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Abstract. The extended Dijkstra’s algorithm considers not only the edge 

weights but also the node weights for finding shortest paths from a source node 

to all other nodes in a given graph. To show the advantage of the extended 

Dijkstra’s algorithm, this paper proposes a load-balancing algorithm and a mul-

ticast algorithm in Software Defined Networking (SDN) on the basis of the ex-

tended Dijkstra’s algorithm for a graph derived from the underlying SDN to-

pology. We use Pyretic to implement the proposed algorithms and compare 

them with related ones under the Abilene network topology with the Mininet 

emulation tool. As shown by the comparisons, the proposed algorithms outper-

form basic algorithms. 
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1 Introduction 

Software Defined Networking (SDN) is a concept to decouple the control plane 

and data plane of network devices [1]. McKeown et al. proposed the OpenFlow pro-

tocol to realize the SDN concept to allow researchers to experiment novel network 

protocols [2]. In SDN, a logically centralized controller configures the forwarding 

tables (also called flow tables) of switches, which are responsible for forwarding the 

packets of communication flows. In this way, SDN users can composite application 

programs run on top of the controller to monitor and manage the whole network in a 

centralized and real-time manner. 

The emergence of the SDN technology brings many new network applications re-

alized by programming the SDN controller. Typical examples include load balancing, 

multimedia multicast, intrusion detection, and so on. Some researchers developed 

programming languages, such as Frenetic [3] and Pyretic [4], to facilitate SDN appli-

cation design. Frenetic is a declarative query language for classifying network traffic 

and providing a functional reactive combinator library for describing high-level pack-



et-forwarding policies [3]. Pyretic is a Python-base language that is extended from 

Frenetic. Pyretic raises the level of network abstraction and enables programmers to 

create modular software for SDN [4]. 

The paper [5] extends the well-known Dijkstra’s shortest path algorithm to consid-

er not only the edge weights but also the node weights for a graph derived from the 

underlying SDN topology. As shown by the simulation results in [5], the extended 

Dijkstra’s algorithm outperforms the Dijkstra’s algorithm and the non-weighted 

Dijkstra’s algorithm under the Abilene network [6] in terms of end-to-end latency. 

This is because the extended Dijkstra’s algorithm takes edge weights as transmission 

delays over edges and takes node weights as process delays over nodes, while the 

other two algorithms consider only edge weights or no weights. 

To show the advantage of the extended Dijkstra’s algorithm, this paper proposes a 

load-balancing algorithm and a multicast algorithm using the extended Dijkstra’s 

algorithm for SDN-based wide area networks. We use Pyretic to implement the pro-

posed algorithms and compare it with related basic algorithms, i.e., the round-robin 

load-balancing algorithm and the randomized load-balancing algorithm, the bread-

first search tree multicast algorithm and the original Dijkstra’s shortest path tree mul-

ticast algorithm, under the Abilene network topology with the Mininet emulation tool 

[7]. As shown by the comparisons, the proposed algorithms outperform the others. 

The remainder of this paper is organized as follows. In Section 2, we introduce 

some related work. Section 3 describes the proposed algorithms, and Section 4 shows 

the simulation results. Finally, this paper is concluded with Section 5. 

2 RELATED WORK 

2.1 The Extended Dijkstra’s Algorithm 

Given a weighted, directed graph G=(V, E) and a single source node s, the classical 

Dijkstra’s algorithm can return a shortest path from the source node s to every other 

node, where V is the set of nodes and E is the set of edges, each of which is associated 

with a non-negative weight (or length). In the original Dijkstra’s algorithm, nodes are 

associated with no weight. The paper [5] shows how to extend the original algorithm 

to consider both the edge weights and the node weights. 

Fig. 1 shows the extended Dijkstra’s algorithm, whose input is a given graph G=(V, 

E), the edge weight setting ew, the node weight setting nw, and the single source node 

s. The extended algorithm uses d[u] to store the distance of the current shortest path 

from the source node s to the destination node u, and uses p[u] to store the previous 

node preceding u on the current shortest path. Initially, d[s]=0, d[u]=∞ for uV, us, 

and p[u]=null for uV. 

Note that the original Dijkstra’s algorithm cannot achieve the same result just by 

adding node weights into edge weights. This is because the node weight should be 

considered only at the outgoing edge of an intermediate node on the path. Adding 

node weights into edge weights implies that an extra node weight of the destination 



node is added into the total weight of every shortest path, making the algorithm return 

the wrong result. 

The extended Dijkstra’s algorithm is very useful in deriving the best routing path 

to send a packet from a specific source node to another node (i.e., the destination 

node) for the SDN environment in which significant latency occurs when the packet 

goes through intermediate nodes and edges (or links). Below, we show how to define 

the edge weights and node weights so that the extended Dijkstra’s algorithm can be 

applied to derive routing path for some specific SDN environment. 

Assume that we can derive from the SDN topology a graph G=(V, E), which is 

weighted, directed, and connected. For a node vV and an edge eE, let Flow(v) and 

Flow(e) denote the set of all the flows passing through v and e, respectively, let Ca-

pacity(v) be the capacity of v (i.e., the number of bits that v can process per second), 

and let Bandwidth(e) be the bandwidth of e (i.e., the number of bits that e can transmit 

per second). The node weight nw[v] of v is defined according to Eq. (1), and the edge 

weight ew[e] of e is defined according to Eq. (2). 
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where Bits(f) stands for the number of flow f’s bits processed by node v per second.  

  [ ]   
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where Bits(f) stands for the number of flow f’s bits passing through edge e per second. 
Note that we can easily obtain the number of a flow’s bits processed by a node or 

passing through an edge with the help of the “counters field” of the OpenFlow 

switches’ flow tables. Also note that the numerators in Eq. (1) and Eq. (2) are of the 

unit of “bits”, and the denominators are of the unit of “bits per second”. Therefore, the 

node weight nw[v] and the edge weight ew[e] are of the unit of “second”. When we 

accumulate all the node weights and all the edge weights along a path, we can obtain 

the end-to-end latency from one end to the other end of the path. 

 

Extended Dijkstra’s Algorithm 

Input: G=(V, E), ew, nw, s 

Output: d[|V|], p[|V|] 

1: d[s]←0; d[u]←∞, for each u≠s, uV 

2: insert u with key d[u] into the priority queue Q, for each uV 

3: while (Q) 

4:    u←Extract-Min(Q) 

5:    for each v adjacent to u  

6:       if d[v] > d[u]+ew[u,v]+nw[u] then  

7:          d[v]←d[u]+ew[u,v]+nw[u] 

8:          p[v]←d[u] 

Fig. 1. The extended Dijkstra’s algorithm [5] 



2.2 SDN-based Load-Balancing 

Load balancing is an important concept in networking. The purpose of the load bal-

ancing application is to distribute loads among multiple servers in order to get the best 

performance [8]. Online services such as e-commerce, e-government, web sites, and 

social networks are often use multiple servers to get reliability and high availability. 

Those systems use a load balancer in the front-end to map requests from the client to 

the servers. The use of hardware load balancer can be a solution, but it suffers from 

the expensive price. Furthermore, the hardware load balancer is too rigid because the 

policy was designed by the company. The emergence of SDN enables users to design 

their own software load balancer that is suitable for their system and also has a lower 

price. 

Some load balancing methods using the SDN technology are recently proposed. 

The paper [8] proposed a load balancing algorithm, named LABERIO (LoAd-

BalancEd Routing wIth OpenFlow), to minimize latency and response time and to 

maximize the network throughput by better utilizing available resources. The algo-

rithm uses ToR (Top of Rack) Switch-to-ToR Switch Paths Table (S2SPT) and Load 

Allocation Table (LAT). However, maintaining S2SPT becomes a problem for the 

LABERIO, if the network topology changes. So, LABERIO is not suitable in wide 

area network because in the wide area we cannot predict the topology changes. The 

paper [9] proposed the Plug-n-Serve system implementing a load balancing algorithm, 

called LOBUS (LOad-Balancing over UnStructure networks), using OpenFlow for 

unstructured networks. LOBUS maintains the network topology and link status, and 

greedily choses the client-server pair that yields the lowest total response time for 

each newly arriving request. The paper [10] developed a load balancing algorithm for 

handling multiple services (called LBMS) by the SDN technology. It uses the 

FlowVisor, an SDN device to achieve network virtualization, to coordinate multiple 

controllers each of which handles requests destined for different services. In this pa-

per, we will not compare the proposed load-balancing algorithm with LABERIO, 

LOBUS, or LBMS, since they are intended for scenarios different from that of the 

proposed algorithm. 

2.3 SDN-based Multicast 

Recently, Aakash Iyer et al. [11] developed a new multicast algorithm, called Ava-

lanche Routing Algorithm (AvRA), attempting to minimize the size of the routing tree 

created for each multicast group. Instead of trying to find the shortest path from a 

group member to the source node of the group, the AvRA tries to find the shortest 

path to the existing multicast tree node. AvRA is designed for typical data center to-

pologies like the FatTree structure. However we will not compare the proposed algo-

rithm with AvRA, because AvRA is designed for special topologies used in data cen-

ters, while the paper focuses on general SDN-based wide area networks. 

The multimedia data (e.g., video and audio data) has been a major source of data to 

be delivered by the multicast algorithm [12]. The growth and popularity of the Inter-

net in the mid-1990’s motivated multimedia data delivery over best-effort packet 



networks. Such multimedia data delivery is affected by a number of factors including 

unknown and time-varying bandwidth, jitter, and losses. There raise issues such as 

how to fairly share the network resources among many flows and how to efficiently 

perform one-to-many communication for popular content [12]. Thanks to the SDN 

technology, the issues can be efficiently solved by constructing a multicast tree by an 

application program run on the controller. 

3 PROPOSED ALGORITHMS 

3.1 The Proposed Load-Balancing Algorithm 

In this paper we adopt the concept of virtual IP (VIP) for achieving load-balancing. 

The client just sends a request to the VIP, and the request will be deflected to one of 

the multiple servers. Using naive algorithms, such as the round robin algorithm and 

the randomized algorithm, in wide-area-network load balancing has the possibility to 

forward a request to the farthest server. This is not efficient because the request and 

the replied data will go across the network and consume a lot of bandwidth of the 

whole network. In SDN, the controller has the global information of the whole net-

work, and can decide to forward the request to the nearest server by finding the short-

est path with the extended Dijkstra’s algorithm from the client to a server, where the 

shortest path means the path with the smallest summation of node weights and edge 

weights. 

 

Proposed Load-Balancing Algorithm 

Input:  swsrc, Sdst,  

Output:  s, sSdst  

1: P←eDijkstra(swsrc, Sdst); Q ←  //P and Q are path sets  

2: for every pi  P 

3:     if pi.server.ll >  then move pi from P to Q 

4: if P  then 

5:     s ← min(P).server  

6: else  

7:     s ← min(Q).server 

8: return s 

Fig. 2. The proposed load balancing algorithm 

Fig. 2 shows the proposed load balancing algorithm. The basic idea is to forward 
each request to the nearest server with the link load (utilization of the link between the 
server and the switch) lower than a pre-specified threshold θ. However, if all the serv-
ers have link loads larger than the threshold, the algorithm still choose the nearest 
server. In this way, we can prevent congestion on the servers. 

We assume server si is attached to switch swi and a switch is attached with at most 
one server. Later on, we use si and swi exchangeable for convenience. Given the 
source switch swsrc to which the request client is attached, the set Sdst of servers, and a 



prespecified threshold , the proposed algorithm will return the best server for load-
balancing. 

The link load lli of serve si (the utilization of the link <si, swi> between the server 
si and the switch swi) is defined as follows: 

    
                                    

                                  
          

Since the proposed algorithm is based on the extended Dijkstra’s algorithm [6], we 
also take the same mechanisms to obtain the node weights and the edge weights. Note 
that eDijkstra(swsrc, Sdst) will use the extended Dijkstra’s algorithm to return a set P of 
shortest paths from the source switch swsrc, to every server in the server set the Sdst. 
Also note that pi.server stands for the server associated with the path pi, and hence 
pi.server.ll stands for the link load of the server associated with the path pi. Further-
more, the function min(P) (resp., min(Q)) will return the shortest one among all short-
est paths in P (resp., Q).  

3.2 The proposed multicast algorithm 

The proposed multicast algorithm is based on the multicast tree construction algo-

rithm using the extended Dijkstra’s algorithm for a multicast group publisher p to 

send data packets to all members in the multicast group MG of subscribers. The mul-

ticast tree construction algorithm for the proposed multicast algorithm is called the 

EDSPT (Extended Dijkstra’s Shortest Path Tree) algorithm, as shown in Fig. 3. We 

just add an array pred[i] to keep track the predecessor of every node i so that we can 

construct a tree T rooted at p to span all nodes, in term deriving the subtree MG of T 

associated with MG to make all subscribers in the multicast group MG reachable from 

the publisher p. 

 

Extended Dijkstra’s Shortest Path Tree Algorithm 

Input: G = (V, E), ew, nw, p, MG 

Output: MT 

1: T={p};d[p]←0; d[u]←∞ and pred[i]←nil for each u≠p, uV  

2: insert u with key d[u] into the priority queue Q, for each uV  

3: while (Q  )                 

4:       j ← Extract-Min(Q)              

5:      for every node i, i T and i is adjacent to j 

6:          alt = d[j] + ew(j, i) + nw (j)            

7:          if alt < d[i]   then           

8:             d[i] ← alt  

9:             pred[i] ← j  // set i as a child node of j 

10:             add i into T 

11: return MT, the subtree of T rooted at p associated with MG 

Fig. 3. The extended Dijkstra’s shortest path tree (EDSPT) algorithm 



4 SIMULATION 

4.1 Simulation for the Proposed Load-Balancing algorithm 

According to the Abilene core topology, we set up an OpenFlow POX controller 

and 11 OpenFlow switches as SDN nodes, each of which was linked to the controller 

logically, as shown in Fig. 4. For the load balancing testing, we assumed two web 

servers are placed and spread in two different locations in the Abilene network which 

clients will send requests to. We implemented the proposed load-balancing algorithm 

and two basic algorithms using Pyretic for the purpose of simulation. 

In the simulation testing, we generated Transmission Control Protocol (TCP) data 

stream from the clients to the servers using Iperf. To extend more information, we 

also used the Netperf to generate request from clients. We defined the request size to 

be 1024 bytes and the response size to be 65536 bytes. For every testing we set the 

number of clients to be 4, 8, and 12. This simulation was run on a PC with AMD Phe-

nom(tm) 9650 Quad-Core Processor and 8GB of RAM. We compared the proposed 

algorithm with the round robin and randomized algorithms which do not consider the 

shortest paths.  

 

Fig. 4. The scenario of the Abilene network used in the simulation 

The simulation results show that the proposed algorithm is better than the two na-

ive algorithms in the term of end-to-end latency, as shown in Fig. 5. The end-to-end 

latency is measured by using the ping tool to send 30 packets whose packet size is 

65507 bytes from clients to the servers for 30 seconds. The superiority is because the 

proposed algorithm considers the shortest paths and also the congestion control. On 

the contrary, it is possible for the naive algorithms to forward requests to the far serv-

er to go through some switches. In the real network, a high performance IP routers 

and switches add approximately 200 microseconds of latency to the link due to packet 

processing. It means, if the request is deflected to the farthest server to go through a 

lot of switches, the latency will increase significantly. 

We also simulate the response time for each algorithm, where the response time is 

the time that is needed for a client sending a request to have the reply from the server. 

To get this response time we generated requests using the Netperf for 30 seconds. The 



request size is set to 1024 bytes and the response size is set to 512 kilobytes. As 

shown in Fig. 6, the proposed algorithm has the best average response time. 

Throughput is the rate of successful message delivery over a communication chan-

nel. In our simulation, the throughput was measured by generating TCP data packets 

from the clients to the servers with the Iperf tool for 30 seconds. As shown in Fig. 7, 

the proposed algorithm has higher throughput than the round robin and the random-

ized algorithms. By considering the shortest paths and the link utilization, the pro-

posed algorithm achieves the highest throughput. The round robin and the randomized 

algorithms may deflect requests to the far server and even may cause links to be con-

gested. This is why the throughput of the two naïve algorithms is lower than that of 

the proposed algorithm. 

The Iperf has the client and the server side program. In the server side program, we 

can get the value of server loads. This information was used to depict the server load 

variation by calculating the standard deviation of each server’s loads. The standard 

deviation measures the amount of variation or dispersion from the average server 

load. As shown in Fig. 8, the proposed algorithm also has the best (smallest) standard 

server load deviation. 

 

Fig. 5. The end-to-end latency comparisons 

 

Fig. 6. The response time comparisons 

 

Fig. 7. The throughput comparisons 

 

Fig. 8. Standard deviation comparisons 

4.2 Simulation for the Proposed Multicast Algorithm 

We simulate the multicast algorithms based on the multicast tree construction algo-

rithms using the breadth first search algorithm, the original Dijkstra’s algorithm, and 

the extended Dijkstra’s algorithm, respectively. Those multicast tree construction 

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
2.1

4  8  1 2  

En
d

-t
o

-E
n

d
 L

at
en

cy
 (

m
s)

 

Number of Clients 

Proposed
Round robin
Randomized

8
9

10
11
12
13
14
15
16
17
18
19

4  8  1 2  

R
es

p
o

n
se

 T
im

e 
(m

s)
 

Number of Clients 

Proposed
Round robin
Randomized

0

100

200

300

400

500

600

700

800

4  8  1 2  

Th
ro

u
gh

p
u

t 
(M

b
p

s)
 

Number of Clients 

Proposed

Round robin

Randomized
0

1

2

3

4

5

4  8  1 2  
Number of Clients 

Proposed

Round robin

Randomized

St
an

d
ar

d
 D

ev
ia

ti
o

n
 

o
f 

 S
er

ve
r 

Lo
ad

s 



algorithms are called BFST, DSPT, and EDSPT algorithms. We assume 1 publisher 

as the source node (host5) located at switch 5, and 12 subscribers located in different 

areas of the Abilene network topology shown in Fig. 9. The bandwidth of the edges 

(links) was set randomly within the range from 100Mbps to 1Gbps, and the capability 

of nodes was set randomly from 3Gbps to 7Gbps. However the BFST algorithm con-

sidered all edge weights as 1. 

We used POX as the OpenFlow controller and implemented the multicast tree algo-

rithms using Pyretic. We ran to measure the following network performance metrics, 

namely, throughput and jitter, for the multicast algorithms using BFST, DSPT, and 

EDSPT. We used Iperf to create Transmission Control Protocol (TCP) and User 

Datagram Protocol (UDP) data stream packets. The experiment time for every test 

case was 30 seconds. 

Fig. 10 shows the throughput for different numbers of multicast group subscribers 

We can see that the multicast algorithm using EDSPT (i.e., the proposed algorithm) 

outperforms the algorithms using BFST and DSPT. 

We also conducted the jitter measurement. By using Iperf the publisher sends UDP 

packets to the subscribers for 30 seconds. Fig.11 shows the jitter for different numbers 

of subscribers. We can see that the multicast algorithm using EDSPT outperforms the 

algorithms using BFST and DSPT. 

 

Fig. 9. The network environment for simulating multicast algorithms 

 
Fig. 10. The throughput comparisons 

 
Fig. 11. The jitter comparisons 

5 CONCLUSION 

This paper proposes a load-balancing algorithm and a multicast algorithm on the 

basis of the extended Dijkstra’s shortest path algorithm for SDN. The extended Dijks-
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tra’s algorithm considers not only the edge weights but also the node weights for a 

graph derived from the underlying SDN topology. We use Pyretic to implement the 

proposed load-balancing algorithm and compare them with the round robin and the 

randomized algorithm under the Abilene network topology with the Mininet emula-

tion tool. The simulation results show that the proposed load-balancing algorithm 

outperforms others in terms of the end-to-end latency, response time, throughput, and 

standard deviation. We also use Pyretic to implement the multicast algorithms using 

BFST, DSPT, and EDSPT and compare them in terms of throughput, and jitter under 

the Abilene network topology with the Mininet emulation tool. The simulation results 

show that the proposed multicast algorithm outperforms others. 

In the future, we plan to investigate more related load-balancing algorithms and 

multicast algorithms for SDN. We also plan to use more sophisticated tools, such as 

EstiNet, to simulate and compare investigated SDN algorithms for the sake of com-

prehensive performance comparisons. 
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