
adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

Load Balancing and Multicasting Using the Extended

Dijkstra’s Algorithm in Software Defined Networking

Jehn-Ruey Jiang
1
, Widhi Yahya

1,2
, and Mahardeka Tri Ananta

1,2

1
Department of Computer Science and Information Engineering

National Central University

Jhongli City, Taiwan
2
Department of Electrical Engineering

University of Brawijaya

Malang City, Indonesia

Abstract. The extended Dijkstra’s algorithm considers not only the edge

weights but also the node weights for finding shortest paths from a source node

to all other nodes in a given graph. To show the advantage of the extended

Dijkstra’s algorithm, this paper proposes a load-balancing algorithm and a mul-

ticast algorithm in Software Defined Networking (SDN) on the basis of the ex-

tended Dijkstra’s algorithm for a graph derived from the underlying SDN to-

pology. We use Pyretic to implement the proposed algorithms and compare

them with related ones under the Abilene network topology with the Mininet

emulation tool. As shown by the comparisons, the proposed algorithms outper-

form basic algorithms.

Keywords: Software Defined Networking (SDN); load-balancing; multi-

casting; shortest path; Dijkstra’s algorithm

1 Introduction

Software Defined Networking (SDN) is a concept to decouple the control plane

and data plane of network devices [1]. McKeown et al. proposed the OpenFlow pro-

tocol to realize the SDN concept to allow researchers to experiment novel network

protocols [2]. In SDN, a logically centralized controller configures the forwarding

tables (also called flow tables) of switches, which are responsible for forwarding the

packets of communication flows. In this way, SDN users can composite application

programs run on top of the controller to monitor and manage the whole network in a

centralized and real-time manner.

The emergence of the SDN technology brings many new network applications re-

alized by programming the SDN controller. Typical examples include load balancing,

multimedia multicast, intrusion detection, and so on. Some researchers developed

programming languages, such as Frenetic [3] and Pyretic [4], to facilitate SDN appli-

cation design. Frenetic is a declarative query language for classifying network traffic

and providing a functional reactive combinator library for describing high-level pack-

et-forwarding policies [3]. Pyretic is a Python-base language that is extended from

Frenetic. Pyretic raises the level of network abstraction and enables programmers to

create modular software for SDN [4].

The paper [5] extends the well-known Dijkstra’s shortest path algorithm to consid-

er not only the edge weights but also the node weights for a graph derived from the

underlying SDN topology. As shown by the simulation results in [5], the extended

Dijkstra’s algorithm outperforms the Dijkstra’s algorithm and the non-weighted

Dijkstra’s algorithm under the Abilene network [6] in terms of end-to-end latency.

This is because the extended Dijkstra’s algorithm takes edge weights as transmission

delays over edges and takes node weights as process delays over nodes, while the

other two algorithms consider only edge weights or no weights.

To show the advantage of the extended Dijkstra’s algorithm, this paper proposes a

load-balancing algorithm and a multicast algorithm using the extended Dijkstra’s

algorithm for SDN-based wide area networks. We use Pyretic to implement the pro-

posed algorithms and compare it with related basic algorithms, i.e., the round-robin

load-balancing algorithm and the randomized load-balancing algorithm, the bread-

first search tree multicast algorithm and the original Dijkstra’s shortest path tree mul-

ticast algorithm, under the Abilene network topology with the Mininet emulation tool

[7]. As shown by the comparisons, the proposed algorithms outperform the others.

The remainder of this paper is organized as follows. In Section 2, we introduce

some related work. Section 3 describes the proposed algorithms, and Section 4 shows

the simulation results. Finally, this paper is concluded with Section 5.

2 RELATED WORK

2.1 The Extended Dijkstra’s Algorithm

Given a weighted, directed graph G=(V, E) and a single source node s, the classical

Dijkstra’s algorithm can return a shortest path from the source node s to every other

node, where V is the set of nodes and E is the set of edges, each of which is associated

with a non-negative weight (or length). In the original Dijkstra’s algorithm, nodes are

associated with no weight. The paper [5] shows how to extend the original algorithm

to consider both the edge weights and the node weights.

Fig. 1 shows the extended Dijkstra’s algorithm, whose input is a given graph G=(V,

E), the edge weight setting ew, the node weight setting nw, and the single source node

s. The extended algorithm uses d[u] to store the distance of the current shortest path

from the source node s to the destination node u, and uses p[u] to store the previous

node preceding u on the current shortest path. Initially, d[s]=0, d[u]=∞ for uV, us,

and p[u]=null for uV.

Note that the original Dijkstra’s algorithm cannot achieve the same result just by

adding node weights into edge weights. This is because the node weight should be

considered only at the outgoing edge of an intermediate node on the path. Adding

node weights into edge weights implies that an extra node weight of the destination

node is added into the total weight of every shortest path, making the algorithm return

the wrong result.

The extended Dijkstra’s algorithm is very useful in deriving the best routing path

to send a packet from a specific source node to another node (i.e., the destination

node) for the SDN environment in which significant latency occurs when the packet

goes through intermediate nodes and edges (or links). Below, we show how to define

the edge weights and node weights so that the extended Dijkstra’s algorithm can be

applied to derive routing path for some specific SDN environment.

Assume that we can derive from the SDN topology a graph G=(V, E), which is

weighted, directed, and connected. For a node vV and an edge eE, let Flow(v) and

Flow(e) denote the set of all the flows passing through v and e, respectively, let Ca-

pacity(v) be the capacity of v (i.e., the number of bits that v can process per second),

and let Bandwidth(e) be the bandwidth of e (i.e., the number of bits that e can transmit

per second). The node weight nw[v] of v is defined according to Eq. (1), and the edge

weight ew[e] of e is defined according to Eq. (2).

 []
∑

where Bits(f) stands for the number of flow f’s bits processed by node v per second.

 []
∑

where Bits(f) stands for the number of flow f’s bits passing through edge e per second.
Note that we can easily obtain the number of a flow’s bits processed by a node or

passing through an edge with the help of the “counters field” of the OpenFlow

switches’ flow tables. Also note that the numerators in Eq. (1) and Eq. (2) are of the

unit of “bits”, and the denominators are of the unit of “bits per second”. Therefore, the

node weight nw[v] and the edge weight ew[e] are of the unit of “second”. When we

accumulate all the node weights and all the edge weights along a path, we can obtain

the end-to-end latency from one end to the other end of the path.

Extended Dijkstra’s Algorithm

Input: G=(V, E), ew, nw, s

Output: d[|V|], p[|V|]

1: d[s]←0; d[u]←∞, for each u≠s, uV

2: insert u with key d[u] into the priority queue Q, for each uV

3: while (Q)

4: u←Extract-Min(Q)

5: for each v adjacent to u

6: if d[v] > d[u]+ew[u,v]+nw[u] then

7: d[v]←d[u]+ew[u,v]+nw[u]

8: p[v]←d[u]

Fig. 1. The extended Dijkstra’s algorithm [5]

2.2 SDN-based Load-Balancing

Load balancing is an important concept in networking. The purpose of the load bal-

ancing application is to distribute loads among multiple servers in order to get the best

performance [8]. Online services such as e-commerce, e-government, web sites, and

social networks are often use multiple servers to get reliability and high availability.

Those systems use a load balancer in the front-end to map requests from the client to

the servers. The use of hardware load balancer can be a solution, but it suffers from

the expensive price. Furthermore, the hardware load balancer is too rigid because the

policy was designed by the company. The emergence of SDN enables users to design

their own software load balancer that is suitable for their system and also has a lower

price.

Some load balancing methods using the SDN technology are recently proposed.

The paper [8] proposed a load balancing algorithm, named LABERIO (LoAd-

BalancEd Routing wIth OpenFlow), to minimize latency and response time and to

maximize the network throughput by better utilizing available resources. The algo-

rithm uses ToR (Top of Rack) Switch-to-ToR Switch Paths Table (S2SPT) and Load

Allocation Table (LAT). However, maintaining S2SPT becomes a problem for the

LABERIO, if the network topology changes. So, LABERIO is not suitable in wide

area network because in the wide area we cannot predict the topology changes. The

paper [9] proposed the Plug-n-Serve system implementing a load balancing algorithm,

called LOBUS (LOad-Balancing over UnStructure networks), using OpenFlow for

unstructured networks. LOBUS maintains the network topology and link status, and

greedily choses the client-server pair that yields the lowest total response time for

each newly arriving request. The paper [10] developed a load balancing algorithm for

handling multiple services (called LBMS) by the SDN technology. It uses the

FlowVisor, an SDN device to achieve network virtualization, to coordinate multiple

controllers each of which handles requests destined for different services. In this pa-

per, we will not compare the proposed load-balancing algorithm with LABERIO,

LOBUS, or LBMS, since they are intended for scenarios different from that of the

proposed algorithm.

2.3 SDN-based Multicast

Recently, Aakash Iyer et al. [11] developed a new multicast algorithm, called Ava-

lanche Routing Algorithm (AvRA), attempting to minimize the size of the routing tree

created for each multicast group. Instead of trying to find the shortest path from a

group member to the source node of the group, the AvRA tries to find the shortest

path to the existing multicast tree node. AvRA is designed for typical data center to-

pologies like the FatTree structure. However we will not compare the proposed algo-

rithm with AvRA, because AvRA is designed for special topologies used in data cen-

ters, while the paper focuses on general SDN-based wide area networks.

The multimedia data (e.g., video and audio data) has been a major source of data to

be delivered by the multicast algorithm [12]. The growth and popularity of the Inter-

net in the mid-1990’s motivated multimedia data delivery over best-effort packet

networks. Such multimedia data delivery is affected by a number of factors including

unknown and time-varying bandwidth, jitter, and losses. There raise issues such as

how to fairly share the network resources among many flows and how to efficiently

perform one-to-many communication for popular content [12]. Thanks to the SDN

technology, the issues can be efficiently solved by constructing a multicast tree by an

application program run on the controller.

3 PROPOSED ALGORITHMS

3.1 The Proposed Load-Balancing Algorithm

In this paper we adopt the concept of virtual IP (VIP) for achieving load-balancing.

The client just sends a request to the VIP, and the request will be deflected to one of

the multiple servers. Using naive algorithms, such as the round robin algorithm and

the randomized algorithm, in wide-area-network load balancing has the possibility to

forward a request to the farthest server. This is not efficient because the request and

the replied data will go across the network and consume a lot of bandwidth of the

whole network. In SDN, the controller has the global information of the whole net-

work, and can decide to forward the request to the nearest server by finding the short-

est path with the extended Dijkstra’s algorithm from the client to a server, where the

shortest path means the path with the smallest summation of node weights and edge

weights.

Proposed Load-Balancing Algorithm

Input: swsrc, Sdst, 

Output: s, sSdst

1: P←eDijkstra(swsrc, Sdst); Q ←  //P and Q are path sets

2: for every pi  P

3: if pi.server.ll >  then move pi from P to Q

4: if P then

5: s ← min(P).server

6: else

7: s ← min(Q).server

8: return s

Fig. 2. The proposed load balancing algorithm

Fig. 2 shows the proposed load balancing algorithm. The basic idea is to forward
each request to the nearest server with the link load (utilization of the link between the
server and the switch) lower than a pre-specified threshold θ. However, if all the serv-
ers have link loads larger than the threshold, the algorithm still choose the nearest
server. In this way, we can prevent congestion on the servers.

We assume server si is attached to switch swi and a switch is attached with at most
one server. Later on, we use si and swi exchangeable for convenience. Given the
source switch swsrc to which the request client is attached, the set Sdst of servers, and a

prespecified threshold , the proposed algorithm will return the best server for load-
balancing.

The link load lli of serve si (the utilization of the link <si, swi> between the server
si and the switch swi) is defined as follows:

Since the proposed algorithm is based on the extended Dijkstra’s algorithm [6], we
also take the same mechanisms to obtain the node weights and the edge weights. Note
that eDijkstra(swsrc, Sdst) will use the extended Dijkstra’s algorithm to return a set P of
shortest paths from the source switch swsrc, to every server in the server set the Sdst.
Also note that pi.server stands for the server associated with the path pi, and hence
pi.server.ll stands for the link load of the server associated with the path pi. Further-
more, the function min(P) (resp., min(Q)) will return the shortest one among all short-
est paths in P (resp., Q).

3.2 The proposed multicast algorithm

The proposed multicast algorithm is based on the multicast tree construction algo-

rithm using the extended Dijkstra’s algorithm for a multicast group publisher p to

send data packets to all members in the multicast group MG of subscribers. The mul-

ticast tree construction algorithm for the proposed multicast algorithm is called the

EDSPT (Extended Dijkstra’s Shortest Path Tree) algorithm, as shown in Fig. 3. We

just add an array pred[i] to keep track the predecessor of every node i so that we can

construct a tree T rooted at p to span all nodes, in term deriving the subtree MG of T

associated with MG to make all subscribers in the multicast group MG reachable from

the publisher p.

Extended Dijkstra’s Shortest Path Tree Algorithm

Input: G = (V, E), ew, nw, p, MG

Output: MT

1: T={p};d[p]←0; d[u]←∞ and pred[i]←nil for each u≠p, uV

2: insert u with key d[u] into the priority queue Q, for each uV

3: while (Q  )

4: j ← Extract-Min(Q)

5: for every node i, i T and i is adjacent to j

6: alt = d[j] + ew(j, i) + nw (j)

7: if alt < d[i] then

8: d[i] ← alt

9: pred[i] ← j // set i as a child node of j

10: add i into T

11: return MT, the subtree of T rooted at p associated with MG

Fig. 3. The extended Dijkstra’s shortest path tree (EDSPT) algorithm

4 SIMULATION

4.1 Simulation for the Proposed Load-Balancing algorithm

According to the Abilene core topology, we set up an OpenFlow POX controller

and 11 OpenFlow switches as SDN nodes, each of which was linked to the controller

logically, as shown in Fig. 4. For the load balancing testing, we assumed two web

servers are placed and spread in two different locations in the Abilene network which

clients will send requests to. We implemented the proposed load-balancing algorithm

and two basic algorithms using Pyretic for the purpose of simulation.

In the simulation testing, we generated Transmission Control Protocol (TCP) data

stream from the clients to the servers using Iperf. To extend more information, we

also used the Netperf to generate request from clients. We defined the request size to

be 1024 bytes and the response size to be 65536 bytes. For every testing we set the

number of clients to be 4, 8, and 12. This simulation was run on a PC with AMD Phe-

nom(tm) 9650 Quad-Core Processor and 8GB of RAM. We compared the proposed

algorithm with the round robin and randomized algorithms which do not consider the

shortest paths.

Fig. 4. The scenario of the Abilene network used in the simulation

The simulation results show that the proposed algorithm is better than the two na-

ive algorithms in the term of end-to-end latency, as shown in Fig. 5. The end-to-end

latency is measured by using the ping tool to send 30 packets whose packet size is

65507 bytes from clients to the servers for 30 seconds. The superiority is because the

proposed algorithm considers the shortest paths and also the congestion control. On

the contrary, it is possible for the naive algorithms to forward requests to the far serv-

er to go through some switches. In the real network, a high performance IP routers

and switches add approximately 200 microseconds of latency to the link due to packet

processing. It means, if the request is deflected to the farthest server to go through a

lot of switches, the latency will increase significantly.

We also simulate the response time for each algorithm, where the response time is

the time that is needed for a client sending a request to have the reply from the server.

To get this response time we generated requests using the Netperf for 30 seconds. The

request size is set to 1024 bytes and the response size is set to 512 kilobytes. As

shown in Fig. 6, the proposed algorithm has the best average response time.

Throughput is the rate of successful message delivery over a communication chan-

nel. In our simulation, the throughput was measured by generating TCP data packets

from the clients to the servers with the Iperf tool for 30 seconds. As shown in Fig. 7,

the proposed algorithm has higher throughput than the round robin and the random-

ized algorithms. By considering the shortest paths and the link utilization, the pro-

posed algorithm achieves the highest throughput. The round robin and the randomized

algorithms may deflect requests to the far server and even may cause links to be con-

gested. This is why the throughput of the two naïve algorithms is lower than that of

the proposed algorithm.

The Iperf has the client and the server side program. In the server side program, we

can get the value of server loads. This information was used to depict the server load

variation by calculating the standard deviation of each server’s loads. The standard

deviation measures the amount of variation or dispersion from the average server

load. As shown in Fig. 8, the proposed algorithm also has the best (smallest) standard

server load deviation.

Fig. 5. The end-to-end latency comparisons

Fig. 6. The response time comparisons

Fig. 7. The throughput comparisons

Fig. 8. Standard deviation comparisons

4.2 Simulation for the Proposed Multicast Algorithm

We simulate the multicast algorithms based on the multicast tree construction algo-

rithms using the breadth first search algorithm, the original Dijkstra’s algorithm, and

the extended Dijkstra’s algorithm, respectively. Those multicast tree construction

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
2.1

4 8 1 2

En
d

-t
o

-E
n

d
 L

at
en

cy
 (

m
s)

Number of Clients

Proposed
Round robin
Randomized

8
9

10
11
12
13
14
15
16
17
18
19

4 8 1 2

R
es

p
o

n
se

 T
im

e
(m

s)

Number of Clients

Proposed
Round robin
Randomized

0

100

200

300

400

500

600

700

800

4 8 1 2

Th
ro

u
gh

p
u

t
(M

b
p

s)

Number of Clients

Proposed

Round robin

Randomized
0

1

2

3

4

5

4 8 1 2
Number of Clients

Proposed

Round robin

Randomized

St
an

d
ar

d
 D

ev
ia

ti
o

n

o
f

 S
er

ve
r

Lo
ad

s

algorithms are called BFST, DSPT, and EDSPT algorithms. We assume 1 publisher

as the source node (host5) located at switch 5, and 12 subscribers located in different

areas of the Abilene network topology shown in Fig. 9. The bandwidth of the edges

(links) was set randomly within the range from 100Mbps to 1Gbps, and the capability

of nodes was set randomly from 3Gbps to 7Gbps. However the BFST algorithm con-

sidered all edge weights as 1.

We used POX as the OpenFlow controller and implemented the multicast tree algo-

rithms using Pyretic. We ran to measure the following network performance metrics,

namely, throughput and jitter, for the multicast algorithms using BFST, DSPT, and

EDSPT. We used Iperf to create Transmission Control Protocol (TCP) and User

Datagram Protocol (UDP) data stream packets. The experiment time for every test

case was 30 seconds.

Fig. 10 shows the throughput for different numbers of multicast group subscribers

We can see that the multicast algorithm using EDSPT (i.e., the proposed algorithm)

outperforms the algorithms using BFST and DSPT.

We also conducted the jitter measurement. By using Iperf the publisher sends UDP

packets to the subscribers for 30 seconds. Fig.11 shows the jitter for different numbers

of subscribers. We can see that the multicast algorithm using EDSPT outperforms the

algorithms using BFST and DSPT.

Fig. 9. The network environment for simulating multicast algorithms

Fig. 10. The throughput comparisons

Fig. 11. The jitter comparisons

5 CONCLUSION

This paper proposes a load-balancing algorithm and a multicast algorithm on the

basis of the extended Dijkstra’s shortest path algorithm for SDN. The extended Dijks-

400

420

440

460

480

500

520

4 8 12

Th
ro

u
gh

p
u

t
(M

b
p

s)

Number of Subscribers

BFST

DSPT

EDSPT

0

0.005

0.01

0.015

0.02

4 8 1 2

Ji
tt

er
 (

m
s)

Number of Subscribers

BFST

DSPT

EDSPT

tra’s algorithm considers not only the edge weights but also the node weights for a

graph derived from the underlying SDN topology. We use Pyretic to implement the

proposed load-balancing algorithm and compare them with the round robin and the

randomized algorithm under the Abilene network topology with the Mininet emula-

tion tool. The simulation results show that the proposed load-balancing algorithm

outperforms others in terms of the end-to-end latency, response time, throughput, and

standard deviation. We also use Pyretic to implement the multicast algorithms using

BFST, DSPT, and EDSPT and compare them in terms of throughput, and jitter under

the Abilene network topology with the Mininet emulation tool. The simulation results

show that the proposed multicast algorithm outperforms others.

In the future, we plan to investigate more related load-balancing algorithms and

multicast algorithms for SDN. We also plan to use more sophisticated tools, such as

EstiNet, to simulate and compare investigated SDN algorithms for the sake of com-

prehensive performance comparisons.

REFERENCES

1. B. Nunes, M. Mendonça, X. Nguyen, K. Obraczk, and T. Turletti, “A survey of software-

defined networking: Past, present, and future of programmable networks,” to appear in

IEEE Communications Surveys & Tutorials, 2014.

2. Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jen-

nifer Rexford, Scott Shenker, and Jonathan Turner, “OpenFlow: Enabling Innovation in

Campus Networks,” ACM SIGCOMM Computer Communication, 2008.

3. N. Foster, R. Harrison, M. Freedman, C. Monsanto, J. Rexford, A. Story, and D. Walker,

“Frenetic: A Network Programming Language”, in Proc. of the 16th ACM SIGPLAN In-

ternational Conference on Functional Programming, 2011, pp 279-291.

4. J. Reich, C. Monsanto, N. Foster, J. Rexford, and D. Walker, “Modular SDN Programming

with Pyretic”, Technical Reprot of USENIX, available at http://www.usenix.org, 2013.

5. Jehn-Ruey Jiang, Hsin-Wen Huang, Ji-Hau Liao, and Szu-Yuan Chen, “Extending Dijks-

tra’s Shortest Path Algorithm for Software Defined Networking,” in Proc. of the 16th

Asia-Pacific Network Operations and Management Symposium (APNOMS 2014), 2014.

6. Abilene Network, http://en.wikipedia.org/wiki/Abilene_Network-#cite_note-line-1, last

accessed on March 4, 2014.

7. Mininet Website, http://mininet.org/, last accessed on May 2014.

8. H. Long, Y. Shen, M. Guo, and F. Tang, “LABERIO: Dynamic load-balanced routing in

OpenFlow-enabled networks,” IEEE 27th International Conference on Advanced Infor-

mation Networking and Applications, 2013.

9. N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown, and R. Johari, “Plug-n-Serve:

Load-balancing web traffic using OpenFlow,” Demo at ACM SIGCOMM, Aug. 2009.

10. M. Koerner and O. Kao, “Multiple Service Load-Balancing with OpenFlow”, IEEE 13th

International Conference on High Performance Switching and Routing, 2012.

11. Aakash Iyer, Praveen Kumar, Vijay Mann, “Avalanche: Data center Multicast using Soft-

ware Defined Networking”, IEEE Communication Systems and Networks (COMSNETS),

Sixth International Conference, 2014

12. John G. Apostolopoulos, Wai-tian Tan, Susie J. Wee, “Video Streaming: Concepts, Algo-

rithms, and System,” Streaming Media Systems Group Hewlett-Packard Laboratories,

2002.

