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Abstract

Quorum systems satisfying the rotation closure property can be used to realize
asynchronous power-saving algorithms for mobile ad hoc networks. The FPP, grid,
cyclic, torus and e-torus quorum systems can provide the algorithms with the low-
est or near lowest active ratios since they have the optimal or near optimal quorum
sizes. The algorithms guarantee that a node can sense the status of every neigh-
bor by receiving one or more beacons from it within a round of beacon intervals.
Traditionally, the smallest quorum overlap size (SQOS) and the maximum quorum
overlap separation (MQOS) are used to measure the neighbor sensibility. However,
it is difficult to differentiate the quorum systems by SQOS and MQOS since most of
them have the same SQOS and MQOS values. In this paper, the expected quorum
overlap size (EQOS) is proposed as an average-case neighbor sensibility measure-
ment. We can easily judge the goodness of quorum systems by EQOS since they
have different EQOS values. Larger-than-one EQOS values are desirable. Observing
quorum systems are of EQOS values far larger than one, we are inspired to devise a
new quorum system, called the fraction torus (f-torus) quorum system, for the con-
struction of flexible mobility-adaptive power-saving algorithms. The f-torus quorum
system can further reduce the active ratio to save energy by shrinking the quorum
size, while still keeping the EQOS larger than one. We derive EQOS values for all
the above-mentioned quorum systems by analysis and simulation experiments. As
we will show, the EQOS analysis and simulation results coincide very closely.
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1 Introduction

A quorum system is a collection of sets, called quorums, with the intersection
property that any two quorums overlap mutually. Quorum-based algorithms
are useful for solving many problems, such as mutual exclusion [1, 2] and
replica control [3, 4] in conventional distributed systems, as well as location
management [5,6], information dissemination/retrieval [7,8] and data aggrega-
tion [9] in mobile ad hoc networks (MANETs) and/or wireless sensor networks
(WSNs). The basic idea of the quorum-based algorithms is as follows. System
nodes are first grouped as quorums to form a quorum systems. A node then
accesses and/or locks all nodes of a quorum to perform the desired operation.
As shown in [1, 3, 5, 6, 8], quorum-based algorithms usually have low control
overheads and high degrees of fault-tolerance when compared to related ones.

Unlike other quorum-based algorithms, the algorithms in [10] take time inter-
vals, instead of system nodes, as elements of a quorum to achieve asynchronous
power-saving management in IEEE 802.11-based MANETs. A MANET con-
sists of a set of mobile nodes, and has no support of any infrastructure. Nodes
can communicate with each other by multi-hop radio transmission. When
there is no datum to send/receive, a node may tune its radio into power saving
(or doze) mode to save energy since nodes are usually sustained by limited-
capacity batteries and the radio component consumes major energy. However,
a power-saving node should turn on its radio periodically to check if there are
data to receive. To achieve this, the time axis is divided into equal-length bea-
con intervals. Consecutive n intervals are regarded as a round, with each being
labeled as 0, .., n − 1. A quorum system is generated from the universal set
{0, .., n−1}. A node chooses one of the quorums and regard a beacon interval
as a quorum interval if its associated label is a member of the chosen quorum.
In a beacon interval, a node keeps its radio active and sends a beacon signal to
notify neighboring nodes of its existence. On the contrary, it tunes the radio
into power saving mode to save energy in non-quorum intervals. Since bea-
cons are usually embedded with useful information, such as nodes’ locations or
statuses, it is desirable for a node to receive beacons from every neighboring
node. As shown in [10], the quorum systems satisfying the rotation closure
property can be applied to realize asynchronous power-saving algorithms to
ensure that every pair of neighboring nodes can receive each other’s beacon
once per round, and can then exchange data properly even when their clocks
are asynchronous.

Quorum system characteristics can be used to measure the performance of
traditional quorum-based algorithms. For example, the quorum size is used
to evaluate the control overhead of an algorithm; the availability, the overall
probability that all members of a quorum are available, is used to measure the
degree of fault tolerance [11]; the load, the probability that the busiest node
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is accessed, is used to estimate the level of load balance [12]. Quorum system
characteristics can be used to choose proper quorum systems for specific ap-
plications. For example, the paper [1] suggests using cohorts quorum systems
to realize mutual exclusion algorithms, since cohorts quorum systems have a
constant quorum size to achieve the constant overhead in the best case ,and
have a good availability to achieve comparably high degree of fault-tolerance.

The performance of quorum-based power-saving algorithms can also be mea-
sured by quorum system characteristics. For example, the active ratio, which
is the ratio that a node has to keep its radio active, can be measured by
the ratio of quorum size to the round size. As shown in [10], the finite pro-
jective plane (FPP) [13], grid [13], cyclic [14], torus [15] and extended torus
(e-torus) [10] quorum systems satisfy the rotation closure property and have
the optimal or near optimal active ratios. They are thus called the optimal
or near optimal quorum systems in this paper. For another example, neigh-
bor sensibility, can be measured by the maximum quorum overlap separation
(MQOS) for evaluating the maximum delay for a node to be aware of a newly
arriving neighboring node [10]. Neighbor sensibility can also be measured by
the smallest quorum overlap size (SQOS) for evaluating the minimal num-
ber of beacons heard in a round of beacon intervals. However, it is hard to
judge the goodness of quorum systems by MQOS or SQOS since most quorum
systems have the same MQOS and SQOS values [10].

In this paper, we propose using the expected quorum overlap size (EQOS) of
quorum systems to help evaluate the average case neighbor sensibility. We an-
alyze EQOS for the optimal or near optimal quorum systems. With the help
of the analyzed results, we can easily select proper quorum systems to con-
struct power saving algorithms for specific environments. Traditional quorum
systems have the property that the SQOS is at least one to guarantee the cor-
rectness of algorithms. However, we observe that quorum-based power-saving
algorithms still work well even without the property. The observation inspires
us to design a new quorum system, called the fraction torus (f-torus) quo-
rum system. The f-torus quorum system is very flexible and can be used for
the construction of mobility-adaptive asynchronous power saving algorithms.
We analyze the f-torus quorum system to show that it has comparably high
EQOS values and can achieve even lower active ratios than the FPP, grid,
cyclic, torus and e-torus quorum systems. We also perform simulation exper-
iments to derive EQOS values for all the above-mentioned quorum systems.
As we will show, the analysis and simulation results coincide very closely.

The rest of this paper is organized as follows. Some preliminaries are given
in Section 2. Section 3 defines EQOS formally and derive EQOS formulas for
the optimal and near optimal quorum systems. In Section 4, we analyze and
compare the optimal and near optimal quorum systems in terms of EQOS,
MQOS, SQOS, and so on. Analyzed EQOS values are also compared with
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simulated values in this section. We propose the f-torus quorum system, and
analyze and simulate its EQOS in Section 5. At last, some concluding remarks
are drawn in Section 6.

2 Preliminaries

2.1 Quorum-Based Power-Saving Algorithms for MANETs

IEEE 802.11 supports two power modes: active and power-saving (PS). Under
the PS mode, a node can reduce its radio activity by only monitoring periodical
beacon signals. Tuning a node to the PS mode can save a lot of energy. For
example, ORiNOCO IEEE 802.11b PC Gold Card [16] consumes 1400mW,
950mW and 805mW when it is transmitting, receiving, and monitoring data
packets, respectively. However, under the PS or the doze mode, it consumes
only 60mW.

In [10, 17], the time axis is divided into equal-length beacon intervals. Each
node label the intervals as 0, ..., n − 1 cyclical and groups them into rounds
such that each round consists of n consecutive intervals. The node generates
a grid quorum system [13] under the universal set {0, ..., n− 1}. It then pick a
quorum from the grid quorum system and picks quorum intervals accordingly.
For example, if each round consists of 4 intervals, then we have an associated
grid quorum system: Q = {{0, 1, 2}, {0, 1, 3}, {0, 2, 3}, {1, 2, 3}} under the uni-
versal set U = {0, 1, 2, 3}. If the quorum {0, 1, 2} is picked, then the quorum
intervals will be those labeled by 0, 1, or 2. In a quorum interval, a node will
issue a beacon signal and keeps in the active mode; in a non-quorum interval, a
node can turn to the power saving mode to save energy. As shown in [10], any
quorum system satisfying the rotation closure property can be translated to
an asynchronous power-saving algorithm for mobile ad hoc networks to ensure
that in a round of n consecutive intervals, each node can receive at least one
beacon signal from any of its neighboring nodes. Since beacon signal carries
information necessary for wireless communication, a node is thus aware of the
existence of any neighboring node and can communicate with it properly.

Below, we introduce the concepts of the quorum system and the rotation
closure property.

Definition 1 Given a universal set U = {0, ..., n − 1}, a quorum system Q
under U is a collection of non-empty subsets of U , each called a quorum, which
satisfies the intersection property:

∀G,H ∈ Q : G ∩ H 6= ∅.
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For example, Q = {{0, 1}, {0, 2}, {1, 2}} is a quorum system under U =
{0, 1, 2}.

Definition 2 Given a non-negative integer i and a quorum H in a quorum
system Q under U = {0, ..., n−1}, we define rotate(H, i) = {(j+i) mod n|j ∈
H}.

Definition 3 A quorum system Q under U = {0, ..., n − 1} is said to have
the rotation closure property if

∀G,H ∈ Q, i ∈ {0, ..., n − 1} : G ∩ rotate(H, i) 6= ∅.

For instance, the quorum system Q = {{0, 1}, {0, 2}, {1, 2}} under {0, 1, 2} has
the rotation closure property. However, the quorum system Q′ = {{0, 1}, {0, 2},
{0, 3}, {1, 2, 3}} under {0, 1, 2, 3} has no rotation closure property because
{0, 1} ∩ rotate({0, 3}, 3) = ∅.

The paper [10] also derives a lower bound of the quorum size for any quorum
system satisfying the rotation closure property. As shown in [10], a quorum
system Q under {0, ..., n− 1} satisfying the rotation closure property has the
quorum size lower bound s, where s(s − 1) + 1 = n and s − 1 is a prime
power (note that s ≈ √

n). Since smaller quorums imply lower active ratios
(less energy expenditures), we should always concentrate on quorum systems
owning the optimal or near optimal quorum sizes. The paper [10] has identified
a group of quorum systems that satisfy the rotation closure property and have
optimal (the finite projective plane (FPP) quorum system [13]) or near optimal
(the grid quorum system [13], the torus quorum system [15], and the cyclic
quorum system [14]) quorum sizes. It also proposes a novel e-torus(k) quorum
system to be translated to an adaptive power saving algorithm. The algorithm
ranks a node’s mobility into k levels. Whenever a node determines that its
mobility falls within level i (1 ≤ i ≤ k), it adjusts its quorum intervals based
on any e-torus(i) quorum so that a node can dynamically adjust its sensibility
to the environment change in its neighborhood. The e-torus(k) quorum system
is actually a torus quorum system when k = 1 and thus has a near optimal
quorum size; it’s quorum size grows gradually as k increases.

Neighbor sensibility is an important measurement of asynchronous quorum-
based power-saving algorithms. It can be measured by the smallest quorum
overlap size (SQOS) to evaluate the minimum number of beacons received
in a round of beacon intervals. However, it is hard to differentiate quorum
systems by SQOS since most quorum systems have identical SQOS values. For
example, the grid quorum system has SQOS of value 2, while other optimal
or near optimal quorum systems have SQOS of value 1. Neighbor sensibility
can also be measured by the maximum quorum overlap separation (MQOS)
for estimating the longest delay for a PS node to detect the beacon of a newly
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approaching PS node in its neighborhood. Below, we give the formal definition
of MQOS.

Definition 4 For a quorum system Q under U = {0, ..., n−1}, the maximum
quorum overlap separation (MQOS) of Q is Max(d(i, j)), where i, j ∈ (G ∩
H), G,H ∈ Q, and d(i, j)=Min((i − j) mod n, (j − i) mod n).

The optimal or near optimal quorum systems have MQOS values of n except
that the grid quorum system has the MQOS value of (n − √

n + 1) [10].
Therefore, it is also difficult to differentiate quorum systems by MQOS.

3 The EQOS of Quorum Systems

3.1 The Definition of EQOS

In this section, we propose using the expected quorum overlap size (EQOS)
of quorum systems for evaluating the neighbor sensibility of power-saving al-
gorithms. The formal definition of EQOS is given in the following.

Definition 5 For a quorum system Q under U = {0, ..., n − 1}, the expected
quorum overlap size (EQOS) of Q is

∑

G,H∈Q
p(G)p(H)|G ∩ H|,

where P (G) and P (H) is respectively the probability of accessing quorums G
and H for a quorum access strategy.

EQOS can be used as an average-case estimation of neighbor sensibility and
can help us differentiate quorum systems since they have different EQOS val-
ues. Below, we analyze the EQOS for optimal or near optimal quorum systems
satisfying the rotation closure property.

3.2 The EQOS of Grid Quorum Systems

The grid quorum system [13] arranges elements of the universal set U =
{0, ..., n − 1} as a

√
n ×√

n array. A quorum can be any set containing a full
column plus a full row of elements in the array. The grid quorum system has
a near optimal quorum size of 2

√
n − 1.

Suppose Q and Q′ are two quorums in the grid quorum system, where Q
contains full column c plus full row r of elements and Q′ contains full column

6



c′ plus full row r′ of elements. Note that it is possible that Q = Q′. Therefore,
there are n2 possible permutations of Q and Q′. The EQOS of the grid quorum
system can be figured out by considering the following four independent cases
of Q and Q′:

Case 1. r 6= r′ and c 6= c′: The overlap of Q and Q′ has size 2 and there are
n · (√n − 1) · (√n − 1) occurrences for such a case.

Case 2. r = r′ and c 6= c′: The overlap of Q and Q′ has size
√

n and there are
n · (√n − 1) occurrences for such a case.

Case 3. r 6= r′ and c = c′: The overlap of Q and Q′ has size
√

n and there are
n · (√n − 1) occurrences for such a case.

Case 4. r = r′ and c = c′: The overlap of Q and Q′ has size 2
√

n− 1 and there
are n occurrences for such a case.

Summing up the products of overlap sizes and occurrence probabilities for all
cases, we have the EQOS of Q and Q′. Thus, the EQOS of the grid quorum
system under the universal set {0, ..., n − 1} is

2n · (√n − 1) · (√n − 1) + 2
√

n · n · (√n − 1) + (2
√

n − 1) · n
n2

=
4n − 4

√
n + 1

n
=

(2
√

n − 1)2

n

3.3 The EQOS of Torus Quorum Systems

Similar to the grid quorum system, the torus quorum system [15] also adopts
an array structure. The universal set is arranged as a t × w array, where
tw = n. Following the concept of torus, the rightmost column (resp., the
bottom row) in the array are regarded as wrapping around back to the leftmost
column (resp., the top row). A quorum is formed by picking any column c,
0 ≤ c ≤ w − 1, plus ⌊w/2⌋ elements, each of which falls in any position of
column c + i, i = 1..⌊w/2⌋. Fig. 1 illustrates the construction of two torus
quorums G and H under U = {0, ..., 17} with t = 3 and w = 6. G is formed
by picking the second column plus three elements, each from one of the third,
fourth, and fifth columns. H is formed by picking the sixth column plus three
elements, each from one of the first, second, and third columns. G and H
intersect at element 7.

As shown in [15], if we let t = w/2, the quorum size will be approximately√
2tw =

√
2n, which is near optimal. Below, we analyze the EQOS for such

torus quorum systems.
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Fig. 1. Two quorums of the torus quorum system in a 3 × 6 torus.

Suppose Q and Q′ are two quorums in the torus quorum system, where Q
contains all elements of column c plus one element from each of columns
c + i, i = 1..⌊w/2⌋ and Q′ contains all elements of column c′ plus one element
from each of columns c′ + i, i = 1..⌊w/2⌋. It is noted that we define d, the
distance of c and c′, to be Min((c − c′) mod w, (c′ − c) mod w). The EQOS
of the torus quorum system can be figured out by considering the following
three independent cases of Q and Q′:

Case 1. c = c′: The overlap of Q and Q′ is expected to have size t+(1/t)·⌊w/2⌋
and there are w occurrences for such a case.

Case 2. c 6= c′ and 1 ≤ d < ⌊w/2⌋: The overlap of Q and Q′ is expected to
have size 1 + (1/t) · (⌊w/2⌋ − d) and there are 2w occurrences for such a case
for each d, 1 ≤ d < ⌊w/2⌋.

Case 3. c 6= c′ and d = ⌊w/2⌋: The overlap of Q and Q′ has size 2 and there are
w occurrences for such a case if w is even. Otherwise (w is odd), the overlap
of Q and Q′ has size 1 and there are 2w occurrences for such a case.

There are w2 possible permutations of Q and Q′. Thus, the EQOS of the torus
quorum system under {0,...,n-1}) is

w · (t + ⌊w/2⌋
t

) + 2w · ∑⌊w/2⌋−1
d=1 [1 + ⌊w/2⌋−d

t
] + 2w

w2

=
(t + ⌊w/2⌋

t
) + 2(⌊w/2⌋ − 1)(1 + ⌊w/2⌋

2t
) + 2

w

By substituting w = 2t, we have EQOS of the torus quorum system is

(t + 1) + 2(t − 1)(1 + 1
2
) + 2

2t
= 2
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3.4 The EQOS of Cyclic Quorum Systems

The cyclic quorum systems [14] are constructed from the difference sets as
defined below.

Definition 6 A subset D = {d1, d2, ..., dk} of Zn is called a difference set
under Zn if for every e 6= 0 (mod n) there exist elements di and dj ∈ D such
that di − dj = e (mod n).

Definition 7 Given any difference set D = {d1, d2, ..., ds} under Zn, the
cyclic quorum system defined by D is Q = {G1, G2, ..., Gn}, where Gi =
{d1 + i, d2 + i, ..., ds + i} (mod n), i = 0, ..., n − 1.

For example, D = {0, 1, 2, 4} ⊆ Z8 is a difference set under Z8 since each
e = 1..7 can be generated by taking the difference of two elements in D.
Given D, Q = {G0 = {0, 1, 2, 4}, G1 = {1, 2, 3, 5}, G2 = {2, 3, 4, 6}, G3 =
{3, 4, 5, 7}, G4 = {4, 5, 6, 0}, G5 = {5, 6, 7, 1}, G6 = {6, 7, 0, 2}, G7 = {7, 0, 1, 3}}
is a cyclic quorum system under Z8.

Given any n, a difference set as small as s can be found when s(s− 1)+1 = n
and s−1 is a prime power. Such a difference set is called the Singer difference
set [18]. For example, the sets {1, 2, 4} under Z7 and {1, 2, 4, 9, 13, 19} under
Z31 are Singer difference sets. As shown in [10], in this case the quorum size
s meets the lower bound. So cyclic quorum systems defined by the Singer
difference sets are optimal in terms of the quorum size. Reference [14] had
conducted exhausted searches to find the minimal difference sets under Zn

for n = 4..111. The results are useful here to construct near-optimal cyclic
quorum systems.

Below, we analyze the EQOS of the cyclic quorum system based on a stricter
difference set, the λ-difference set, as defined below.

Definition 8 A subset D = {d1, ..., ds} of Zn is called a λ-difference set under
Zn if for every e 6= 0 ( mod n) there exist exactly λ ordered pairs (di, dj), where
di, dj ∈ D, such that di − dj = e (mod n).

For example, the set D = {0, 1, 2, 4, 5, 8, 10} ⊆ Z15 is a 3-difference set under
Z15 since for each integer e ∈ {1, ..., 14}, there exist exactly three ordered pairs
of elements of D to generate e (for example, the pairs (1,0), (2,1) and (5,4)
generate 1).

The cyclic quorum system Q constructed on the basis of λ-difference set has
the property that every pair of different quorums has the overlap of size λ.
Suppose Q and Q′ are two randomly selected quorums in Q. It is easy to
derive that there are totally

(

n+1
2

)

possible combinations (not permutations)
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of Q and Q′. The EQOS of Q can be analyzed by considering the following
two independent cases:

Case 1. Q = Q′: The overlap of Q and Q′ is s, s = |D|, and there are n
occurrences for such a case.

Case 2. Q 6= Q′: The overlap of Q and Q′ is λ and there are
(

n
2

)

occurrences
for such a case.

Thus, the EQOS of Q is

s · n + λ ·
(

n
2

)

(

n+1
2

) =
2s + λ · (n − 1)

n + 1

��� ���
��� �� 	
�	�
�����
� 	
��	��� �	����	�������
�

Fig. 2. (a) the “Christmas tree” structure of an e-torus(4) quorum, and (b) the
overlap of an e-torus(2) quorum and an e-torus(3) quorum.

3.5 The EQOS of FPP Quorum Systems

The finite projective plane (FPP) quorum system [13] arranges elements of
the universal set U = {0, ...., n − 1} as vertices on a hypergraph called the
finite projective plane, which has n vertices and n edges, such that each edge
is connected to k vertices and two edges have exactly one common vertex.
(Note that the hypergraph is a generalization of typical graphs, in which each
edge is connected to exactly two vertices.) A quorum can be formed by the
set of all vertices connected by the edge, and thus has a size of k. It has been
shown in [13] that a FPP can be constructed when n = s(s− 1) + 1 and s− 1
is a prime power. Otherwise, the FPP may or may not exist. In [14], the FPP
construction is associated to the construction of Singer difference sets, and it
is shown that the FPP quorum system can be regarded as a special case of
the cyclic quorum system when n = s(s − 1) + 1 and s − 1 is a prime power.
We can also observe that the FPP quorum system is a special case of cyclic
quorum systems that is constructed on the basis of a 1-difference set. Thus,
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the EQOS of the FPP quorum system is

s · n +
(

n
2

)

(

n+1
2

) =
2s + n − 1

n + 1
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Legend of elements:  

T: in trunk of Q;   R: in right branches of Q; L: in left branches of Q 

T′: in trunk of Q′;  R′: in right branches of Q′;  L′: in left branches of Q′ 

rk  

'
rk  

'
lk  

lk  

d - 1 d wr - d wl - d 

Fig. 3. One possibility of a ge-torus(k) quorum and a ge-torus(k′) quorum of distance
d.

3.6 The EQOS of Extended Torus Quorum Systems

The extended torus (e-torus) quorum system is basically an extension of the
torus quorum system. Similar to the torus quorum system, it is also defined
on the basis of two given integers t and w such that U = {0, 1, ..., tw − 1} is
the universal set. Elements of U are arranged in a t × w array. Below, we use
[x, y] as an array index, 0 ≤ x < t and 0 ≤ y < w.

Definition 9 On a t×w array, a positive half diagonal starting from position
[x, y], where 0 ≤ x < t and 0 ≤ y < w, consists of element [x, y] plus ⌊w/2⌋
elements [(x + i) mod t, (y + i) mod w], for i = 1..⌊w/2⌋. A negative half
diagonal starting from position [x, y] consists of element [x, y] plus ⌈w/2⌉ − 1
elements [(x + i) mod t, (y − i) mod w], for i = 1..⌈w/2⌉ − 1.

Intuitively, a positive (resp., negative) half diagonal is a partial diagonal on
the array starting from the array index [x, y] with a length ⌊w/2⌋ + 1 (resp.,
⌈w/2⌉). A positive diagonal goes in the southeast direction, while a negative
one goes in the southwest direction. The diagonal is slightly different from
typical “diagonal” in matrix algebra in that the array is not necessarily square
and that the torus has the wrap-around property.

Definition 10 Given any integer k ≤ t, a quorum of an e-torus(k) quorum
system is formed by picking any position [r, c], where 0 ≤ r < t and 0 ≤ c < w,
such that the quorum contains all elements on column c plus k half diagonals.
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These k half diagonals alternate between positive and negative ones, and start
from the following positions:

[r +
⌊

i × t

k

⌋

, c], i = 0..k − 1.

Each quorum in the e-torus(k) quorum system looks like a Christmas tree with
a trunk in the middle and k branches, each as a half diagonal, alternating be-
tween positive and negative ones. Fig. 2(a) illustrates the conceptual structure
of an e-torus(4) quorum. It is shown in [10], the e-torus quorum system sat-
isfies the rotation closure property. To be more precise, if G is an e-torus(k1)
quorum and H is an e-torus(k2) quorum derived from the same array, for any
integers i and j, we have |rotate(G, i) ∩ rotate(H, j)| ≥ ⌊(k1 + k2)/2⌋.

The e-torus quorum system is used as foundation of the following adaptive
quorum-based power saving algorithm proposed in [10]. A node is assumed
to be able to calculate its mobility, which is ranked into k levels, where level
1 means the lowest mobility, and level k means the highest mobility. When-
ever a node determines that its mobility falls within level i (1 ≤ i ≤ k), it
adjusts its quorum intervals based on any e-torus(i) quorum. Consequently, a
node can dynamically adjust its sensibility to the environment change in its
neighborhood.

Below, we analyze the EQOS for a more general form of e-torus quorum sys-
tems, the ge-torus(k), as defined in Def. 11. We believe that the EQOS of
the ge-torus(k) quorum system can be used as an estimation of EQOS of the
e-torus(k) quorum system since the latter is a special case of the former and
they are all based on randomly choosing elements.

Definition 11 Given a universal set, in which elements are arranged as a
t × w array with the rightmost column being regarded as wrapping around
back to the leftmost column, a quorum of a ge-torus(k) quorum system (k is
an integer less than t) is formed by picking all elements of any column c,
0 ≤ c ≤ w − 1, plus ⌈k/2⌉ · ⌊w/2⌋ elements, ⌈k/2⌉ of which fall in column
c + i, i = 1..⌊w/2⌋, and plus ⌊k/2⌋ · (⌈w/2⌉ − 1) elements, ⌊k/2⌋ of which fall
in column c − i, i = 1..⌈w/2⌉ − 1.

Suppose Q is a quorum in the ge-torus(k) quorum system and Q′ is a quorum
in the ge-torus(k′) quorum system, where Q contains all elements of column
c and Q′ contains all elements of column c′. We define d, the distance of c
and c′, to be Min((c − c′) mod w, (c′ − c) mod w). The EQOS of the ge-
torus quorum system can be figured out by considering the following five
independent cases of Q and Q′. It is noted that in the following analysis,
we let E(h, i, j), i, j ≤ h, be the expected number of the common members
of two independently chosen subsets of a set of h elements, where the first

12



and the second subsets respectively contain i and j elements (without loss
of generality, we can assume i ≤ j). By the knowledge of combinatorics, we

can derive that E(h, i, j) = i
(h−1

j−1)
(h

j)
. It is also noted that we let kr = ⌈k/2⌉,

kl = ⌊k/2⌋, k′
r = ⌈k′/2⌉, k′

l = ⌊k′/2⌋, wr = ⌊w/2⌋ and wl = ⌈w/2⌉ − 1.

Case 1. d = 0 (i.e., c = c′): The overlap of Q and Q′ is expected to have size
s1 = t + E(t, kr, k

′
r) · wr+E(t, kl, k

′
l) · wl and there are w occurrences for such

a case.

Case 2. 1 ≤ d < wr and ((c′ − c) mod w)=d: The overlap of Q and Q′ is
expected to have size s2(d) = (d − 1) · E(t, kr, k

′
l) + (wr − d) · E(t, kr, k

′
r) +

d ·E(t, kl, k
′
r) + (wl − d) ·E(t, kl, k

′
l) + k′

l + kr and there are w occurrences for
such a case for each d, 1 ≤ d < wr. Please refer to Fig. 3 for an illustration of
this case.

Case 3. 1 ≤ d < wr and ((c − c′) mod w)=d: This case is opposite to Case 2.
The overlap of Q and Q′ is expected to have size s3(d) = (d−1) ·E(t, k′

r, kl)+
(wr − d) ·E(t, k′

r, kr) + d ·E(t, k′
l, kr) + (wl − d) ·E(t, k′

l, kl) + kl + k′
r and there

are w occurrences for such a case for each d, 1 ≤ d < wr.

Case 4. d = wr and w is even: The overlap of Q and Q′ has size s4 = (wr −
1) · (E(t, kr, k

′
l) + E(t, kl, k

′
r)) + kr + k′

r and there are w occurrences for such
a case.

Case 5. d = wr and w is odd: The overlap of Q and Q′ may have size s51 =
wr · E(t, k′

r, kl) + (wr − 1) · E(t, kr, k
′
l) + kr + k′

l and there are w occurrences
for such a possibility. Moreover, the overlap of Q and Q′ may have size s52 =
wr · E(t, kr, k

′
l) + (wr − 1) · E(t, k′

r, kl) + k′
r + kl and there are w occurrences

for such a possibility.

There are w2 possible permutations of Q and Q′. Thus, the EQOS of the
ge-torus quorum system under {0,...,n-1} is

w · s1 + w · ∑wr−1
d=1 [s2(d) + s3(d)] + w · s4

w2

=
s1 +

∑wr−1
d=1 [s2(d) + s3(d)] + s4

w
, for w is even,

or
w · s1 + w · ∑wr−1

d=1 [s2(d) + s3(d)] + w · (s51 + s52)

w2

=
s1 +

∑wr−1
d=1 [s2(d) + s3(d)] + s51 + s52

w
, for w is odd.

13



Table 1
EQOS, MQOS and SQOS comparisons for optimal and near optimal quorum sys-
tems

Quorum system EQOS MQOS SQOS

grid 4n−4
√

n+1
n

(n −√
n + 1) 2

torus 2 n 1

cyclic
2s+λ·(n−1)

n+1
, where s is the quo-

rum size
n 1

FPP 2s+n−1
n+1

, where s is the quorum

size, s(s − 1) + 1 = n, and s − 1
is a prime power

n 1

ge-torus(k),
(under t × w
array arrange-
ment)

•For w is even:

s1+
∑

wr−1

d=1
[s2(d)+s3(d)]+s4

w
• For w is odd:

s1+
∑

wr−1

d=1
[s2(d)+s3(d)]+s51+s52

w
(please refer to Sec-
tion 3.6 for the meaning of
s1, s2(d), s3(d), s4, s51, and s52)

For e-torus(k1) and e-torus(k2):
• n, for (k1 = k2 = 1), (k1 = 2 ∧ k2 =
1), or (k1 = 1 ∧ k2 = 2)
• (n − 1), for (k1 = 3 ∧ k2 = 1) or
(k1 = 1 ∧ k2 = 3)
• n − ⌊2t/k1⌋, for (k1 = 1 ∧ k2 = 4) or
(k1 = 4 ∧ k2 = 1)
• less than (n − ⌊2t/k1⌋), for (k1 >
4 ∧ k2 = 1) or (k1 = 1 ∧ k2 > 4)
• (n − w + 1), for (k1 = 2 ∧ k2 = 2)
• less than (n − w + 1), for (k1 ≥ 2 ∧
k2 > 2) or (k1 > 2 ∧ k2 ≥ 2)

For e-torus(k1)
and e-torus(k2):
⌊(k1 + k2)/2⌋

4 Analysis and Simulation Result Comparisons

Table 1 summarizes the EQOS, MQOS and SQOS analysis results for the
quorum systems satisfying the rotation closure property and having optimal or
near optimal quorum sizes. We can observe that the FPP, the cyclic, the torus
quorum systems have the same MQOS and SQOS. We are hard to judge them
by MQOS and SQOS. However, all quorum systems have different EQOS. We
can then choose proper quorum systems on the basis of EQOS.

Fig. 4 (a), (b) and (c) further demonstrate the EQOS, the active ratio QS/RS,
and the ratio EQOS/QS of different quorum systems, where QS stands for the
quorum size and RS stands for the round size n, n = 5..100. It is noted that
in Fig. 4, ge-torus(k1 vs. k2) in the legend stands for the case using a pair of
quorums in the quorum systems ge-torus(k1) and ge-torus(k2). By observing
the figure, we find that ge-torus(3) quorum system (the case of ge-torus(3 vs.
3)) has the largest EQOS (the best neighbor sensibility in the average case)
and the highest active ratio (the most energy consumption). On the contrary,
the FPP quorum system has the smallest EQOS and the lowest active ra-
tio. However, by the EQOS/QS measurement, the ge-torus(3) quorum system
outperforms the FPP quorum system. The EQOS/QS can be used as an es-
timation of how much a member (an active interval) of a quorum contributes
to the EQOS value. It should thus be as large as possible. In summary, we
suggest adopting adaptive power-saving algorithm using ge-torus(k) quorum
system because ge-torus(k) quorum system may have the highest neighbor
sensibility, comparably low active ratio (note that a ge-torus(1) is actually a
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Fig. 4. Comparisons of different quorum systems in terms of EQOS, EQOS/QS,
Active Ratio and Simulated EQOS for round size n=5..100

torus quorum system whose active ration is near optimal), and the highest
EQOS/QS value. It is noted that larger k leads to larger EQOS and thus bet-
ter neighbor sensibility. This is because larger k implies a larger quorum size,
which in turn keeps a node active for more beacon intervals to receive neigh-
bors’ beacons. Certainly, we should adjust k to be a proper value according to
the network environment parameters, such as the node mobility, and/or the
EQOS requirement, etc.

We also write a simulator in Java for performing simulation experiments to
derive EQOS for power-saving algorithms using optimal or near optimal quo-
rum systems. The simulation assumes a 1000m by 1000m area in which 100
nodes move according to the random way point model. To be more precise, ev-
ery node moves at a random speed between 0 and 10m/s toward a randomly
chosen destination. At arriving the destination, the node pauses for a fixed
period of 20 seconds and then move toward the next destination. Each node
has a radio communication range of 250m and can turn the radio into active
or power-saving modes. The beacon interval has a length of 100ms, and every
node sends a beacon at the beginning of the quorum beacon interval. Each
simulation experiment lasts for 1000 seconds. The analysis and simulation re-
sults are shown together in Fig. 4(d). We can see that the two sets of results
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Fig. 5. Two quorums of the f-torus quorum system in a 3 × 6 torus.

coincide very closely.

5 The Fraction Torus Quorum System and Its EQOS

By the EQOS analysis and simulation shown above, we observe that we can
further shrink the quorum sizes to save energy if we desire a node to receive in
average one beacon from every neighboring node. In view of this, we propose
the concept of the fraction torus (f-torus) quorum system, as defined below.

Definition 12 Given a universal set, in which elements are arranged as a
t×w array with the rightmost column being regarded as wrapping around back
to the leftmost column, a quorum of an f-torus(k+f) quorum system is formed
by picking
(a) all elements of a column c, 0 ≤ c ≤ w − 1
(b) ⌈k/2⌉ · ⌊w/2⌋ elements, ⌈k/2⌉ of which fall in column c + i, i = 1..⌊w/2⌋
(c) ⌊k/2⌋ · (⌈w/2⌉ − 1) elements, ⌊k/2⌋ of which fall in column c − i, i =
1..⌈w/2⌉ − 1
(d) f · ⌊w/2⌋ elements, each of which falls in columns c+1, ..., or c+ ⌊w/2⌋ if
k is even (or f · (⌈w/2⌉− 1) elements, each of which falls in columns c− 1, ...,
or c − (⌈w/2⌉ − 1) if k is odd).
Note that k (0 ≤ k ≤ t) is an integer and f is a fraction of the value i

⌊w/2⌋ , i =

0, ..., or ⌊w/2⌋−1 if k is even (f is of the value i
⌈w/2⌉−1

, i = 0, ..., or ⌈w/2⌉−2

if k is odd).

Fig. 5 illustrates the construction of two f-torus quorums G and H under
U = {0, ..., 17} with t = 3 and w = 6. G belongs to an f-torus(2

3
) quorum

system and is formed by picking all the elements of the second column plus two
more (= 2

3
· ⌊6

2
⌋) elements, one from the third and one from the fifth columns.

H belongs to an f-torus(11
2
) quorum system and is formed by picking all the

elements of the sixth column plus three more elements, from the first, second,
and third columns, respectively, plus one more (= 1

2
· (⌈6

2
⌉ − 1)) element from

the fifth column. Note that G and H intersect at element 7.

Suppose Q is a quorum in the f-torus(k+f) quorum system and Q′ is a quorum
in the f-torus(k′+f ′) quorum system, where Q contains all elements of column
c and Q′ contains all elements of column c′. Below, we analyze the EQOS of
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Fig. 6. Comparisons of different cases of f-torus quorum systems in terms of EQOS
and active ratio

the f-torus quorum system. It is noted that in the following analysis we obey
the notations used in Section 3.6. We also let fr = f and fl = 0 if k is even,
let fr = 0 and fl = f if k is odd, let f ′

r = f ′ and f ′
l = 0 if k′ is even, and let

f ′
r = 0 and f ′

l = f ′ if k′ is odd. Moreover, we use Ef (h, i, j, p, q), where i and j
are integers and p and q are fractions, to represent the expected number of the
common members of two independently chosen subsets of a set of h elements.
The integers i and j stand for the first and the second subset cardinalities,
respectively. And the fractions p and q, 0 ≤ p, q < 1, respectively represent
the probabilities to add one more element in the first subset and the second
subset. We can derive that Ef (h, i, j, p, q) = E(h, i, j) + i

h
· q + j

h
· p + 1

h
· p · q

In a manner similar to that of the ge-torus quorum system, we can figure
out the EQOS of the f-torus quorum system by considering the following five
independent cases.

Case 1. d = 0 (i.e., c = c′): The overlap of Q and Q′ is expected to have size
s1 = t+Ef (t, kr, k

′
r, fr, f

′
r)·wr+E(t, kl, k

′
l, fl, f

′
l )·wl and there are w occurrences

for such a case.

Case 2. 1 ≤ d < wr and ((c′−c) mod w)=d: The overlap of Q and Q′ is expected
to have size s2(d) = (d− 1) ·Ef (t, kr, k

′
l, fr, f

′
l )+ (wr −d) ·Ef (t, kr, k

′
r, fr, f

′
r)+

d ·Ef (t, kl, k
′
r, fl, f

′
r) + (wl − d) ·Ef (t, kl, k

′
l, fl, f

′
l ) + k′

l + kr + f ′
l + fr and there

are w occurrences for such a case for each d, 1 ≤ d < wr.

Case 3. 1 ≤ d < wr and ((c−c′) mod w)=d: This case is opposite to Case 2. The
overlap of Q and Q′ is expected to have size s3(d) = (d−1)·Ef (t, k

′
r, kl, f

′
r, fl)+

(wr−d)·Ef (t, k
′
r, kr, f

′
r, fr)+d·Ef (t, k

′
l, kr, f

′
l , fr)+(wl−d)·Ef (t, k

′
l, kl, f

′
l , fl)+

kl + k′
r + fl + f ′

r and there are w occurrences for such a case for each d, 1 ≤
d < wr.

Case 4. d = wr and w is even: The overlap of Q and Q′ has size s4 = (wr −
1) · (Ef (t, kr, k

′
l, fr, f

′
l ) + Ef (t, kl, k

′
r, fl, f

′
r)) + kr + k′

r + fr + f ′
r and there are w
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occurrences for such a case.

Case 5. d = wr and w is odd: The overlap of Q and Q′ may have size s51 =
wr ·Ef (t, k

′
r, kl, f

′
r, fl)+(wr −1) ·Ef (t, kr, k

′
l, fr, f

′
l )+kr +k′

l +fr +f ′
l and there

are w occurrences for such a possibility. Moreover, the overlap of Q and Q′ may
have size s52 = wr·Ef (t, kr, k

′
l, fr, f

′
l )+(wr−1)·Ef (t, k

′
r, kl, f

′
r, fl)+k′

r+kl+f ′
r+fl

and there are w occurrences for such a possibility.

There are w2 possible permutations of Q and Q′. Thus, the EQOS of the
f-torus quorum system under {0,...,n-1}) is

w · s1 + w · ∑wr−1
d=1 [s2(d) + s3(d)] + w · s4

w2

=
s1 +

∑wr−1
d=1 [s2(d) + s3(d)] + s4

w
, for w is even,

or
w · s1 + w · ∑wr−1

d=1 [s2(d) + s3(d)] + w · (s51 + s52)

w2

=
s1 +

∑wr−1
d=1 [s2(d) + s3(d)] + s51 + s52

w
, for w is odd.

Fig. 6 (a) and (b) demonstrate the EQOS and the active ratio (QS/RS)
comparisons for different cases of f-torus quorum systems. Under a t × w
torus, we consider the cases of f-torus( 1

⌊w/2⌋),...,f-torus( ⌊w/2⌋−1
⌊w/2⌋ ),f-torus(1),f-

torus(1 + 1
⌈w/2⌉−1

),..., f-torus(1 + ⌈w/2⌉−2
⌈w/2⌉−1

), and f-torus(2). For example, under

a 7 × 14 torus, we consider the following 13 cases: f-torus(1
7
), f-torus(2

7
), f-

torus(3
7
), f-torus(4

7
), f-torus(5

7
), f-torus(6

7
), f-torus(1), f-torus(11

6
), f-torus(12

6
),

f-torus(13
6
), f-torus(14

6
), f-torus(15

6
) and f-torus(2). By Fig. 6, we observe that

a larger (t × w) value leads to lower EQOS and active ratio. This is because
the round size is proportional to the (t × w) value, while the quorum size is
proportional to the (t+w) value. When t and w grow, the (t×w) value grows
much faster than the (t + w) value. The active ratio thus decreases since it
equals to the ratio of the quorum size over the round size. It is noted that
EQOS has a similar condition. By Fig. 6, we also observe that we can achieve
very low active ratios while keeping the EQOS larger than 1. For example, the
f-torus(3

7
) quorum system has the EQOS of 1.020408163, and has a very low

active ratio of 0.102040816.

By many possible values of the integer k and the fraction f , the f-torus(k +f)
quorum system provides much flexibility for us to design adaptive quorum-
based asynchronous power saving algorithms. The algorithms can now rank a
node’s mobility into much more levels and thus are more adaptive to mobility
changes than those using e-torus quorum systems.
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Fig. 7. Analysis and simulation results of EQOS for different cases of f-torus quorum
systems

The f-torus quorum system is a generalization of the e-torus quorum system.
For k ≥ 1 and f = 0, the f-torus(k + f) quorum system is actually the ge-
torus(k) quorum system. For example, f-torus(1) and f-torus(2) are ge-torus(1)
and ge-torus(2) quorum systems. We can check that the EQOS analysis equa-
tions of f-torus and ge-torus quorum systems are the same when we substitute
f by 0 in the equations. By the simulation results in Fig. 8, we can see that the
f-torus(k) and ge-torus(k) quorum systems, k=1 or 2, have equal EQOS values
if we neglect the small statistical errors. In general, there are more possibilities
of f-torus quorum systems than ge-tours quorum systems. Furthermore, many
f-torus quorum systems are of smaller active ratios than ge-torus quorum sys-
tems under the same torus structure. For example, under the 7 × 14 torus,
f-torus(1

7
), f-torus(2

7
), f-torus(3

7
), f-torus(4

7
), f-torus(5

7
) and f-torus(6

7
) all have

smaller active ratios than ge-torus(1). This demonstrates the flexibility and
the efficiency of f-torus quorum systems.

6 Conclusion

In this paper, we have proposed the concept of the expected quorum overlap
size (EQOS) for evaluating the average-case neighbor sensibility of a quorum-
based asynchronous power saving algorithm in IEEE 802.11 MANETs. We
have analyzed the EQOS for the FPP, grid, cyclic, torus and e-torus quorum
systems that satisfy the rotation closure property and have optimal or near
optimal quorum sizes (or active ratios). As we have shown, with the help of
the EQOS, we can properly select quorum systems to construct asynchronous
power saving algorithms for specific environments. Observing that the optimal
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Fig. 8. EQOS simulation results for ge-torus(k) and f-torus(k) quorum systems,
k = 1 or 2, under different torus structures

and near optimal quorum systems have EQOS values much larger than one,
we are inspired to devise a new quorum system, called the fraction torus (f-
torus) quorum system, for the construction of mobility-adaptive power saving
algorithms. The f-torus quorum systems can further reduce the energy expen-
diture by shrinking the quorum size, while keeping the EQOS larger than one
so that a node is expected to receive one or more beacons from a neighboring
node in a round. By many possible values of the integer k and the fraction f ,
the f-torus(k + f) quorum system provides much flexibility for us to design
adaptive quorum-based asynchronous power saving algorithms. We have per-
formed simulation experiments to derive EQOS values for the optimal, near
optimal and f-torus quorum systems. As we have shown, the analysis and
simulation results of EQOS coincide very closely.
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