource rj in R, construct an ND

coterie Crj. Note that Crj may be a majority coterie [27],

a tree coterie [1], a hierarchical coterie [19], a Lovasz

coterie [21], a crumbling walls coterie [24] or a cohorts

coterie [15].

Step 3. For each process pi in P, construct an ND

p-coterie Ci as follows. If pi accesses only one resource,

say rj, then Ci=Crj. Otherwise, pi accesses two or more

resources, say r1,…,rm, m>1. In such a case, Ci=

Min(Cr1⊗…⊗Crm).

In the future, we plan to study the availability of

local coteries constructed with the aid of p-union

operation, where the availability means the probability

that a quorum can be successfully formed in an

error-prone environment. We also plan to apply the

p-union operation to ND k-coteries to solve the

distributed multiple instance resource allocation problem,

which is similar to the distributed resource allocation

problem except that there are multiple instances for each

shared resource.

 8

References
[1] D. Agrawala and A. El Abbadi, “An efficient and

fault-tolerant solution for distributed mutual exclusion,”

ACM Transactions on Computing Systems, 9(1):1-20,

1991.

[2] G. Agrawal and P. Jalote, “An efficient protocol for

voting in distributed systems,” in Proc. of the 12th IEEE

International Conference on Distributed Computing

Systems, pp. 640-647, 1992.

[3] J. Bar-Ilan and D. Peleg, “Distributed resource allocation

algorithms,” Lecture Notes in Computer Science

647(WDAG ′92), pp. 276-291, 1992.

[4] K. M. Chandy and J. Misra, “The drinking philosophers

problem,” ACM Transactions on Programming

Languages and Systems, 6(4):632-646, 1984.

[5] M. Choy and A. K. Singh, “Efficient fault-tolerant

algorithms for distributed resource allocation,” ACM

Transactions on Programming Languages and Systems,

17(3):535-559, 1995.

[6] Z. Cheng, Y. Wada, S. Hashimoto, A. He and T. Huang,

“A new method for constructing efficient local coteries,”

in Proc. of the 15th International Conference on

Information Networking, pp. 512 –517, 2001.

[7] E. W. Dijkstra, “Solution to a problem in concurrent

programming control,” CACM, 8(9):569, 1965.

[8] E. W. Dijkstra, “Hierarchical ordering of sequential

processes,” Acta Informatica, 1:115-138, 1971.

[9] M. Fisher, N. Lynch, J. Burns and A. Borondin,

“Resource allocation with immunity to limited process

failure,” in Proc. of the 20th IEEE annual symposium

on foundations of Computer Science, pp. 234–254,

1979.

[10] H. Garcia-Molina and D. Barbara, “How to assign votes

in a distributed system,” JACM., 32(4):841-860, 1985.

[11] S.-T. Huang, J.-R. Jiang and Y.-C. Kuo, “k-Coteries for

fault-tolerant k entries to a critical section,” in Proc. of

the 13th IEEE International Conference on Distributed

Computing Systems, pp.74-81, 1993.

[12] T. Harada and M. Yamashita, “Coterie join operation and

tree structured k-coteries,” IEEE Transactions on

Parallel and Distributed Systems, 12(9):865-874, 2001.

[13] J.-R. Jiang and S.-T. Huang, “Obtaining nondominated

k-coteries for fault-tolerant distributed k-mutual

exclusion,” in Proc. of 1994 IEEE International

Conference on Parallel and Distributed Systems, pp.

582–587, 1994.

[14] J.-R. Jiang, S.-T. Huang and Y.-C. Kuo, “Cohorts

structures for fault-tolerant k entries to a critical section,”

IEEE Transactions on Computers, 48(2):222-228, 1997.

[15] J.-R. Jiang, “Fault-tolerant distributed mutual exclusion

with O(1) message overhead,” in Proc. of the 13th

International Conference on Applied Informatics,

pp.228-231, 1995.

[16] J.-R. Jiang, “Distributed h-out of-k mutual exclusion

using k-coteries,” in Proc. of the 3rd International

Conference on Parallel and Distributed Computing,

Application and Technologies (PDCAT’02), pp. 218-226,

2002.

[17] H. Kakugawa, S. Fujita, M. Yamashita and T. Ae, “A

distributed k-mutual exclusion algorithm using

k-coterie,” Information Processing Letters, 49:213-238,

1994.

[18] Y.-C. Kuo and S.-T. Huang, “Recognizing nondominated

coteries and wr-coteries by availability,” IEEE

Transactions on Parallel and Distributed Systems,

9(8):721-728, 1998.

[19] A. Kumar, “Hierarchical quorum consensus: a new

algorithm for managing replicated data,” IEEE

Transactions on Computers, 40(9):996-1004, 1991.

[20] H. Kakugawa and M. Yamashita, “Local coteries and a

distributed resource allocation algorithm,” Transactions

of Information Processing Society of Japan,

37(8):1487-1496, 1996.

[21] M. L. Neilsen, “Quorum structures in distributed

systems,” Ph. D. Dissertation, Kansas State University,

1992.

[22] M. L. Neilsen and M. Mizuno, “Nondominated

k-coteries for multiple mutual exclusion,” Information

Processing Letters, 50(5):247-252, 1994.

[23] M. L. Neilsen and M. Mizuno, “Erratum to

nondominated k-coteries for multiple mutual exclusion,”

Information Processing Letters, 60(6):319-23, 1996.

[24] D. Peleg and A. Wool, “Crumbling walls: a class of

practical and efficient quorum systems,” Distributed

Computing, 10:87-98, 1997.

[25] M. Raynal, “A distributed solution for the k-out of-m

resources allocation problem,” Lecture Notes in

Computer Sciences, Springer Verlag, 497:599-609, 1991.

[26] I. Rhee, “A fast distributed modular algorithm for

resource allocation,” in Proc. of the 15th IEEE

International Conference on Distributed Computing

Systems, pp. 161-168, 1995.

[27] R. H. Thomas, “A majority consensus approach to

concurrency control,” ACM Transactions on Database

Systems, 4(2):180-209, 1979.

