
6th International Conference on Computer Science and Informatics, pp. 266-270, March 2002

A Group Mutual Exclusion Algorithm for Ad Hoc
Mobile Networks

Jehn-Ruey Jiang

Information Management Department
Hsuan Chuang University

HsinChu, 300, Taiwan

Abstract
In this paper, we propose a token based algorithm

to solve the group mutual exclusion (GME) problem for
ad hoc mobile networks. The proposed algorithm is
adapted from the RL algorithm in [WWV98] and
utilizes the concept of weight throwing in [Tse95]. We
prove that the proposed algorithm satisfies the mutual
exclusion, the bounded delay, and the concurrent
entering properties. The proposed algorithm is sensitive
to link forming and link breaking and thus is suitable
for ad hoc mobile networks.
Keywords: mutual exclusion, group mutual exclusion,
ad hoc networks, distributed algorithms

1. Introduction
In this paper, we propose a token-based algorithm

to solve the group mutual exclusion (GME) problem for
ad hoc mobile networks. An ad hoc mobile network
consists of mobile nodes which can communicate with
each other by sending messages either over a direct
wireless link, or over a sequence of wireless links
including one or more intermediate nodes. Wireless link
“failures” occur when nodes move so that they are no
longer within transmission range of each other.
Likewise, wireless link “formation” occurs when nodes
move so that they are again within transmission range
of each other. In paper [WWV98], an algorithm is
proposed to solve the mutual exclusion problem for ad
hoc mobile networks. The mutual exclusion problem is
concerned with how to control nodes to enter the
critical section to access a shared resource in a mutually
exclusive way. The group mutual exclusion (GME)
problem is a generalization of the mutual exclusion
problem. In the GME problem, multiple resources are
shared among nodes. Nodes requesting to access the
same shared resource may do so concurrently. However,

if nodes compete to access different resources, only one
of them can proceed.

In addition to the paper [WWV98], there are
papers proposed to solve mutual exclusion related
problems for ad hoc networks. The paper [WCM01] is
proposed for solving the k-mutual exclusion problem,
the paper [MWV00], for the leader election problem.
There are several papers proposed to solve the GME
problem for different system models. The papers [Jou99,
WJ99, CDPV01] are designed for distributed message
passing models, the papers [Jou98, KM99], for shared
memory models, and the paper [CP00], for
self-stabilizing models. In this paper, we adapt the
solution of [WWV98] to solve the group mutual
exclusion problem for ad hoc mobile networks. Note
that we also apply the weight-throwing concept in
[Tse95] to detect that all the nodes concurrently
accessing the same resource have terminated their tasks.

The rest of this paper is organized as follows. In
section 2, we introduce some preliminaries. We
introduce the proposed algorithm in section 3, and
prove the algorithm correctness in section 4. At last, we
give a concluding remark in section 5.

2. Preliminaries
In [WWV98], a token-based mutual exclusion

algorithm, named RL (Reverse Link), for ad hoc
networks is proposed. The RL algorithm takes the
following 7 assumptions, which we also take in this
paper.
1. The nodes have unique node identifiers.
2. Node failures do not occur.
3. Communication links are bidirectional and FIFO.
4. A link-level protocol ensures that each node is aware

of the set of nodes with which it can currently
directly communicate by providing indications of
link formations and failures.

5. Incipient link failures are detectable.
6. Message delays obey the triangle inequality (i.e.,

messages that travel 1 hop will be received before
messages sent at the same time that travel more than
1 hop).

7. Partitions of the network do not occur.
The RL algorithm also assumes that there is a

unique token initially and utilizes the partial reversal
technique in [GB81] to maintain a token oriented DAG
(directed acyclic graph). In the RL algorithm, when a
node wishes to access the shared resource, it sends a
request message along one of the communication link.
Each node maintains a queue containing the identifiers
of neighboring nodes from which it has received
requests for the token. The RL algorithm totally orders
nodes so that the lowest-ordered node is always the
token holder. Each node dynamically chooses its
lowest-ordered neighbor as its outgoing link to the
token holder. Nodes sense link changes of immediate
neighbors and reroute requests based on the order
newly created. The token holder grants the token
according to the requests’ positions in the queue, and
thus requests are eventually served while the DAG is
being re-oriented and blocked requests are being
rerouted.

Now we present the scenario for the group mutual
exclusion problem. Consider an ad hoc network
consisting of n nodes and m shared resources. Nodes
are assumed to cycle through a non-critical section
(NCS), an entry section (ES), and a critical section (CS).
A node i can access the shared resource only within the
critical section. Every time when a node i wishes to
access a shared resource Ri, node i moves from its NCS
to the ES, waiting for entering the CS. The Group
Mutual Exclusion (GME) problem [Jou98] is concerned
with how to design an algorithm satisfying the
following property:
Mutual Exclusion: If two distinct nodes, say i and j,
are in the CS simultaneously, then Ri = Rj.
Concurrent Entering: If there are some nodes
requesting to access the same resource while no node is
accessing a different resource, then all the requesting
nodes can enter the CS concurrently.
Bounded Delay: If a node enters the ES, then it
eventually enters the CS.

3. Proposed Algorithm

In this section, we propose a distributed algorithm
to solve the group mutual exclusion (GME) problem for
ad hoc mobile networks. The algorithm is assumed to
execute in a system consisting of n nodes and m shared
resources. Nodes are labeled as 0, 1, …, n-1, and
resources are labeled as 0, 1, …, m-1. We assume there
is a unique token held by node 0 initially. The variables
used in the algorithm for node i are listed below. Note
that subscripts are included when needed.

 state: Indicates whether node i is in the ES, CS, or
NCS state. Initially, state = NCS.

 N: The set of all nodes in direct wireless contact
with node i. Initially, N contains all neighbors of node i.

 height: A triplet (h1, h2, i) representing the height of
node i. Links are considered to be directed from
higher-height nodes toward lower-height nodes, based
on lexicographic ordering. For example, if the height of
node 1, height1, is (2, 3, 1) and the height of node 2,
height2, is (2, 2, 2), then height1 > height2 and the link
would be directed from node 1 to node 2. Initially,
height 0 = (0, 0, 0), and heightj, j≠ 0, is initialized so that
the directed links form a DAG where each node has a
directed path to node 0.

 hVector: An array of triplets representing node i's
view of height of node j, j∈N . Initially, hVector[j] =
height of node j. From node i's viewpoint, the link
between i and j is incoming to node i if hVector[j]
>heighti, and outgoing from node i if hVector[j] <
heighti.

 leader: A flag set to true if node i holds the token
and set to false otherwise. Initially, leader = true if i = 0,
and leader = false otherwise.

 next: Indicates the location of the token from node
i's viewpoint. When node i holds the token, next = i,
otherwise next is the node on an outgoing link. Initially,
next = 0 if i = 0, and next is an outgoing neighbor
otherwise.

 weight: a variable used for weight throwing.
Initially, weight is set to 0 for every node.

 Q: a queue which contains requests of neighbors.
Operations on Q include enqueue(), which enqueues an
item only if it is not already on Q, dequeue() with the
usual FIFO semantics, and delete(), which removes a
specified item from Q, regardless of its location.
Initially, Q = ∅.

 receivedLINK[j]: Booloen array indicating whether
the height carrying message LINK has been received

from node j, to which a TOKEN message was recently
sent. Any height information received at node i from
node j for which receivedLINK[j] is false will not be
recorded in hVector[j]. Initially, receivedLINK[j]=true
for all j∈N.

 forming[j]: Boolean array set to true when link to
node j has been detected as forming and reset to false
when first LINK message arrives form node j. Initially,
forming[j]=false for all j∈N.

 formHeight[j]: An array storing the value of height
of node j, j∈N, when new link to j is first detected.
Initially, formHeight[j]=height for all j∈N.

The following are the messages used in the
algorithm. Note that each message is attached with the
height value, denoted by h, of the node sending the
message.

 REQUEST(i, R): When i wishes to enter the CS to
access the resource R, it sends out REQUEST(i, R) to
the neighbor node indicated by next.

 RELEASE(w): When i leaves the CS to release the
resource R, it sends out RELEASE(w) to one of the
neighbor node.

 TOKEN: a unique message for node to enter the
CS. The node with TOKEN is called the leader.

 SUBTOKEN(R, w): a message to inform nodes to
access the resource R concurrently with weight w. Note
that there may be several SUBTOKENs in the system
simultaneously.

 LINK: a message used for nodes to exchange their
height values with neighbors.

Like the RL algorithm, the proposed algorithm is

event-driven. An event at node i consists of receiving a
message from another node, or an indication of link
failure or formation from the link layer, etc. Each event
triggers a procedure which is assumed to be executed
atomically. Below, we present the overview of the
event-driven procedures:

 Requesting the resource R: When node i requests to
enter the CS to access resource R, it enqueues the
message REQUEST(i, R) on Q and sets state to ES. If
node i does not currently hold the token and i has a
single element on its queue, it calls forwardRequest() to
send a REQUEST(i, R) message. If node i does hold the
token, i then sets weight to 0, removes REQUEST(i, R)
from Q and sets state to CS to access resource R, since

its request will be at the head of Q. If node i receives
any request message, say REQUEST(j, S), while it is in
the CS, it sends SUBTOKEN(R, w) with w=1 to every
requesting neighbor. For each SUBTOKEN sent, node i
increments weight by 1. Note that the request message
REQUEST(j, S) is enqueued on Q if S≠R. If S=R, then
REQUEST(j, S) is fulfilled with SUBTOKEN(R, w), it
does not need to be enqueued on Q.

 Releasing the resource R: When a non-token
holding node i leaves the CS to release resource R, it
calls sendRelease() to send out RELEASE(w) message,
with w=weight, to one of the neighbor and sets state to
NCS. If i is the token holder, i checks if weight=0. If so,
it means that all nodes accessing the same resource
have completed their tasks. Node i then calls
transmitToken() and sets state=NCS.

 Receiving a request message: When a REQUEST(j,
R) message sent by a neighboring node j is received at
node i, i ignores the request message if receivedLink[j]
is false. Otherwise, i changes hVector[j] and enqueues
the request on Q if the link between i and j is incoming
at i. If Q is non-empty, and state = NCS, i calls
transmitToken() provided i holds the token. Non-token
holding node i calls raiseHeight() if the link to j is now
incoming and i has no outgoing links or i calls
forwardRequest() if Q=[j] or if Q is non-empty and the
link to next has reversed.

 Receiving a release message: Suppose node i holds
the token, then when a RELEASE(w) message sent by a
neighboring node j is received at node i, i decreases
weight by w and checks if weight is 0 and state is NCS.
If so, it means that all nodes accessing the same
resource have completed their tasks. Thus, i calls
transmitToken() to pass the token. Suppose node i does
not hold the token, then when i receives a RELEASE(w)
message, i just calls sendRelease() to forward the
release message.

 Receiving the token message: When node i
receives a TOKEN message from some neighbor j, i
sets leader to true. Then i lowers its height to be lower
than that of the last token holder, node j, informs all its
neighbors of its new height by sending LINK messages,
and calls transmitToken().

 Receiving a subtoken message: When node i
receives a SUBTOKEN(R, w) message from some
neighbor j, i splits w into w1, w2, …, wq, q=|Q|, fractions.
Node i then sends SUBTOKEN(R, w1), SUBTOKEN(R,

w2), …, SUBTOKEN(R, wq), respectively, to the q
neighbors whose requests are in Q. If i’s request
message for accessing resource R is in Q, i can enter the
CS and access the resource R. In this case, node i sets
weight = wi, where wi is the fraction of w attached in
SUBTOKEN send for the i’s request in Q. Moreover, if
i’s request message REQUEST(i, S) is the only request
in Q and S≠R, then i sends out the RELEASE(w)
message by calling sendRelease(). Note that all the
request messages for accessing resource R will be
deleted from Q in this event handling procedure.

 Receiving a link information message: When a link
information message LINK from node j is received at
node i, j's height is recorded in hVector[j]. If
receivedLINK[j] is false, i checks if the height of j in
the message is what it was when i sent the token
message to j. If so, i sets receivedLINK[j] to true. If
forming[j] is true, the current value of height is
compared to the value of height when the link to j was
first detected, formHeight[j]. if height and formHeight[j]
are different, then a LINK message is sent to j.
Identifier j is added to N and forming[j] is set to false. If
j is an element of Q and j is a node of an outgoing link,
then j is deleted from Q. If node i has no outgoing links
and is not the token holder, i calls raiseHeight() so that
an outgoing link will be formed. Otherwise, if Q is
non-empty , and the link to next has reversed, i calls
forwardRequest() since it must send another request for
the token.

 Link failing: When node i senses the failure of a
link to a neighboring node j, it removes j from N , sets
receivedLINK[j] to true, and if j is an element of Q,
deletes j from Q. Then, if i is not the token holder and i
has no outgoing links, i calls raiseHeight(). If node i is
not the token holder, Q is non-empty, and the link to
next has failed, i calls forwardRequest() since it must
send another request message for the token.

 Link forming: When node i detects a new link to
node j, i sends a LINK message to j, sets forming[j] to
ture, and sets formingHeight[j]=height.

The following are some procedures called by the
event handling procedures introduced above.

 Procedure transmitToken(): Node i dequeues the
first request, say REQUEST(j, S), on Q and sets next
equal to j. If next = i, i enters the CS. After i enters the
CS, node i sends q, q=|Q| , SUBTOKEN(R, w)s with

w=1 to neighbors whose requests in Q. Since each
SUBTOKEN carries a weight value of 1, node i then
increases weight by q and remove the request messages
for accessing resource R from Q. If next ≠ i, i lowers
hVector[next] to (height.h1, height.h2 − 1, next), so any
incoming REQUEST message will be sent to next, sets
leader to false, sets receivedLINK[next] to false, and
then sends a TOKEN message to next. If Q is
non-empty after sending a token message to next, a
request message is sent to next immediately following
the token message so the token will eventually be
returned to i.

 Procedure raiseHeight(): Called at non-token
holding node i when i loses its last outgoing link. Node
i raises its height using the partial reversal method of
[GB81] and informs all its neighbors of its height
change with LINK messages. All nodes on Q to which
links are now outgoing are deleted from Q. If Q is not
empty at this point, forwardRequest() is called since i
must send another request message for the token.

 Procedure forwardRequest(): Selects node i’s
lowest-height neighbor to be next. Sends a request
message to next.

 Procedure sendRelease(): A non-token holding
node i calls raiseHeight() when i loses it’s last outgoing
link. After calling raiseHeight(), i selects its
lowest-height neighbor to be next and sends a release
message to next. The sendRelease() procedure is never
called by a token-holding node.

4. Correctness
In this section, we prove that the proposed

algorithm satisfies the mutual exclusion, the concurrent
entering, and the bounded delay properties. We first
show that the proposed algorithm satisfies the mutual
exclusion property in Theorem 1.
Theorem 1. The algorithm ensures the mutual exclusion
property.
Proof:
 When a node owns the token, it can enter the CS
and then it sends out subtokens to requesting neighbors.
When a node receives a subtoken, it can enter the CS if
it requests for the same resource as the token holder.
Since there is only a unique token, all nodes in the CS
must access the same resource. Thus, the mutual
exclusion property is guaranteed. ■
 Below, we show that the proposed algorithm

satisfies the concurrent entering property in Theorem 2.
Theorem 2. The algorithm ensures the concurrent
entering property.
Proof:

When a node owns the token, it can enter the CS
and then it sends out subtokens to requesting neighbors.
When a node receives a subtoken, it can enter the CS if
it requests for the same resource as the token holder. To
sum up, all nodes can access the same resource as that
the token holder is currently accessing. So, the
concurrent entering property is guaranteed. ■

Below, we prove that the proposed algorithm
satisfies the bounded delay property by showing that a
requesting node owns the token eventually. Since the
height values of the nodes are totally ordered, the
logical graph whose arcs are assumed to have the
direction from higher height values to lower height
values cannot have any cycles, and thus it is a DAG
(Directed Acyclic Graph). We want to show that the
DAG is token oriented, i.e., for every node i, there
exists a directed path originating at node i and
terminating at the token holder. We present Lemma 1,
which is the very Lemma 4 of [WWV98].
Lemma 1. If link changes cease, the logical graph,
whose arcs are assumed to have the direction from
higher height values to lower height values, is a token
oriented DAG. ■

On the basis of Lemma 1, we can prove that a
requesting node owns token eventually.
Theorem 3. If link changes cease, then a requesting
node owns the token eventually.
Proof:

When a token holder i is in the NCS with weight=0,
it passes the token to the node j whose request is at the
head of the queue. Node i then removes j’s request from
the queue after passing the token. So, every node’s
request will eventually be at the head of the queue to
have the opportunity to own the token. By Lemma 1,
every node’s request has a path leading to the token
holder. So, a requesting node owns the token eventually.
■
5. Concluding Remarks

In this paper, we have proposed a token based
algorithm to solve the group mutual exclusion (GME)
problem for ad hoc mobile networks. The proposed
algorithm is adapted from the RL algorithm in
[WWV98] and utilizes the concept of weight throwing

in [Tse95]. We have proved that the proposed algorithm
satisfies the mutual exclusion, the bounded delay, and
the concurrent entering properties. The proposed
algorithm is sensitive to link forming and link breaking
and thus is suitable for ad hoc mobile networks.

References
[CDPV01] S. Cantarell, A. K. Datta, F. Petit, and V.

Villain. Token based group mutual exclusion for
asynchronous rings. 21th International Conference on
Distributed Computing Systems (ICDCS 2001), pages
691-694, 2001.

[CP00] S Cantarell and F Petit. Self-Stabilizing Group
Mutual Exclusion for Asynchronous Rings. 4th
International Conference On Principles Of DIstributed
Systems (OPODIS 2000), pages. 71-90, 2000.

[GB81] E. Gafni and D. Bertsekas. Distributed
algorithms for generating loop-free routes in networks with
frequently changing topology, IEEE Transactions on
Communications, C-29(1):11-18, 1981.

[Jou98] Y.-J. Joung. Asynchronous group mutual
exclusion (extended abstract). 17th Annual ACM
Symposium on Principles of Distributed Computing
(PDOC), pages 51-60, 1998.

[Jou99] Y.-J. Joung. The congenial talking philosophers
problem in computer networks (extended abstract). 13th
International Symposium on DIStributed Computing
(DISC'99), 1999.

[KM99] P. Keane and M. Moir. A simple local-spin
group mutual exclusion algorithm. 18th Annual ACM
Symposium on Principles of Distributed Computing
(PODC'99), pages 23-32. ACM Press, 1999.

[MWV00] N. Malpani, J. L. Welch, and N. H. Vaidya,
Leader Election Algorithms for Mobile Ad Hoc Networks,
Proc. Fourth International Workshop on Discrete
Algorithms and Methods for Mobile Computing and
Communications, pp. 96-103, 2000.

[Tse95] Y.-C. Tseng, "Detecting Termination by
Weight-Throwing in a Faulty Distributed System," Journal
of Parallel and Distributed Computing, vol. 25, 1995, pp.
7-15.

[WCM01] J. Walter, G. Cao, and M. Mohanty, A k-Mutual
Exclusion Algorithm for Ad Hoc Wireless Networks,
Proceedings of the first annual Workshop on Principles of
Mobile Computing (POMC 2001), August, 2001.

[WJ99] K.-P. Wu and Y.-J. Joung. Asynchronous group
mutual exclusion in ring networks. 13th International
Parallel Processing Symposium and 10th Symposium on
Parallel and Distributed Processing (IPPS/SPDP '99),
pages 539-543, 1999.

[WWV98] J. Walter, J. Welch, and N. Vaidya, A Mutual
Exclusion Algorithm for Ad Hoc Mobile Networks, 1998
Dial M for Mobility workshop, Dallas TX, 1998, 15 pgs.

	Jehn-Ruey Jiang

