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Abstract 
In this paper, we propose a token based algorithm 

to solve the group mutual exclusion (GME) problem for 
ad hoc mobile networks. The proposed algorithm is 
adapted from the RL algorithm in [WWV98] and 
utilizes the concept of weight throwing in [Tse95]. We 
prove that the proposed algorithm satisfies the mutual 
exclusion, the bounded delay, and the concurrent 
entering properties. The proposed algorithm is sensitive 
to link forming and link breaking and thus is suitable 
for ad hoc mobile networks. 
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1. Introduction 
In this paper, we propose a token-based algorithm 

to solve the group mutual exclusion (GME) problem for 
ad hoc mobile networks. An ad hoc mobile network 
consists of mobile nodes which can communicate with 
each other by sending messages either over a direct 
wireless link, or over a sequence of wireless links 
including one or more intermediate nodes. Wireless link 
“failures” occur when nodes move so that they are no 
longer within transmission range of each other. 
Likewise, wireless link “formation” occurs when nodes 
move so that they are again within transmission range 
of each other. In paper [WWV98], an algorithm is 
proposed to solve the mutual exclusion problem for ad 
hoc mobile networks. The mutual exclusion problem is 
concerned with how to control nodes to enter the 
critical section to access a shared resource in a mutually 
exclusive way. The group mutual exclusion (GME) 
problem is a generalization of the mutual exclusion 
problem. In the GME problem, multiple resources are 
shared among nodes. Nodes requesting to access the 
same shared resource may do so concurrently. However, 

if nodes compete to access different resources, only one 
of them can proceed. 

In addition to the paper [WWV98], there are 
papers proposed to solve mutual exclusion related 
problems for ad hoc networks. The paper [WCM01] is 
proposed for solving the k-mutual exclusion problem, 
the paper [MWV00], for the leader election problem. 
There are several papers proposed to solve the GME 
problem for different system models. The papers [Jou99, 
WJ99, CDPV01] are designed for distributed message 
passing models, the papers [Jou98, KM99], for shared 
memory models, and the paper [CP00], for 
self-stabilizing models. In this paper, we adapt the 
solution of [WWV98] to solve the group mutual 
exclusion problem for ad hoc mobile networks. Note 
that we also apply the weight-throwing concept in 
[Tse95] to detect that all the nodes concurrently 
accessing the same resource have terminated their tasks. 

The rest of this paper is organized as follows. In 
section 2, we introduce some preliminaries. We 
introduce the proposed algorithm in section 3, and 
prove the algorithm correctness in section 4. At last, we 
give a concluding remark in section 5. 

2. Preliminaries 
In [WWV98], a token-based mutual exclusion 

algorithm, named RL (Reverse Link), for ad hoc 
networks is proposed. The RL algorithm takes the 
following 7 assumptions, which we also take in this 
paper. 
1. The nodes have unique node identifiers.  
2. Node failures do not occur.  
3. Communication links are bidirectional and FIFO.  
4. A link-level protocol ensures that each node is aware 

of the set of nodes with which it can currently 
directly communicate by providing indications of 
link formations and failures.  



5. Incipient link failures are detectable.  
6. Message delays obey the triangle inequality (i.e., 

messages that travel 1 hop will be received before 
messages sent at the same time that travel more than 
1 hop). 

7. Partitions of the network do not occur. 
The RL algorithm also assumes that there is a 

unique token initially and utilizes the partial reversal 
technique in [GB81] to maintain a token oriented DAG 
(directed acyclic graph). In the RL algorithm, when a 
node wishes to access the shared resource, it sends a 
request message along one of the communication link. 
Each node maintains a queue containing the identifiers 
of neighboring nodes from which it has received 
requests for the token. The RL algorithm totally orders 
nodes so that the lowest-ordered node is always the 
token holder. Each node dynamically chooses its 
lowest-ordered neighbor as its outgoing link to the 
token holder. Nodes sense link changes of immediate 
neighbors and reroute requests based on the order 
newly created. The token holder grants the token 
according to the requests’ positions in the queue, and 
thus requests are eventually served while the DAG is 
being re-oriented and blocked requests are being 
rerouted. 

Now we present the scenario for the group mutual 
exclusion problem. Consider an ad hoc network 
consisting of n nodes and m shared resources. Nodes 
are assumed to cycle through a non-critical section 
(NCS), an entry section (ES), and a critical section (CS). 
A node i can access the shared resource only within the 
critical section. Every time when a node i wishes to 
access a shared resource Ri, node i moves from its NCS 
to the ES, waiting for entering the CS. The Group 
Mutual Exclusion (GME) problem [Jou98] is concerned 
with how to design an algorithm satisfying the 
following property: 
Mutual Exclusion: If two distinct nodes, say i and j, 
are in the CS simultaneously, then Ri = Rj. 
Concurrent Entering: If there are some nodes 
requesting to access the same resource while no node is 
accessing a different resource, then all the requesting 
nodes can enter the CS concurrently. 
Bounded Delay: If a node enters the ES, then it 
eventually enters the CS. 

3. Proposed Algorithm 

In this section, we propose a distributed algorithm 
to solve the group mutual exclusion (GME) problem for 
ad hoc mobile networks. The algorithm is assumed to 
execute in a system consisting of n nodes and m shared 
resources. Nodes are labeled as 0, 1, …, n-1, and 
resources are labeled as 0, 1, …, m-1. We assume there 
is a unique token held by node 0 initially. The variables 
used in the algorithm for node i are listed below. Note 
that subscripts are included when needed. 

 state: Indicates whether node i is in the ES, CS, or 
NCS state. Initially, state = NCS.  

 N: The set of all nodes in direct wireless contact 
with node i. Initially, N contains all neighbors of node i. 

 height: A triplet (h1, h2, i) representing the height of 
node i. Links are considered to be directed from 
higher-height nodes toward lower-height nodes, based 
on lexicographic ordering. For example, if the height of 
node 1, height1, is (2, 3, 1) and the height of node 2, 
height2, is (2, 2, 2), then height1 > height2 and the link 
would be directed from node 1 to node 2. Initially, 
height 0 = (0, 0, 0), and heightj, j≠ 0, is initialized so that 
the directed links form a DAG where each node has a 
directed path to node 0.  

 hVector: An array of triplets representing node i's 
view of height of node j, j∈N . Initially, hVector[j] = 
height of node j. From node i's viewpoint, the link 
between i and j is incoming to node i if hVector[j] 
>heighti, and outgoing from node i if hVector[j] < 
heighti.  

 leader: A flag set to true if node i holds the token 
and set to false otherwise. Initially, leader = true if i = 0, 
and leader = false otherwise.  

 next: Indicates the location of the token from node 
i's viewpoint. When node i holds the token, next = i, 
otherwise next is the node on an outgoing link. Initially, 
next = 0 if i = 0, and next is an outgoing neighbor 
otherwise.  

 weight: a variable used for weight throwing. 
Initially, weight is set to 0 for every node. 

 Q: a queue which contains requests of neighbors. 
Operations on Q include enqueue(), which enqueues an 
item only if it is not already on Q, dequeue() with the 
usual FIFO semantics, and delete(), which removes a 
specified item from Q, regardless of its location. 
Initially, Q = ∅. 

 receivedLINK[j]: Booloen array indicating whether 
the height carrying message LINK has been received 



from node j, to which a TOKEN message was recently 
sent. Any height information received at node i from 
node j for which receivedLINK[j] is false will not be 
recorded in hVector[j]. Initially, receivedLINK[j]=true 
for all j∈N. 

 forming[j]: Boolean array set to true when link to 
node j has been detected as forming and reset to false 
when first LINK message arrives form node j. Initially, 
forming[j]=false for all j∈N. 

 formHeight[j]: An array storing the value of height 
of node j, j∈N, when new link to j is first detected. 
Initially, formHeight[j]=height for all j∈N. 
 

The following are the messages used in the 
algorithm. Note that each message is attached with the 
height value, denoted by h, of the node sending the 
message. 

 REQUEST(i, R): When i wishes to enter the CS to 
access the resource R, it sends out REQUEST(i, R) to 
the neighbor node indicated by next. 

 RELEASE(w): When i leaves the CS to release the 
resource R, it sends out RELEASE(w) to one of the 
neighbor node. 

 TOKEN: a unique message for node to enter the 
CS. The node with TOKEN is called the leader. 

 SUBTOKEN(R, w): a message to inform nodes to 
access the resource R concurrently with weight w. Note 
that there may be several SUBTOKENs in the system 
simultaneously. 

 LINK: a message used for nodes to exchange their 
height values with neighbors. 

 
Like the RL algorithm, the proposed algorithm is 

event-driven. An event at node i consists of receiving a 
message from another node, or an indication of link 
failure or formation from the link layer, etc. Each event 
triggers a procedure which is assumed to be executed 
atomically. Below, we present the overview of the 
event-driven procedures:  

 Requesting the resource R: When node i requests to 
enter the CS to access resource R, it enqueues the 
message REQUEST(i, R) on Q and sets state to ES. If 
node i does not currently hold the token and i has a 
single element on its queue, it calls forwardRequest() to 
send a REQUEST(i, R) message. If node i does hold the 
token, i then sets weight to 0, removes REQUEST(i, R) 
from Q and sets state to CS to access resource R, since 

its request will be at the head of Q. If node i receives 
any request message, say REQUEST(j, S), while it is in 
the CS, it sends SUBTOKEN(R, w) with w=1 to every 
requesting neighbor. For each SUBTOKEN sent, node i 
increments weight by 1. Note that the request message 
REQUEST(j, S) is enqueued on Q if S≠R. If S=R, then 
REQUEST(j, S) is fulfilled with SUBTOKEN(R, w), it 
does not need to be enqueued on Q.  

 Releasing the resource R: When a non-token 
holding node i leaves the CS to release resource R, it 
calls sendRelease() to send out RELEASE(w) message, 
with w=weight, to one of the neighbor and sets state to 
NCS. If i is the token holder, i checks if weight=0. If so, 
it means that all nodes accessing the same resource 
have completed their tasks. Node i then calls 
transmitToken() and sets state=NCS. 

 Receiving a request message: When a REQUEST(j, 
R) message sent by a neighboring node j is received at 
node i, i ignores the request message if receivedLink[j] 
is false. Otherwise, i changes hVector[j] and enqueues 
the request on Q if the link between i and j is incoming 
at i. If Q is non-empty, and state = NCS, i calls 
transmitToken() provided i holds the token. Non-token 
holding node i calls raiseHeight() if the link to j is now 
incoming and i has no outgoing links or i calls 
forwardRequest() if Q=[j] or if Q is non-empty and the 
link to next has reversed. 

 Receiving a release message: Suppose node i holds 
the token, then when a RELEASE(w) message sent by a 
neighboring node j is received at node i, i decreases 
weight by w and checks if weight is 0 and state is NCS. 
If so, it means that all nodes accessing the same 
resource have completed their tasks. Thus, i calls 
transmitToken() to pass the token. Suppose node i does 
not hold the token, then when i receives a RELEASE(w) 
message, i just calls sendRelease() to forward the 
release message. 

 Receiving the token message: When node i 
receives a TOKEN message from some neighbor j, i 
sets leader to true. Then i lowers its height to be lower 
than that of the last token holder, node j, informs all its 
neighbors of its new height by sending LINK messages, 
and calls transmitToken(). 

 Receiving a subtoken message: When node i 
receives a SUBTOKEN(R, w) message from some 
neighbor j, i splits w into w1, w2, …, wq, q=|Q|, fractions. 
Node i then sends SUBTOKEN(R, w1), SUBTOKEN(R, 



w2), …, SUBTOKEN(R, wq), respectively, to the q 
neighbors whose requests are in Q. If i’s request 
message for accessing resource R is in Q, i can enter the 
CS and access the resource R. In this case, node i sets 
weight = wi, where wi is the fraction of w attached in 
SUBTOKEN send for the i’s request in Q. Moreover, if 
i’s request message REQUEST(i, S) is the only request 
in Q and S≠R, then i sends out the RELEASE(w) 
message by calling sendRelease(). Note that all the 
request messages for accessing resource R will be 
deleted from Q in this event handling procedure. 

 Receiving a link information message: When a link 
information message LINK from node j is received at 
node i, j's height is recorded in hVector[j]. If 
receivedLINK[j] is false, i checks if the height of j in 
the message is what it was when i sent the token 
message to j. If so, i sets receivedLINK[j] to true. If 
forming[j] is true, the current value of height is 
compared to the value of height when the link to j was 
first detected, formHeight[j]. if height and formHeight[j] 
are different, then a LINK message is sent to j. 
Identifier j is added to N and forming[j] is set to false. If 
j is an element of Q and j is a node of an outgoing link, 
then j is deleted from Q. If node i has no outgoing links 
and is not the token holder, i calls raiseHeight() so that 
an outgoing link will be formed. Otherwise, if Q is 
non-empty , and the link to next has reversed, i calls 
forwardRequest() since it must send another request for 
the token. 

 Link failing: When node i senses the failure of a 
link to a neighboring node j, it removes j from N , sets 
receivedLINK[j] to true, and if j is an element of Q, 
deletes j from Q. Then, if i is not the token holder and i 
has no outgoing links, i calls raiseHeight(). If node i is 
not the token holder, Q is non-empty, and the link to 
next has failed, i calls forwardRequest() since it must 
send another request message for the token.  

 Link forming: When node i detects a new link to 
node j, i sends a LINK message to j, sets forming[j] to 
ture, and sets formingHeight[j]=height. 
 

The following are some procedures called by the 
event handling procedures introduced above.  

 Procedure transmitToken(): Node i dequeues the 
first request, say REQUEST(j, S), on Q and sets next 
equal to j. If next = i, i enters the CS. After i enters the 
CS, node i sends q, q=|Q| , SUBTOKEN(R, w)s with 

w=1 to neighbors whose requests in Q. Since each 
SUBTOKEN carries a weight value of 1, node i then 
increases weight by q and remove the request messages 
for accessing resource R from Q. If next ≠ i, i lowers 
hVector[next] to (height.h1, height.h2 − 1, next), so any 
incoming REQUEST message will be sent to next, sets 
leader to false, sets receivedLINK[next] to false, and 
then sends a TOKEN message to next. If Q is 
non-empty after sending a token message to next, a 
request message is sent to next immediately following 
the token message so the token will eventually be 
returned to i.  

 Procedure raiseHeight(): Called at non-token 
holding node i when i loses its last outgoing link. Node 
i raises its height using the partial reversal method of 
[GB81] and informs all its neighbors of its height 
change with LINK messages. All nodes on Q to which 
links are now outgoing are deleted from Q. If Q is not 
empty at this point, forwardRequest() is called since i 
must send another request message for the token. 

 Procedure forwardRequest(): Selects node i’s 
lowest-height neighbor to be next. Sends a request 
message to next. 

 Procedure sendRelease(): A non-token holding 
node i calls raiseHeight() when i loses it’s last outgoing 
link. After calling raiseHeight(), i selects its 
lowest-height neighbor to be next and sends a release 
message to next. The sendRelease() procedure is never 
called by a token-holding node. 

4. Correctness 
In this section, we prove that the proposed 

algorithm satisfies the mutual exclusion, the concurrent 
entering, and the bounded delay properties. We first 
show that the proposed algorithm satisfies the mutual 
exclusion property in Theorem 1. 
Theorem 1. The algorithm ensures the mutual exclusion 
property. 
Proof: 
    When a node owns the token, it can enter the CS 
and then it sends out subtokens to requesting neighbors. 
When a node receives a subtoken, it can enter the CS if 
it requests for the same resource as the token holder. 
Since there is only a unique token, all nodes in the CS 
must access the same resource. Thus, the mutual 
exclusion property is guaranteed.    ■ 
 Below, we show that the proposed algorithm 



satisfies the concurrent entering property in Theorem 2. 
Theorem 2. The algorithm ensures the concurrent 
entering property. 
Proof: 

When a node owns the token, it can enter the CS 
and then it sends out subtokens to requesting neighbors. 
When a node receives a subtoken, it can enter the CS if 
it requests for the same resource as the token holder. To 
sum up, all nodes can access the same resource as that 
the token holder is currently accessing. So, the 
concurrent entering property is guaranteed.   ■ 

Below, we prove that the proposed algorithm 
satisfies the bounded delay property by showing that a 
requesting node owns the token eventually. Since the 
height values of the nodes are totally ordered, the 
logical graph whose arcs are assumed to have the 
direction from higher height values to lower height 
values cannot have any cycles, and thus it is a DAG 
(Directed Acyclic Graph). We want to show that the 
DAG is token oriented, i.e., for every node i, there 
exists a directed path originating at node i and 
terminating at the token holder. We present Lemma 1, 
which is the very Lemma 4 of [WWV98]. 
Lemma 1. If link changes cease, the logical graph, 
whose arcs are assumed to have the direction from 
higher height values to lower height values, is a token 
oriented DAG.          ■ 

On the basis of Lemma 1, we can prove that a 
requesting node owns token eventually.  
Theorem 3. If link changes cease, then a requesting 
node owns the token eventually. 
Proof: 

When a token holder i is in the NCS with weight=0, 
it passes the token to the node j whose request is at the 
head of the queue. Node i then removes j’s request from 
the queue after passing the token. So, every node’s 
request will eventually be at the head of the queue to 
have the opportunity to own the token. By Lemma 1, 
every node’s request has a path leading to the token 
holder. So, a requesting node owns the token eventually.  
■ 
5. Concluding Remarks 

In this paper, we have proposed a token based 
algorithm to solve the group mutual exclusion (GME) 
problem for ad hoc mobile networks. The proposed 
algorithm is adapted from the RL algorithm in 
[WWV98] and utilizes the concept of weight throwing 

in [Tse95]. We have proved that the proposed algorithm 
satisfies the mutual exclusion, the bounded delay, and 
the concurrent entering properties. The proposed 
algorithm is sensitive to link forming and link breaking 
and thus is suitable for ad hoc mobile networks. 
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