
1

Peer-to-Peer AOI Voice Chatting for Massively Multiplayer Online Games

Jehn-Ruey Jiang, Hung-Shiang Chen, and Chao-Wei Hung

Department of Computer Science and Information Engineering

National Central University

Jhongli City, Taiwan, R. O. C.

ABSTRACT

In recent years, massively multiplayer online games (MMOGs) have

become more and more popular. Many techniques have been proposed to

enhance the experience of using MMOGs, such as realistic graphics, vivid

animations, and player communication tools, etc. However, in most MMOGs,

communication between players is still based on text, which is unnatural and

inconvenient. In this paper, we propose the concept of AOI voice chatting for

MMOGs. The term AOI stands for the area of interest; a player in the MMOG

only pays attention to his/her AOI. By AOI voice chatting, a player can easily

chat by voice with other plays in the AOI. This improves the way players

communicate with one another and provides a more realistic virtual

environment. We also propose two peer-to-peer schemes, namely QuadCast and

SectorCast, to achieve efficient AOI voice chatting for MMOGs. We perform

simulation experiments to show that the proposed schemes have reasonable

latency and affordable bandwidth consumption.

Key words: peer-to-peer, massively multiplayer online games, voice

chatting, avatar

I. INTRODUCTION

In recent years, massively multiplayer online

games (MMOGs) have become more and more

popular. For example, World of Warcraft [1], one

of the most popular MMOGs, reached a record of

8.5 million subscribed players worldwide. And

according to a report by ScreenDigist [2], the

MMOG market broke $1 billion mark in 2006. An

MMOG is a computer game which can support

hundreds of thousands of players playing

simultaneously in a virtual world over internet. A

player in the MMOG is represented by a

personalized 3D character called an avatar. By

controlling the avatar, a player can navigate the

virtual world, fight monsters for rewards, and

interacts with other players, and so on.

Many techniques have been proposed to

enhance the experience of using MMOGs, such as

realistic graphics, vivid animations, and player

2

communication tools, etc. However, in most

MMOGs, communication between players is still

based on text, which is unnatural and inconvenient.

Players type and read the text in the chat box

instead of speaking and listening. Furthermore,

because the mouse and the keyboard are the major

input devices of most MMOGs, it is hard for a

player to control the avatar and communicate with

other players at the same time. When a player wants

to chat with others by typing text, he/she may lose

the control of the avatar for a while. Text-based

chatting is inconvenient for players to use,

especially for those not good at typing. As a result,

players begin to seek for voice chatting solutions,

such as Teamspeak [3], Ventrilo [4], and Skype [5],

etc.

Teamspeak and Ventrilo are two popular VoIP

applications supporting group voice chatting. They

are client/server based and thus need dedicated

servers. When a user of a group talks, his/her voice

is transmitted to the server in the form of voice

packets. The server then mixes voice contents of all

group users and sends the mixed contents to each

group user. The client only delivers user’s voice

packets and receives voice packets from the server,

but the server needs to receive voice packets from

all clients and deliver voice packets in real time.

Therefore, the number of users supported by a

server is limited; it depends on the server’s network

bandwidth and computation power. Skype is a

popular peer-to-peer based VoIP application. It

supports not only telephoning over internet, but also

group voice chatting (Skype conference call), in

which several players can chat together with one of

the player serving the role of the host to receive,

mix and deliver voice data. However, since Skype

only support group voice chatting for several users,

it is not suitable for MMOGs, which usually have

many players chatting together. Teamspeak,

Ventrilo, and Skype may be used as a voice chatting

tool for MMOGs. However, their interactivity is yet

to be improved since they are based on static group

membership (i.e., the membership of a group is

fixed or seldom changed) and a user thus has to a

priori join a certain group to talk to someone in the

group.

In this paper, we propose the concept of AOI

voice chatting for MMOGs, which is

dynamic-membership voice chatting based on the

AOIs of players in the MMOG. The term AOI

stands for the area of interest; a player in the

MMOG has a position in the virtual world and only

pays attention to his/her AOI, which is ordinarily

defined to be a circular area centered at the player

[6]. By AOI voice chatting, an MMOG player can

easily chat by voice with other players within

her/his AOI. This improves the way players

communicate with one another and provides a more

realistic virtual environment. We also propose two

peer-to-peer schemes, namely QuadCast and

SectorCast, to achieve efficient AOI voice chatting

for MMOGs. The two schemes adopt the

peer-to-peer architecture to eliminate the

requirement of servers and to utilize the bandwidth

of all participating players. We perform simulation

experiments for the two schemes to show they have

reasonable latency and affordable bandwidth

consumption.

The rest of this paper is organized as follows:

Section 2 introduces some background knowledge.

In Section 3, we first describe how we model the

system, and we then describe a basic scheme and its

problem. In Section 4, we propose QuadCast and

SectorCast to support AOI-voice chatting for

MMOGs. We perform simulation experiments for

the two schemes. The simulation results and the

3

comparisons are given in Section 5. Comparisons of

the proposed schemes with other related work is

given in Section 6. Finally, concluding remarks are

drawn in Section 7.

II. RELATED WORK

2.1. Architecture of MMOG

Most MMOGs nowadays are based on the

client-server architecture. In such an architecture,

the virtual world of MMOG is maintained on a

centralized server or server cluster, where players

log in and start playing the game. By a centralized

server or server cluster, the consistency of game

states can be easily maintained and cheating

between players can also be avoided. However,

because the server is in charge of all event

processing and message transmission, it becomes a

performance bottleneck when the number of players

is increasing, this constrains the scalability of the

MMOG system.

To achieve better scalability, researchers

propose peer-to-peer architectures, such as VON [7],

Solipsis [8] and Apolo [9], for the MMOG. In the

peer-to-peer architectures, every player runs a same

peer program in a distributed manner without a

centralized server; the peer program plays the roles

of both a server and a client. In the MMOG, a

player interacts only with other players in his/her

AOI. Therefore, a player only exchanges messages

with a limited number of players within the AOI. In

this way, the peer-to-peer MMOG architecture can

potentially provide better scalability than the

client-server one. However, because there is no

centralized server, many problems become more

complex to solve. For example, in the client-server

architecture, finding new players in a player’s AOI

can be achieved by the server easily because the

server has position information of all players. But in

the peer-to-peer architecture, players have to

discover new players in the AOI by exchanging

messages extensively among players according to

specific protocols [7, 8, 9].

2.2. Immersive Audio Systems

The paper [10] proposes an immersive audio

communication system for MMOGs. The system

allows a player to hear voices of all players within

its “hearing range” by creating a personalized

“audio scene” for every player. This personalized

audio scene mixes and attenuates all voice contents

from other players according to the propagation

distances. The paper also examines advantages and

limitations of architectures to realize the system,

including the peer-to-peer, the centralized server

and the distributed server architectures. In the

peer-to-peer architecture, a player sends the voice

packet directly to other players in the hearing range.

Due to the direct sending, the system provides low

latency and has no single point of failure. However,

if a player has a large number of players in the

hearing range, the bandwidth consumption may not

be affordable since a separate voice packet must be

sent to each player in the hearing range in real time.

In the centralized server architecture, the

centralized server gathers voice streams from all

players, mixes them and then sends a separate

mixed stream to each player. In this architecture,

the centralized server becomes the bottleneck and

the single point of failure of the system. In the

distributed server architecture, the whole virtual

world is partitioned into multiple regions, called

locales, and audio streams can be processed by

different locale servers. A player can transmit audio

streams to one of the locale servers with the shortest

latency. As shown in [10], the distributed server

4

architecture has shorter latency than the centralized

server one, but has longer latency than the

peer-to-peer one. However, it poses more

complexity in the control and the coordination of

distributed servers.

The paper [11] proposes a peer-to-peer based

immersive audio streaming system for MMOGs. To

provide with audio immersive experience, a voice

from a near player would be louder than that from a

farther player, and the voice would be louder when

two players are talking face to face. The paper [11]

uses Voronoi diagram to find out the connecting

neighbors for a peer (i.e., player) to directly connect

with. It also uses an audio mixing model for mixing

audio data of connecting neighbors with

consideration of neighbors’ positions and audio

directions. Let the strength of player i’s voice be Si

and the angle between the direction of player i’s

voice and the direction from player i to player j, one

of i's connecting neighbors, be i,j. The voice

strength sent from i to j is proportional to Si 

cos(i,j / 2). It is the largest when i,j = 0; it is the

smallest (actually 0) when i,j = . Suppose player i

receives a voice stream of strength Sn,i from a

connecting neighbor n and the angle between the

direction from n to i and the direction from i to j is

n,j. Player i will also forward the voice stream just

received to neighbor j, and the strength sent is

proportional to Sn,i  cos(n,j / 2). Each peer in the

system gathers the voice streams of all connecting

neighbors, mixes them with its own voice stream

according to the above-mentioned audio mixing

model, multiplies the mixed stream by a fading

factor, and at last sends a separate, faded, mixed

stream to every neighbor per time step. Note that

the fading factor for player i to send voice stream to

player j is a function of the distance from i to j. A

longer distance implies a smaller fading factor,

which in turn makes the audio stream fade quicker.

Since the number of connecting neighbors of a

player is usually small, the audio immersive system

is thus scalable. However, the system has the echo

effect that the audio signal sent by a player can loop

back to itself after as few as three hops of packet

transmission. Due to the voice mixing model, a

voice stream may be delivered to a player far away

from the voice originator. Therefore, it is hard for

the system to support a definite voice transmission

area (or hearing area). That is, the system cannot

easily confine the transmission of a voice stream to

a certain area, such as AOI, in an MMOG space.

Moreover, the system also has the multiple path

effect that a player’s voice is propagated through

different intermediate players to reach a certain

player. For example, if player i has two connecting

neighbors n and m which in turn have a common

connecting neighbor j, then j will receive i's voice

stream twice, via n and m, respectively. Since the

multiple path effect makes a voice stream be

delivered to a node multiple times via different

paths of different latency, extra audio mixing

processes are caused and the resultant mixed audio

may contain repeated, fading voices.

2.3. Human Conversational Speech Model

The article [12] describes some characteristics

and statistics of human conversational speech. The

human conversation can be modeled as short burst

of voice signals (called talkspurts) separated by

silence gaps (called pauses). The gaps occur

between phrases, sentences, words or syllables

when a speaker is talking. The gap may also caused

by the mutual silence, which occurs when no one is

talking. The talkspurts are contributed by either a

single talk or a double talk. Statistics of temporal

parameters of a conversational speech are shown in

5

Table 1. This table shows that in a conversation a

person only spends about 40% of time in speaking

and keeps silent during the rest of the time.

Moreover, once a person is talking in a

conversation, the talking rate of the other people is

reduced to only 6%. In sum, a person has a

probability of 40% to talk in a conversation, and

people are often silent when one of the people is

talking.

Table 1. Temporal parameters in conversational speech

Parameter Rate (%)

Talk-spurt 38.53

Pause 61.47

III. THE SYSTEM MODEL AND THE

PROBLEM

3.1. The System Model

The virtual world of an MMOG is modeled as

a two-dimensional plane, and the players are

modeled as nodes moving on it. (Note that below

we use the terms “node” and “player”

exchangeably.) Each node has a unique ID, a

coordinate (X, Y), an AOI, and some other behavior

parameters. The AOI of each node defines the area

in which the node can interact with others. We

assume that each node’s AOI is a circle centered at

the node with a fixed radius and all nodes have the

same AOI radius. The nodes in a node’s AOI are

called the node’s AOI neighbors. For example, in

Figure 1, the big circle around node A is A’s AOI,

and nodes B, ...,I are node A’s AOI neighbors.

Under the above-mentioned system model, the

AOI voice chatting can be regarded as voice packet

multicast within the AOI. When a node talks, the

voice packets are multicast to its AOI neighbors. In

this way, a node’s AOI neighbors can hear its voice,

and vice versa. As illustrated in Figure 1, when

node A talks, all its AOI-neighbors should receive

the voice packet, but non-AOI-neighbors should not.

In order to correctly multicast the voice packets to

AOI neighbors, we need a recipient list containing

these AOI neighbors. In this paper, we assume the

MMOG system, either server-based or peer-to-peer

based, can provide a node with the information of

its AOI neighbors, such as their IDs, network

addresses, virtual world coordinates, etc. The

assumption is practical. For example, the VON

system [7] can support such information.

Fig 1. The AOI (Area of Interst) of a node A

3.2. The Problem of a Base Scheme

In this subsection, we introduce a base AOI

voice chatting scheme, NimbusCast, and its

problem. When a node talks, it first acquires AOI

neighbor information from the MMOG system.

After that, the node delivers voice packets to every

AOI neighbor. For example, in Figure 2, when node

A talks, it first figures out nodes B, ...,I are its AOI

neighbors, and then delivers separate voice packets

to B, ...,I. Nodes J and K do not receive the voice

packets because they are outside A’s AOI.

A

B

D

I

C

F

H

E

G
K

J

A’s AOI radius

6

Fig. 2 Illustration of NimbusCast

NimbusCast is simple; however, it has the

problem of bandwidth overloading that the burst

bandwidth consumption of a voice source node may

exceed the upload bandwidth limitation. This is

because voice packets should be sent in real time

and when the number of a node’s AOI neighbors is

large, the burst bandwidth consumption is prone to

exceed the bandwidth limitation. For example, if it

takes 16kbps to support an end-to-end voice

communication and the upload bandwidth

limitation is 256kbps, the burst bandwidth

consumption will exceeds the bandwidth limitation

of a talking node when the number of its AOI

neighbors is more than 16. As shown in Figure 3,

for a specific node, the problem may occur every

time the node talks; however, it does not occur

when the node keeps silent.

Fig 3. Network bandwidth consumption in NimbusCast

IV. THE PROPOSED SCHEMES

In this section, we propose two schemes,

QuadCast and SectorCast, to support AOI voice

chatting for MMOGs. When a node talks, it must

deliver the voice packets to all its AOI neighbors

with reasonable latency but without bandwidth

overloading. Therefore, we have the following two

design goals for the proposed schemes.

• Reasonable latency

ITU-T recommendation G.114 [13] provides a

guideline about the one-way end-to-end (or

mouth-to-ear) latency. It says that most users

are satisfied with latency between 150 ms to

250 ms, while latency below 400 ms may also

be tolerable by users. According to the

recommendation, the latency of the proposed

schemes should be less than 400 ms.

• No bandwidth overloading

The schemes should avoid bandwidth

overloading. That is, they should prevent the

burst bandwidth consumption of a node from

exceeding the upload bandwidth limitation.

As we have mentioned in Section 2, in a

conversation, a node only spends about 40% of the

time talking, and is silent for the rest 60% of the

time. If the idle upload bandwidth of those silent

nodes can be used to help forward other nodes’

voice packets, the burst upload bandwidth

consumption will be reduced, which in turn can

help avoid upload bandwidth overloading. However,

the forwarding of voice packets will make the

latency longer. Thus, we should have a systematic

way to perform the voice packet forwarding with

reasonable latency. QuadCast and SectorCast apply

different strategies to divide the recipient list for

A

B

D

I

C

F
H

E

G
K

J

SilentSilent Talking Talking

Bandwidth

limitation

Time

U
p
lo

a
d
 b

a
n
d
w

id
th

 c
o
n
su

m
p
ti

o
n

7

efficient packet forwarding. Below, we elaborate

the details of the two schemes in the following

subsections, respectively.

4.1. Quadrant-Based Forwarding

(QuadCast)

In QuadCast, instead of directly transmitting

voice packets to AOI neighbors, a node transmits

voice packets only to few forwarding assistants

(FAs). These forwarding assistants then forward the

voice packets to the remaining AOI neighbors. In

this way, because all nodes contribute their

bandwidth resource to help forward the voice

packets, the burst bandwidth consumption of the

speaking node decreases. The possibility that the

bandwidth consumption of the speaking node

exceeds the bandwidth limitation is thus lower.

Therefore, the dropping rate is reduced and the

overall quality of conversation is improved.

To save bandwidth, we demand accurate

forwarding, which means that each AOI neighbor

should receive a voice packet just once. To achieve

this, we attach a recipient list to the forwarding

voice packet to indicate the recipients of the packet.

The forwarding voice packet thus contains a packet

header, the voice data, and a recipient list, etc. On

receiving a forwarding voice packet, the FA is in

charge of forwarding the voice contents to all nodes

in the recipient list.

When a node talks, it divides the neighbors by

their coordinates into four quadrants, and creates

four recipient lists, each for a quadrant. Afterwards,

for each quadrant, the node closest to the talking

node is chosen as the FA for the quadrant. Note that

the FA does not exist if there is no node in that

quadrant. After the FA selection, the talking node

creates four separate forwarding packets with

corresponding recipient lists and delivers them to

the four FAs. The FA applies the same procedure to

forward the received packets recursively until the

recipient list is empty. For example, in Figure 4,

when node A talks, it first acquires AOI neighbors

from the MMOG system, and then divides them

into four lists according to their coordinates. It then

delivers four forwarding packets to four FAs,

namely I, F, E and C, in the first, second, third, and

fourth quadrants, respectively. After receiving the

forwarding packets, these FAs apply the same

procedure to forward voice packets to the nodes in

the recipient lists by dividing them into four

quadrants.

Fig 4. Quadrant-based voice packets forwarding

4.2. Sector-Based Forwarding (SectorCast)

In an MMOG, players are usually clustered in

some hot spots like markets, town squares or

shopping malls. Thus in Quadrant-Cast, the number

of players in a certain quadrant may be much

greater than those in others, causing unbalanced

player grouping. For example, in Figure 5(a), there

are much more players in the first quadrant of

player A’s AOI. The message forwarding in the

crowded quadrant thus has more hops, which causes

more processing time and transmission delay. If we

can evenly distribute AOI players into sectors as

shown in Figure 5(b), the message forwarding in

A

B

D

I

C

F

H

E

GK

J

8

each sector will go through approximately the same

number of hops. Therefore, the maximum latency

will be shorter and the quality of service will be

better.

Fig 5. Unbalanced and balanced player grouping in

MMOGs

With the balanced player group in mind, we

propose a sector-based AOI voice chatting scheme

called SectorCast for MMOGs. SectorCast and

QuadCast are similar; they are different only in

player grouping. QuadCast divides the AOI into

four fixed quadrants with equal size, while

SectorCast divides the AOI into four variable

sectors containing approximately equal number of

players. For example, in Figure 6, SectorCast

divides the AOI into four sectors containing 4 or 3

players. When FAs applies the same procedure as

used by the talking player, the maximum (or

average) hops of packet forwarding in all sectors

are almost equal because sectors have about the

same number of players. SectorCast thus has shorter

latency than QuadCast. However, SectorCast has

higher computation complexity than QuadCast.

This is because QuadCast only needs to divide AOI

neighbors into four quadrants, while SectorCast

needs to sort neighbors according to their polar

angles (between the X-axis and the lines from

players to the voice source or FA), and divide them

equally into four sectors.

Fig 6. Sector-based voice packets forwarding

4.3. Packet Aggregation

In QuadCast and SectorCast, an FA might

forward different packets to a same recipient or to a

same group of recipients. These packets are sent

separately. However, if we can apply aggregation

techniques to merge packets, the bandwidth

consumption can be reduced dramatically. Below

we propose two aggregation techniques: header

sharing (HS) and voice mixing (VM)
1
.

Time axis is divided into fixed-length (e.g., 40

ms) periods, each of which is called a time bucket.

In every time bucket, a node gathers voice packets

from all neighboring nodes and merges the packets

having a same recipient or a same group of

recipients to be an aggregated packet for delivering

at the end of the time bucket. The HS scheme

1
There is a mixer mechanism proposed in RTP which is

similar to the packet aggregation techniques. As

described in RFC 3550 (RTP: A Transport Protocol for

Real-Time Applications), a mixer is a RTP-level entity

that receives streams of RTP data packets from one or

more sources, possibly changes the data format (coding),

combines them into a single stream, and then forwards a

new RTP packet containing the stream. Since the RTP

mixer and the packet aggregation techniques are similar,

we can take RTP as an implementation option.

A

B

D

I

C

F

H

E

G

K

J

N

M
L

P
O

A

B

D

I

C

F

H

E

G

K

J

N

M
L

P
O

(a) Unbalanced player grouping (b) Balanced player grouping

A

B

D

I

C

F

H

E

G

K

J

L

M

N

P

O

9

merges packets by putting a common header for the

packets, while the VM scheme merges packets by

mixing their voice contents. For example, in Figure

7, node A is the FA of node C and D; node A is in

charge of forwarding their voice packets to the

recipient, node B. At the same time, node A also

needs to deliver its own voice packet to node B. As

shown in Figure 7(a), without aggregation, three

voice packets containing the same header and

different voice contents are delivered to node B.

However, as shown in Figure 7(b), the three packets

can be merged to be one aggregated packet by

sharing the same header or by mixing the voice

contents. As a result, packet traffic is lowered and

bandwidth consumption is reduced.

Since an FA node forwards voice packets to

many recipients on behalf of many source nodes, it

must have a way to aggregate voice packets for

every recipient properly. Below, we model the

aggregation of packets as 2-power number addition.

All voice packets received successfully within a

same time bucket are candidates to be aggregated.

And each of the packets is assigned a unique ID of

a 2-power number. The ID of the aggregated voice

packet is set to be the addition of the IDs of packets

from different sources. In this manner, an ID

corresponds to a unique combination of packets

from specific sources. It is noted that an FA assigns

IDs temporally and locally on the basis of time

buckets. That is, each FA has its own ID

assignment and IDs are re-assigned for every time

bucket. Since the time bucket is usually very short,

the number of packets to be aggregated is usually

small. Therefore, some 2-power IDs suffice to

represent all packets received in a time bucket, and

an ID takes only a small number of bits for

representation.

Fig. 7 Example of packet aggregation

For example, in Figure 8, there are three nodes

A, C, and D talking simultaneously. We assume the

voice packets of these three nodes are assigned the

IDs 1, 2, and 4, respectively. We also assume that

node A is the FA of nodes C and D to send voice

packets to nodes B and E. Node A should send the

voice packets from nodes A, C, and D to node B,

and thus the ID of the aggregated voice packet for B

is 7, the addition of 1, 2, and 4. Node A should also

send the voice packets from nodes A and D to node

E, so the ID of the aggregated voice packet for E is

5, the addition of 1 and 4. To perform packet

aggregation, an FA calculates the ID of the

aggregated voice packet for each recipient.

Recipients are then grouped according to the

aggregated packet IDs; they are put in a same group

if they are to receive a same aggregated packet.

Finally, the FA sends each aggregated voice packet

to corresponding recipients by putting the nodes of

the corresponding group into the attached recipient

list.

Appendix A shows a detailed example of voice

packet aggregation by 2-power number addition.

We can observe that the new aggregated audio

packets always have shorter recipient list than the

original audio packets. This is because the new

recipient list is either one of the original lists or the

intersection of some original lists. As we will show,

H A H C HH D

A

B

D

C

C

D
CA

D

A

B

D

C

C

D
{A,C,D}

H A C D or ACD

(a) Forwarding without aggregation (b) Forwarding with aggregation

10

this also leads to shorter latency.

4.4. Alternatives of the Recipient List

In QuadCast and SectorCast, a recipient list is

appended to a voice packet for transmitting the

packet only to proper recipients. However,

delivering the recipient list consumes a lot of

bandwidth. We would like to trade computation

complexity with network bandwidth. When a voice

packet is forwarded, instead of appending a whole

recipient list, we only append the ID of the current

FA for the next FA to calculate the recipients.

Fig. 8 The concept of packet aggregation by 2-power

number addition

In QuadCast, when a node talks, it appends its

ID to the voice packet and delivers the voice packet

to the FAs. The FA can acquire the position and the

AOI of the talking node by the ID and then figure

out the forwarding area of the voice packet. Once

the forwarding area is specified, the FA can select

the recipients from its AOI neighbors properly.

Similarly, the FA also has to append its ID to the

forwarding voice packet in order to allow the next

FA to specify the forwarding area. In SectorCast,

besides IDs, the source and the FA need to further

append to the voice packets the begin and end

angles of the forwarding sector for the next FA to

calculate the forwarding area to choose recipients

from its AOI neighbors properly.

4.5. Adaptive Forwarding

Both QuadCast and SectorCast are based on the

concept of forwarding to reduce the burst upload

bandwidth requirement. It may eliminate the

bandwidth overload problem; however, it may also

cause longer latency. When the latency is too long,

the voice data is no more useful due to the

timeliness requirement of the voice chatting.

To avoid latency from getting too long while

retaining the benefit of the forwarding concept, we

propose the adaptive forwarding mechanism, which

has 5 steps and is shown below. Some notations for

representing the mechanism are introduced in Table

2. The basic concept of adaptive forwarding is to

send a voice packet to all recipients directly if

bandwidth is affordable. The mechanism just needs

to determine which packets should be sent directly

and which packets should be sent via the

forwarding of FAs. Actually, packets with 4 or less

recipients are certainly sent directly. And packets

with smaller sizes are to be sent directly with higher

priority; the recipient list length is used to break ties

when packet sizes are the same. This calls for the

sorting in Step 1. Note that a packet may be directly

sent to partial recipients when available bandwidth

is not so high. That is, a packet is sent to some

recipients directly and sent to FAs for forwarding it

to other recipients. Also note that when the

available bandwidth is inadequate (i.e., when RB in

Step 2 is less than 0) to send packets to all FAs, the

original QuadCast or SectorCast schemes will be

used to send the packet and adaptive forwarding is

not adopted.

Step 1: Sort all aggregated packets in a time bucket

A
D

C

B

E

C
D

ID=7

ID=5

ID=1

ID=2

ID=4

11

according to the lexicographic order of the

two-tuple (packet size, recipient list size).

Suppose that the sorted packets are P1, P2,…,

Pk. (Packets with smaller sizes and shorter

recipient lists precede.)

Step 2: Calculate RB=B
 (Pi)size(Pi)

Step 3: FOR i=1 to k DO

IF (list(Pi)  4) THEN Mark Pi as

DirectSending;

ELSE IF ((list(Pi)  FA(Pi))size(Pi) <

RB) THEN

 Mark Pi as DirectSending;

 RB=RB(list(Pi) FA(Pi))size(Pi);

 IF (RB=0) THEN Break loop;

Step 4: IF (RB>0) THEN

 FOR i=1 to k DO

IF (Pi is unmarked and extra(Pi)  1)

THEN

Mark Pi as PartiallyDirectSending;

Remove extra(Pi) recipients from

the recipient list to the direct sending list

of Pi;

RB=RBextra(Pi)size(Pi);

IF (RB=0) THEN Break loop;

Step 5: Send a DirectSending packet to each of its

recipients;

 Send a ParitiallyDirectSending packet to

each member of its direct sending list, and to FAs

 for relaying the packet to all members

in the recipient list;

Send an unmarked packet to its FAs for

relaying it to all members in the recipient list;

Table 2. Notations for representing the adaptive

forwarding mechanism

Notation Meaning

RB a variable for storing the remaining

bandwidth

B standing for the bandwidth limitation

size(Pi) a function returning the size of

packet Pi

list(Pi) a function returning the number of

recipients (in the recipient list) of

packet Pi

FA(Pi) a function returning the number of

FAs of packet Pi (Note that FA(Pi)

will return list(Pi) if list(Pi) is 4 or

less. Otherwise, FA(Pi) will return the

number of FAs according to

QuadCast or SectorCast. In this way,

the remaining bandwidth RB can be

calculated accurately in Step 2.)

extra(Pi) extra(Pi) = RB / size(Pi)

V. Evaluation

In this section, we perform simulation

experiments for comparing the proposed AOI voice

chatting schemes, QuadCast and SectorCast, with

the base scheme  NimbusCast. We place 200,

400, ..., 1000 nodes in a 1000×1000 area to

simulate different node density scenarios. Nodes are

assumed to have arbitrary initial positions. All

nodes have the same AOI radius of 100. According

to Table 1, each node is assumed to have a 40%

probability of talking and 60% of keeping silent.

Each experiment case lasts for 1000 discrete

time-steps; the time bucket length is set to be 40 ms

and each step length is also set to be 40 ms. In each

step, every node moves along a random direction by

a distance of 4. The voice packet is assumed to have

the format as shown in Figure 9. The header size of

a voice packet is 40 bytes

(12(RTP)+8(UDP)+20(IP)), and the voice contents

occupy 40 bytes (say, composed of four ITU-T

G.729 frames, each with a 10-byte size for 10 ms

duration [14]).

Fig. 9 Format of a forwarding voice packet

RTP

header

UDP

header

IP

header

Voice

content

Recipient

list

12

We first perform experiments for NimbusCast,

QuadCast, and SectorCast under the assumption

that each node has an upload bandwidth limitation

of 32k bytes/sec (256 kbps). Under the bandwidth

limitation, when a node delivers a voice packet, the

packet is delivered normally if there is still enough

bandwidth for packet transmission. However, if the

upload bandwidth consumption exceeds the

limitation, the packet will be dropped. The total

per-node bandwidth consumption for the three

schemes with considering bandwidth limitation is

shown in Figure 10. In Figure 10 and the following

figures, “-HS” in the legend stands for the

aggregation method of header sharing; “-VM”,

voice mixing. We can see that QuadCast and

SectorCast consume more upload bandwidth than

Nimbus- Cast, especially when the number of nodes

is more than 600. This is because the burst

bandwidth consumption of NimbusCast exceeds the

bandwidth limitation frequently and the so-called

bandwidth overloading problem occurs, while the

problem does not occur so frequently for the

forwarding based schemes, QuadCast and

SectorCast. We can also see that by applying packet

aggregation, the bandwidth consumption of

QuadCast and SectorCast is reduced, and the

reduction is proportional to the number of nodes.

Figure 11 shows the packet dropping rates of all

three schemes. We can observe that in this figure,

the dropping rate of NimbusCast is over 40% when

the number of nodes in the system reaches 1000,

while the dropping rates of other schemes are below

5%. In [15], the authors summarize that it is

acceptable when the dropping rate of voice packets

is lower than 5% in the internet voice chatting. The

proposed forwarding based schemes, QuadCast and

SectorCast, do fulfill this requirement in our

simulation setting.

Fig. 10 Total per-node upload bandwidth consumption

with bandwidth limitation for AOI voice

chatting schemes

Fig. 11 Dropping rates for AOI voice chatting schemes

with bandwidth limitation

We also measure the latency for all schemes

when bandwidth limitation is considered. The

latency is regarded to be the packet propagation

time plus the packet transmission time. We adopt

the assumption of end-to-end delay proposed in

[16]. That is, the packet propagation delay between

two directly connected nodes and the packet

processing time are assumed to be 70ms and 30ms,

respectively. Besides, the 40 ms time bucket period

for voice packet collection is also considered. To be

more precise, the one-hop packet delay contains the

waiting time in a time bucket (between 0 ms and 40

ms), the packet propagation delay (70 ms), and the

0

5

10

15

20

25

200 400 600 800 1000

k
b

y
te

/s
e
c

Number of nodes

Total per-node upload bandwidth consumption with bandwidth limitation

NimbusCast

QuadCast

QuadCast-HA

QuadCast-VM

SectorCast

SectorCast-HA

SectorCast-VM

0

5

10

15

20

25

30

35

40

45

50

200 400 600 800 1000

D
ro

p
p

in
g
 r

a
te

(%
)

Number of nodes

Dropping rate with bandwidth limitation

NimbusCast

QuadCast

QuadCast-HA

QuadCast-VM

SectorCast

SectorCast-HA

SectorCast-VM

13

packet processing time (30 ms). This means that

when a voice packet is forwarded through one more

hop, the latency is increased by 120 ms in average

(the waiting time in a time bucket is 20 ms in

average). Figure 12 shows the results for the

average latency of the three schemes. NimbusCast

has the shortest average latency about 120 ms and

QuadCast has about 210 ms latency when the

number of nodes is 1000. SectorCast has shorter

latency than QuadCast because it evenly divides the

AOI neighbors into four sectors, which yields

shorter latency. We can also observe that the packet

aggregation mechanism indeed helps reduce the

latency of QuadCast and SectorCast schemes. As

shown in Section 4, packet aggregation makes

recipient lists shorter. It is noted that a packet is

transmitted directly to each recipient if the recipient

list has less than or equal to 4 nodes. Therefore, the

latency is reduced when the recipient list is shorter.

Figure 13 shows the simulation results of the

maximum latency of the three schemes. As shown

in the figure, NimbusCast has the shortest

maximum latency (140 ms) because a node may

deliver a voice packet directly to an AOI neighbor

at the end of the time bucket in the worst case.

QuadCast has the longest maximum latency, with

some cases having latency larger than 400 ms.

Fortunately, the ratio of packets undergoing such

latency is very small. Figure 14 shows the latency

distribution of QuadCast. We can easily check that

most packets are transmitted with latency less than

400 ms. As we have mentioned in Section 3, the

latency of a conversation should not exceed 400 ms,

and latency below 250 ms is considered to be of

good quality. We can conclude that QuadCast and

SectorCast have acceptable latency by our

simulation results.

Fig. 12 Average latency for AOI voice chatting

schemes with bandwidth limitation

Fig. 13 The maximum latency for AOI voice chatting

schemes with bandwidth limitation

Fig. 14 Latency distribution for QuadCast with

bandwidth limitation

VI. COMPARISON

0

50

100

150

200

250

200 400 600 800 1000

L
a

te
n

c
y

(m
s)

Number of nodes

Latency

NimbusCast

QuadCast

QuadCast-HA

QuadCast-VM

SectorCast

SectorCast-HA

SectorCast-VM

0

100

200

300

400

500

600

700

800

200 400 600 800 1000

Maximun latency

NimbusCast

QuadCast

QuadCast-HA

QuadCast-VM

SectorCast

SectorCast-HA

SectorCast-VM

Number of nodes

L
a

te
n

c
y

(m
s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 200 300 400 500 600 700 800 900 1000

QuadCast

200-nodes

400-nodes

600-nodes

800-nodes

1000-nodes

latency(ms)

P
e
rc

e
n

ta
g
e

14

In this section, we compare the proposed

schemes, QuadCast and SectorCast, with

Teamspeak [2], Ventrilo [3], Skeype [1] and the

immersive audio system [10]. The comparison

results are shown in Table 3. Both Teamspeak

and Ventrilo support group voice chatting and

are based on the client/server architecture.

When a user of a group talks, voice packets are

transmitted to the server, which mixes voice

contents of all group users and sends the mixed

contents to each group user. Since the server

receives voice packets from all clients, mixes

packets and then sends the mixed packets to all

clients in real time, the number of users

supported is limited. Moreover, Teamspeak and

Ventrilo deliver voice on the basis of static

group membership; they cannot confine the

delivery area of the voice according to user

positions in an MMOG. Skype is peer-to-peer

based; it needs no dedicate server for mixing

voice packets, and supports not only

telephoning but also static group voice chatting

(Skype conference call), in which several

players can chat together with one of the player

serving the role of the host to receive, mix and

deliver voice data. Skype does not support

definite voice transmission area in the MMOG

space, neither.

The immersive audio system [10] is

peer-to-peer based. It uses Voronoi diagram to

find out connecting neighbors for a peer to

directly connect with. For every time step, a

peer collects audio streams from all connecting

neighbors, mixes them with its own voice

stream according to an audio mixing model.

The peer then multiply the mixed stream by a

fading factor, and sends a separate mixed audio

stream to every neighbor per time step. The

audio immersive system is scalable since the

number of connecting neighbors of a peer is

usually small. However, the system has the

echo effect and the multiple path effect and it is

hard for the system to support a definite voice

transmission area (or hearing area). Below, we

use an example in Figure 15 to illustrate the

echo effect and the multiple path effect and to

explain the reason why the system fails to

support the definite voice transmission area.

Figure 15 partially shows the voice packet

relaying scenario of the immersive audio

system [10]. In the figure, we assume that node

A talks and sends voice data VAB and VAC to

nodes B and C, respectively. We also assume

that the voice transmission area is confined to

AOI when voice data is forwarded by

intermediate nodes; therefore, node B will not

deliver A’s voice data to node D since D is not

A’s AOI neighbor. When B receives the voice

data from A and finds that C is also A’s AOI

neighbor, B mixes its own voice data with A’s

(i.e., VAB) and sends the mixed voice data VBC

to C. We can see that C obtains A’s voice data

from both the path AC and the path

ABC, which illustrates the multiple path

effect. On receiving VAC and VBC, node C

mixes them with its own voice data and sends

the mixed data VCA and VCD to nodes A and D,

respectively. On receiving VCA, node A obtains

its own faded voice data, which illustrates the

echo effect. We can see that node D can also

obtain voice data of A by receiving VCD, which

is a case that the system fails to achieve definite

voice transmission area even though nodes

indeed check sender’s (speaker’s) AOI area

before forwarding voice data.

15

Table 3. Qualitative comparison of the proposed schemes with others

Scheme

System

Architecture

Scalability

Nodes Doing

Mixing

Definite

Voice Area

Multiple

Path Effect

Echo

Effect

Teamspeak [3] client/server low server no no no

Ventrilo [4] client/server low server no no no

Skype

Conference Call

[5]

peer-to-peer

low host node no no no

Immersive Audio

System [11]

peer-to-peer high all nodes no yes yes

QuadCast peer-to-peer high speaker and

chosen FAs

yes no no

SectorCast peer-to-peer high speaker and

chosen FAs

yes no no

Fig. 15 An example of immersive audio system [11]

VII. CONCLUSION

In this paper, we first describe the concept of

AOI voice chatting for MMOGs. By AOI voice

chatting, a player in the MMOG can chat by voice

with other players within his/her AOI. We then

introduce NimbusCast as a base scheme, in which

each node directly delivers all voice packets to each

of its AOI neighbors. This scheme has the shortest

latency; however, when the number of AOI

neighbors increases, the burst upload bandwidth

consumption frequently exceeds the bandwidth

limitation, which leads to the bandwidth

overloading problem and causes a high packet

dropping rate.

We propose the QuadCast and SectorCast

schemes for avoiding the bandwidth overloading

problem. They can run on either a client/server or a

peer-to-peer based MMOG, only if the MMOG can

provide proper AOI neighbor information. In

QuadCast, a speaking player divides the AOI

neighbors into four lists according to the quadrants

they reside. It then selects a forwarding assistant

(FA) for each quadrant, and sends voice packets to

the FAs only. Each FA then helps forward voice

packets to the remaining AOI neighbors in the

corresponding quadrant. When several packets are

to be sent to a same recipient, the packets can

further be merged by the header sharing (HS) or by

the voice mixing (VM) mechanisms to save

bandwidth. SectorCast is similar to QuadCast. The

major difference is that in SectorCast, a speaking

player divides the AOI into four sectors with nearly

the same number of AOI neighbors. Both the two

schemes can deal with the bandwidth overloading

D

E

C

F

G

B
A

16

problem properly and thus have low packet

dropping rate. However, they cause longer latency.

To avoid latency from getting too long while

retaining the benefit of the two schemes, we

propose the adaptive forwarding mechanism, which

is to send a voice packet to all recipients directly if

bandwidth is affordable. As shown by the

simulation results, this mechanism can reduce the

latency dramatically.

 In the original QuadCast and SectorCast

design, a node closest to the talking node (or sender

node) in the MMOG plane is chosen as the FA for

the quadrant or sector. However, the MMOG plane

topology is different from the underlying network

topology. If we can take network topology into

consideration and make a speaking (or sending)

node choose nodes with shorter round trip time

(RTT) as FAs, the latency can definitely be reduced.

The RTT between two nodes can be measured and

stored when the nodes enter each other’s AOI for

the first time. The RTT between two nodes usually

varies slightly for near time instances, so the stored

RTT records may be valid for a while. Therefore, a

node usually has RTT information for all AOI

neighbors whenever it is to select FAs for

forwarding voice packets. We are planning to

implement QuadCast and SectorCast on top of

VON [7] with consideration of physical network

topology in the near future.

REFERENCES

[1] World of warcraft,

http://www.worldofwarcraft.com/.

[2] Western world mmog market: 2006 review

and forecasts to 2011,

http://www.screendigest.com/reports/07west

worldmmog/readmore/view.html/.

[3] Teamspeak, http://www.goteamspeak.com/.

[4] Ventrilo, http://www.ventrilo.com/.

[5] Skype, http://www.skype.com/.

[6] K. Morse, L. Bic, and M. Dillencourt.

“Interest management in large-scale virtual

environments,” Presence: Teleoperators and

Virtual Environments, vol. 9, no. 1, pp. 52–68,

2000.

[7] S.Y. Hu, J.F. Chen, and T.H. Chen. “VON: a

scalable peer-to-peer network for virtual

environments,” IEEE Network, vol. 20, no. 4,

Jul./Aug. 2006, pp. 22-31.

[8] J. Keller and G. Simon. “Solipsis: A

massively multi-participant virtual world,”

Proc. of PDPTA, pp. 262–268, 2003.

[9] J. Lee, H. Lee, S. Ihm, T. Gim, and J. Song.

“Apolo: Ad-hoc peer-to-peer overlay network

for massively multi-player online games,”

Technical report, 2005.

[10] C. Nguyen, F. Safaei, and D. Platt. “On the

provision of immersive audio communication

to massively multi-player online games,”

Proceedings of Ninth International

Symposium on Computers and

Communications, 2, 2004.

[11] L. Liu and R. Zimmermann. “Immersive

peer-to-peer audio streaming platform for

massive online games,” Proceedings of 3rd

IEEE Consumer Communications and

Networking Conference (CCNC 2006), 2,

2006.

[12] I. T. Union. ITU-T Recommendation P.59,

Artificial conversational speech, 1993.

[13] I. T. Union. ITU-T Recommendation G.114,

One-way transmission time, 2003.

[14] I. T. Union. ITU-T Recommendation G.729,

Coding of speech at 8 kbit/s using

conjugate-structure algebraic-code-excited

http://www.skype.com/

17

linear prediction, 1996.

[15] L. Ding and R. Goubran. “Assessment of

effects of packet loss on speech quality in

VoIP,” Proceedings of the 2nd IEEE

International Workshop on Haptic, Audio

and Visual Environments and Their

Applications (HAVE 2003), pp. 49–54, 2003.

[16] R. Zimmermann and L. Liu. “ACTIVE:

adaptive low-latency peer-to-peer streaming,”

Proceedings of SPIE, vol. 5680, pp. 26–37,

2005.

Jehn-Ruey Jiang received his

Ph. D. degree in Computer

Science in 1995 from National

Tsing-Hua University, Taiwan,

R.O.C. He joined Chung-Yuan

Christian University as an

Associate Professor in 1995. He joined

Hsuan-Chuang University in 1998 and

became a full Professor in 2004. He is

currently with the Department of Computer

Science and Information Engineering,

National Central University, Taiwan. He was

a recipient of Best Paper Award of the 32nd

International Conference on Parallel

Processing, 2003, and editors of Journal of

Information Science and Engineering and

International Journal of Ad Hoc and

Ubiquitous Computing in 2004 and 2005,

respectively. He has organized the 1st, 2nd

and 3rd International Conference on

Peer-to-Peer Networked Virtual

Environments in 2007, 2008 and 2009,

respectively. His research interests include

distributed algorithms, algorithms for

peer-to-peer networks, algorithms for mobile

ad hoc networks and algorithms for wireless

sensor networks.

Hung-Shiang Chen received

his B.S. degree in Electrical

and Control Engineering from

the National Chiao-Tung

University, Taiwan, and

received the M.S. degree in Computer

Science and Information Engineering from

the National Center University, Taiwan,

R.O.C., in 2007. His research interests

include peer-to-peer networks.

Chao-Wei Hung received his

B.S. degree in Mathematics

form National Center

University, Taiwan, R.O.C.,

in 2008. He is currently a M.S.

student in the Department of

Computer Science and Information

Engineering of the National Center

University, Taiwan, since 2008. His research

interests include peer-to-peer networks.

18

Appendix A

In the Appendix, we show a detailed example

of the voice packet aggregation by 2-power number

addition. In the example, we assume that a

forwarding assistant (FA) node Z needs to forward

six voice packets, V1,…, V6 which have IDs of

2-power numbers 1, 2, 4, 8, 16 and 32, and that each

packet has a specific recipient list as shown in Table

A-1.

Table A-1. The voice packets, their IDs and recipient lists

Voice

packet

ID Recipient list

V1 1hex (1bin) {A, C, E, G, H}

V2 2hex (10bin) {B, F, K, M, N}

V3 4hex (100bin) {A, C, E, G, H, I,

O}

V4 8hex (1000bin) {A, C, D, E, G, H,

J, L}

V5 16hex

(10000bin)

 {B, D, F, I, J, K,

M, N, O}

V6 32hex

(100000bin)

 {D, I, J, L, O}

For each recipient X, FA node Z scans all voice

packets that X should receive and add up the IDs of

the packets (see Table A-2). For example, node D

should receive voice packets V4, V5 and V6, which

have IDs of 8, 16 and 32, and the summation of the

packets’ IDs is 56.

Table A-2. Recipients and the ID summation of the voice

packets they should receive

Recipient Voice Packets

to the Recipient

Summation

of the packet IDs

A V1, V3, V4 13hex (001101bin)

B V2, V5 18hex (010010bin)

C V1, V3, V4 13hex (001101bin)

D V4, V5, V6 56hex (111000bin)

E V1, V3, V4 13hex (001101bin)

F V2, V5 18hex (010010bin)

G V1, V3, V4 13hex (001101bin)

H V1, V3, V4 13hex (001101bin)

I V3, V5, V6 52hex (110100bin)

J V4, V5, V6 56hex (111000bin)

K V2, V5 18hex (010010bin)

L V4, V6 40hex (101000bin)

M V2, V5 18hex (010010bin)

N V2, V5 18hex (010010bin)

O V3, V5, V6 52hex (110100bin)

Afterwards, node Z gathers recipients of the

same ID summation to establish a new aggregated

voice packet (see Table A-3). For example, nodes D

and J have ID summation of 56, and they both need

to receive voice packets V4, V5, V6. Therefore, a

new audio packet NV3 that aggregates V4, V5 and

V6 is built, and such a voice packet is with the

recipient list {D, J}.

Table A-3. New voice packets, their IDs and recipient lists

New voice

packet

ID Recipient list

NV1=(V1,

V3, V4)

 13hex

(001101bin)

 {A, C, E, G, H}

NV2=(V2,

V5)

 18hex

(010010bin)

 {B, F, K, M, N}

NV3=(V4,

V5, V6)

 56hex

(111000bin)

 {D, J}

NV4=(V3,

V5, V6)

 52hex

(110100bin)

 {I, O}

NV5=(V4,

V6)

 40hex

(101000bin)

 {L}

