
1

A Counter-Based RFID Anti-Collision Protocol Using Parallel Splitting

Ming-Kuei Yeh and Jehn-Ruey Jiang

Department of Computer Science and Information Engineering

National Central University, Taiwan, ROC

{92542010, jrjiang}@csie.ncu.edu.tw

Abstract—In an RFID system, a reader identifies tags by

interrogating them through a shared wireless communication

channel. Collisions occur when multiple tags transmit their IDs

to the reader simultaneously, degrading the performance of tag

identification. How to reduce tag collisions to speed up the

identification is thus important. There are several anti-collision

protocols proposed for dealing with tag collisions. They can be

categorized into two classes: ALOHA-based protocols and

tree-based protocols that include deterministic tree-based and

probabilistic counter-based subclasses of protocols. The

ALOHA-based protocol has the tag starvation problem that a tag

may never be successfully identified; the deterministic tree-based

protocol has the problem that its performance is influenced by

the tag ID length and/or distribution. On the contrary, the

probabilistic counter-based protocol has no such problems. In

this paper, we propose a probabilistic counter-based

anti-collision protocol using the idea of parallel splitting to speed

up RFID tag identification. The proposed protocol also utilizes

an adaptive identification-tree height adjustment mechanism to

fine tune the effect of parallel splitting. We analyze and simulate

the proposed protocol and compare it with the counter-based

protocol adopted by the well known ISO/IEC 18000-6B standard

to demonstrate its advantages.

1. Introduction

The RFID (Radio Frequency IDentification) technique

[5] attracts a lot of attention recently due to its automatic

identification capability through RF communications. An

RFID system consists of readers and tags. Tags store unique

IDs and are attached to objects; a reader recognizes an

object by issuing RF signals to interrogate the ID of the

attached tag. Most RFID tags do not have on-tag power

source; they derive energy from the RF field generated by

the reader to drive the circuit. This is an advantage over

other electronic products that are energized by batteries or

other power sources. Furthermore, tags are usually of tiny

sizes and low costs. The RFID system is thus suitable for

many applications, such as logistic control, supply chain

management, and asset tracking, etc.

When a tag and a reader are close enough, they can

communicate with each other. For such a situation, we say

that the tag is in the interrogation zone of the reader. To

figure out which tags are within its interrogation zone, a

reader initiates an identification procedure (or interrogation

procedure) to request tags to send back their IDs. When

multiple tags respond to the reader request simultaneously,

signal collisions occur and no tag can be identified by the

reader successful. How to reduce tag collisions to speed up

the identification procedure is thus important. There are

several anti-collision protocols proposed for reducing tag

collisions. They can be categorized into two classes [17]:

ALOHA-based protocols and tree-based protocols that

include deterministic tree-based and probabilistic

counter-based subclasses of protocols.

This paper presents a novel probabilistic counter-based

anti-collision protocol, called Parallel Splitting (PS)

protocol, to speed up RFID tag identification procedure by

splitting tags in parallel. PS protocol utilizes two

mechanisms: the parallel splitting mechanism and the

adaptive identification-tree height adjustment mechanism.

In the best case, PS protocol needs only lg𝑁 +N–1

iterations to identify all N tags, while the related ISO/IEC

18000-6B protocol needs 2N–1 iterations. We analyze and

simulate PS protocol and compare it with ISO/IEC

18000-6B protocol to show its advantages.

The rest of this paper is organized as follows. We

describe the anti-collision protocols in Section II and show

some observations about tag splitting of the probabilistic

counter-based protocol in Section III and describe PS

protocol in Section IV. We analyze PS protocol in Section

V, and simulate it and compare it with ISO/IEC 18000-6B

protocol in Section VI. And finally, conclusion is drawn in

Section VII.

2. Anti-collision protocols

2.1. The ALOHA-based protocols

In ALOHA-based protocols [3],[7],[9],[11] tags respond

to the reader by transmitting IDs in a probabilistic manner.

In ALOHA protocol [1], on receiving the reader‟s

interrogation request, each tag in the interrogation zone

independently chooses a random back-off time and

responds its tag ID to the reader at that time. If no collision

occurs during a tag‟s ID response, its ID can be identified

properly and acknowledged by the reader. A tag with

acknowledged ID will stop responding to the reader. On the

other hand, an unacknowledged tag will repeatedly select a

random back-off time and send its ID until it is identified

and acknowledged by the reader. In slotted ALOHA

protocol [12], the random back-off time must be a multiple

of a pre-specified slot time. If collisions occur in a slot, the

reader will notify the colliding tags to re-select a response

time randomly. As shown in [14], the performance of

slotted ALOHA protocol is twice that of ALOHA protocol

since there is no partial collision of tag ID responses in

slotted ALOHA protocol.

2

Frame slotted ALOHA protocol [16] is similar to slotted

ALOHA protocol. However, to limit the response time,

frame slotted ALOHA protocol [16] divides the whole

interrogation procedure into a set of frames. Each frame has

a fixed number of time slots, and a tag sends its ID to the

reader in only one randomly chosen slot during a frame

period. One drawback of frame slotted ALOHA protocol is

that its performance will degrade when the number of slots

in the frame does not properly match with the number of

tags in the interrogation zone. Dynamic frame slotted

ALOHA protocols [3], [9], [10], [11] try to eliminate the

drawback by dynamically adjusting the frame size

according to the estimated number of tags. Their

performances are therefore better than that of frame slotted

ALOHA protocol.

2.2. The deterministic tree-based protocols

In [2], [6], [16], the splitting tree concept was proposed to

solve the collision problem. The deterministic tree-based

protocols [4], [18] rely on tag IDs to repeatedly split

colliding tags into subgroups until there is only one tag in a

subgroup to be identified successfully. In query tree

protocol (QT) [13],[18], a reader first broadcasts a bit string

S of a specified length. The tag with an ID whose prefix

matches with S will respond its whole ID to the reader. If

only one tag responds at a time, the tag is identified

successfully. But if multiple tags respond simultaneously,

the responses collide. In such a case, the reader appends

string S with bit 0 or 1 and broadcasts again the longer bit

string (i.e., S0 or S1). In this manner, the colliding tags are

divided into two subgroups. If there is only one tag in a

subgroup, it can be identified successfully. The reader keeps

track of the request strings needed to broadcast with the

help of a stack and perform tag identification procedure

until all tags are identified. Query tree protocol is a

memory-less protocol because it does not require tags to be

equipped with additional writable on-chip memory. We can

observe that QT protocol‟s identification delay is affected

by the distribution and the length of tag IDs. Specifically, if

the tags have long and continuous IDs, the request bit string

will grow very quickly for identifying all tags. The delay

time of the identification procedure will then increase

significantly.

In bit-by-bit binary tree protocol [4], on receiving a

reader‟s interrogation request, each tag responds with the

first bit of its tag ID. The reader then responds with 0 (or 1),

and only the tags with the first bit being 0 (or 1) will

respond with its next ID bit. The above procedure repeats

bit by bit until there is only one responding tag. The reader

can then ask the tag to send remaining ID bits for the

purpose of identification. The protocol requires tags to be

equipped with writable on-tag memory so that tags can keep

track of the identification procedure to respond with a

certain bit properly. Unlike QT protocol, bit-by-bit binary

tree protocol does not require a reader to send long ID

prefixes; the reader and the tag send out only one bit at a

time. Consequently, the delay time of the identification

procedure is reduced. However, in the case of sparse tags

with uniform ID distribution, the identification performance

may be worse than that of query tree protocol.

2.3. The probabilistic counter-based protocols

Probabilistic counter-based protocols [8], [11], [13] rely

on dynamically changing counters to split colliding tags. In

the anti-collision protocol
1
 proposed in the well known

ISO/IEC 18000-6B standard [8], each tag maintains a

counter which is initially 0. Every tag with counter value 0

can transmit its tag ID to respond to the interrogation

request. When a collision occurs, the reader will notify all

tags of this. And the tags with counter values larger than 0

will increase their counters by 1, while the tags with counter

value 0 will randomly add 0 or 1 to their counters. In this

way, the colliding tags (i.e., the tags with counters value 0)

are split into two subgroups. The splitting procedure will be

repeated until there is only one or no tag with counter value

0. In the former case, the tag with counter value 0 can be

identified successfully. And in both cases, the reader sends

a command to inform all unidentified tags to decrease their

counters by 1. In this way, every tag will be the unique one

to have counter value 0 and be identified successfully.

ABS (Adaptive Binary Splitting) protocol [13] is

proposed to improve ISO/IEC 18000 6B protocol by

keeping counter information of the last tag interrogation

round. A tag in ABS protocol keeps two counters. The first

counter (Allocated Slot Counter, ASC) is similar to that of

ISO/IEC 18000 6B protocol, and the second counter

(Progressed Slot Counter, PSC) is to keep track of the

number of tags identified successfully. The two counters are

initially in the first round, but only PSC is reset to be 0 in

following rounds. Tags with ASC equal to PSC can transmit

their tag IDs to respond to a reader request. When there is

only one response, the responding tag can be identified and

each tag increases PSC by one. When there is no response,

all tags with ASC larger than PSC decrease ASC by one.

When collisions occur, the tags with ASC larger than PSC

then increase ASC by 1, while the tags with ASC equal to

PSC randomly generate a random bit, 0 or 1, and add it to

ASC. Note that tags with ASC less than PSC do not

increase ASC; they even do not attempt to transmit their

IDs until the tag interrogation round is finished. After all

tags are identified in a round, they have unique and

successive ASC values. These values can be reserved for

use in the next tag interrogation round to speed up the

interrogation procedure. Even if there are tags joining or

leaving after the last interrogation round, ABS protocol can

work properly. As shown in [13], the performance of

ISO/IEC 18000-6B protocol is improved significantly by

the ABS protocol.

Among the two types of anti-collision protocols,

ALOHA-based protocols are simple and have fair

performance. However, they have the tag starvation

problem that a tag may never be identified when its

responses always collide with others‟. Deterministic

1 For the sake of simplicity, we use “ISO/IEC 18000-6B protocol”

to refer to the counter-based anti-collision protocol adopted by the

well known ISO/IEC 18000-6B standard.

3

Tree-based protocols and probabilistic counter-based

protocols do not have the tag starvation problem. Yet, the

former have the problem that their performance is

influenced by the tag ID length and/or distribution, while

the latter have not. We thus focus on probabilistic

counter-based protocols in this paper.

3. Tag-splitting of the counter-based protocol

As we have shown, in the representative probabilistic

counter-based protocol, ISO/IEC 18000-6B protocol, the

tags with counter value 0 are split into two subgroups, one

for tags with counter value 0 and the other for tags with

counter value 1. The splitting procedure continues until

(case-1) only one tag is of counter 0 or (case-2) none tag is

of counter value 0. In case-1, the tag having counter value 0

will respond to the reader and be identified successfully. It

should keep silent until the tag interrogation is finished. In

both cases the reader sends a command to inform all tags to

decrease their counters by 1. Afterwards, tags with counter

value 0 are split again. In this way, all tags can be identified

successfully.

For the purpose of observing tag splitting of ISO/IEC

18000-6B protocol, we show below an example of the

protocol‟s identification procedure. We assume there are

four tags with unique IDs 0010, 0110, 1001 and 1110. The

iterations (steps) of the tag identification procedure and

associated identification trees are depicted in Table 1. The

iterations are also described as follows.

Iteration 1: At the beginning, the reader requests tags to

start a round of tag interrogation. On receiving the request,

tags reset their counters to 0. Tag1 (with ID 0010), tag2

(with ID 0110), tag3 (with ID 1001) and tag4 (with ID 1110)

respond with their IDs to the reader simultaneously and

collisions happen.

Iteration 2: The reader sends a collision-notification

command to make all tags randomly add 0 or 1 to their

counters. This is the first tag splitting. As shown in Table 1,

tags 1 and 4 are with counter value 0, while tags 2 and 3 are

of counter value 1 after the splitting. Tags 1 and 4 respond

with their IDs simultaneously and collisions occur again.

Iteration 3: The reader sends a collision-notification

command to make tags 1 and 4 randomly add 0 or 1 to their

counters, while tags 2 and 3 increase 1 to their counters.

This is the second tag splitting. Tag 1 is the only tag of

counter value 0 after the splitting; it responds with its ID to

the reader and is identified successfully.

Iteration 4: The reader acknowledges the identified ID

with a success-notification command. The identified tag 1

enters the silent state, and all unidentified tags 2, 3 and 4

decrease their counters by 1. Tag 4 is the only tag of counter

value 0; it responds with its ID to the reader and is

identified successfully.

Iteration 5: The reader acknowledges the identified ID

with a success-notification command. The identified tag 4

enters the silent state, and all unidentified tags 2 and 3

decrease their counters by 1. Tags 2 and 3 are of counter

value 0; they respond their IDs to the reader and collision

occurs.

Iteration 6: The reader sends a collision-notification

command to make tags 2 and 3 randomly add 0 or 1 to their

counters. This is the third tag splitting. Tag 3 is the only tag

of counter value 0 after the splitting; it responds with its ID

to the reader and is identified successfully.

Iteration 7: The reader acknowledges the identified ID

with a success-notification command. The identified tag 3

enters the silent state, and the unidentified tag 2 decreases

its counter by 1. Tag 2 is the only tag of counter value 0; it

responds with its ID to the reader and is identified

successfully.

Iteration 8: The reader acknowledges the identified ID

with a success-notification command. The identified tag 2

enters the silent state. At that time, all tags are identified

and thus will be silent until the reader sends a request to

start the next round.

Table 1. The iterations of the identification procedure of

ISO/IEC 18000-6B protocol and the associated identification

tree (The tag ID marked by „*‟ means that the associated tag has

been identified.)
It

er
at

io
n

R
ea

d
er

 C
o

m
m

an
d

T
ag

 I
D

C
o
u
n

te
r

v
al

u
e

R
an

d
o

m
 b

it
 c

h
o
o

se

N
ew

 C
o

u
n

te
r

V
al

u
e

T
ag

 R
es

p
o
n

se

1 Request

1 --

0 0010

2 --

0 0110

3 --

0 1001

4 --

0 1110

2 Collision
1 0 0 0 0010

2 0 1 1

3 0 1 1

4 0 0 0 1110

3 Collision
1 0 0 0 0010

2 1 2

3 1

2

0010

0110

1001

1110

0

0010

1110

0
0110

1001

1

4

4 0 1 1

4 Success
1 0 --

2 2 1

3 2

1

4 1

0 1110

5 Success
1 -- --

2 1 0 0110

3 1

0 1001

4 0 --

6 Collision
1 -- --

2 0 1 1

3 0 0 0 1001

4 -- --

7 Success
1 -- --

2 1 0 0110

3 0 --

4 -- --

8 Success
1 --

--

2 0 --

3 -- --

4 -- --

By investigating the tag identification procedure and its

associated identification trees of ISO/IEC 18000-6B

protocol, we have the following observations:

1. A successfully identified tag corresponds to a leaf node

in the identification tree.

2. Each node in the identification tree corresponds to an

iteration of the identification procedure.

3. The tag splitting occurs among only the tags with

counter value 0. Other tags do not perform splitting but

just increase their counters by 1 even though they have

the same counter value and their responses to the reader

will collide in a coming iteration.

By the first two observations, we can infer that the

ISO/IEC 18000-6B protocol needs 2N–1 iterations for

identifying N tags in the best case. This is because a tree

with N leaf nodes has a total number of 2N–1 of nodes

(Note that in a worse case, a leaf node may not correspond

to any tag ID, which leads to a total number of nodes more

than 2N-1. This occurs if no tag is with the counter value 0

when the reader requests tags to send their IDs.) The one

shown in Table 1 is actually a best case example of the tag

identification procedure of ISO/IEC 18000-6B protocol. It

takes 7 iterations, excluding the first iteration to start a new

round, to identify 4 tags.

The last observation further inspires us to develop a

counter-based protocol that splits tags in parallel to speed

up the tag identification procedure. We propose a protocol,

called parallel splitting (PS) protocol, to achieve this goal.

In the next section, we will elaborate all details of PS

protocol.

4. The Proposed Protocol

The basic concept of PS protocol is for unidentified tags

to left shift their counters (i.e. multiply the counter values

by 2) and then randomly add 0 or 1 to the counters when

collisions occur before the first tag is identified. And after

the first tag is identified, PS protocol will follow the normal

0110

1001
2

0010 0 11101

0110*1001*1110*0010*

0110
0

1001*1110*0010*

0
1001 0110

1
1110*0010*

0110

1001
0

1110*0010*

0110

1001
1

111000010*

5

identification procedure of ISO/IEC 18000-6B protocol. In

this way, tags are split into groups in parallel and the delay

to identify all tags can be shortened.

In ISO/IEC 18000-6B protocol, only tags of counter

value 0 are split, while in PS protocol, all unidentified tags

are split simultaneously before the first tag is identified. Fig.

1 shows the comparison of the best case identification trees

of ISO/IEC 18000-6B and PS protocols. By Fig. 1, we can

observe that PS protocol can generate more leaf nodes than

ISO/IEC 18000-6B protocol within the same number of

iterations. Since leaf nodes correspond to a tag ID to be

identified, we can infer that PS protocol needs fewer

iterations for all tags to be identified successfully.

Figure 1. The identification trees of ISO/IEC 18000-6B protocol

(left) and PS protocol (right) before the first tag is identified (Note

that tag splitting will occur at shaded nodes.)

By Fig.1, we can observe that after H iterations, there

will be 2
H
 leaf nodes in the identification tree in PS protocol.

Therefore, the minimum iterations to generate N leaf nodes

in the identification tree is lg𝑁 , which corresponds to the

height of a full tree of N leaf nodes. If each leaf node

corresponds to only one tag (i.e., all tags have different

counters), then no further tag splitting is needed for tags to

be identified successfully. However, the parallel splitting

stops when the first tag is identified. At that time, if less

than lg𝑁 iterations have been executed, then the number

of leaf nodes will be less than N and there will be several

tags residing at the same node, which will call for more tag

splitting. On the other hand, if more than lg𝑁 iterations

have been executed, then there will be some empty leaf

nodes (i.e., no tag is with the counter values associated with

the nodes). This will lengthen the identification procedure,

since an empty leaf node corresponds to an iteration in

which no tag responds to the reader. Therefore, a

mechanism is needed to adjust the height of the

identification tree once the first tag is identified.

Below we introduce the adaptive identification-tree

height adjustment mechanism to adjust the height of the

identification tree for the purpose of making the number of

leaf nodes approximate the number of tags. Since the

number of tags is unknown beforehand, we set the tree

height according to the ratio of N0, N1 and Nm, which are the

numbers of leaf nodes with zero tag, one tag and multiple

(i.e., two or more) tags, respectively, when the first tag is

successfully identified. In the following context, we will

show how to derive an approximate ratio of N0, N1 and Nm

for adjusting the tree height.

Suppose that the number of tags is N. When the first tag

is identified, we have the minimum number of iterations for

identifying all tags if the identification tree is a full tree.

Such a tree has a height of lg𝑁 , and the number L of leaf

nodes of the tree is 2 lg 𝑁 . We have

𝐿 = 2 lg 𝑁 (1)

Let the probability that there are S tags residing at a

leaf node be p(S). Assuming a tag has the same

probability to reside at every leaf node, we have

𝑝 𝑆 = 𝑁
𝑆

1

𝐿

𝑆

 1 −
1

𝐿

𝑁−S

 (2)

We let 𝑝 𝑚 be the probability of 2 or more tags

residing at a leaf node. We have

𝑝 𝑚 = 𝑝 2 + 𝑝 3 + 𝑝 4 + ⋯

From Eq. 2, we have

𝑝 3

𝑝 2
=

𝑁 𝑁 − 1 𝑁 − 2
3!

1
𝐿

3

 1 −
1
𝐿

𝑁−3

𝑁 𝑁 − 1
2

1
𝐿

2

 1 −
1
𝐿

𝑁−2

=
2 𝑁 − 2

3! 𝐿 − 1
=

 𝑁 − 2

3 𝐿 − 1

𝑝 4

𝑝 2
=

𝑁 𝑁 − 1 𝑁 − 2 𝑁 − 3
4!

1
𝐿

4

 1 −
1
𝐿

𝑁−4

𝑁 𝑁 − 1
2

1
𝐿

2

 1 −
1
𝐿

𝑁−2

=
2 𝑁 − 2 (𝑁 − 3)

4! 𝐿 − 1 2
=
 𝑁 − 2 (𝑁 − 3)

12 𝐿 − 1 2

𝑝 5

𝑝 2

=

𝑁 𝑁 − 1 𝑁 − 2 𝑁 − 3 𝑁 − 4
5!

1
𝐿

5

 1 −
1
𝐿

𝑁−5

𝑁 𝑁 − 1
2

1
𝐿

2

 1 −
1
𝐿

𝑁−2

=
2 𝑁 − 2 (𝑁 − 3) 𝑁 − 4

5! 𝐿 − 1 2
=
 𝑁 − 2 (𝑁 − 3) 𝑁 − 4

60 𝐿 − 1 2

It is reasonable to assume L >> 1 and N >> 1. It is thus

reasonable to take L1 as L, and to take N – 2, N – 3 and

N – 4 as N. Then we have

(Counter value)0 0

10

0 1

2

10 0 1 2 3

3

2

10 0 1 2 3 4 5 6 7

1 iteration

2 iterations

3 iterations

4 iterations

6

𝑝 2 : 𝑝 3 : 𝑝 4 : 𝑝 5 : …:p(i):…

= 1:
𝑁

3𝐿
∶

𝑁2

12𝐿2 ∶
𝑁3

60𝐿3 : … :
2 𝑁(𝑖−2)

𝑖! 𝐿(𝑖−2) : … (3)

By Eq. 3, we can observe that p(4), p(5),… are

relatively small when compare with p(2). We thus omit

the probability that there are more than 3 tags residing at

a leaf node. We have

𝑝 𝑚 ≈ 𝑝 2 + 𝑝 3

=
𝑁 𝑁 − 1

2

1

𝐿

2

 1 −
1

𝐿

𝑁−2

+

𝑁 𝑁 − 1 𝑁 − 2

3!

1

𝐿

3

 1 −
1

𝐿

𝑁−3

= 1 +
 𝑁 − 2

3 𝐿 − 1

𝑁 𝑁 − 1

2

1

𝐿

2

 1 −
1

𝐿

𝑁−2

 (4)

Let the expected numbers of leaf nodes containing none,

one and multiple tags be e(0), e(1) and e(m), respectively.

𝑒 0 ：𝑒 1 ：𝑒 𝑚
= 𝐿 × 𝑝 0 ：𝐿 × 𝑝 1 ：𝐿 × 𝑝 𝑚

= 𝐿 1 −
1

𝐿

𝑁

：𝑁 1 −
1

𝐿

𝑁−1

：𝐿 1 +
 𝑁 − 2

3 𝐿 − 1

𝑁 𝑁 − 1

2

1

𝐿

2

 1 −
1

𝐿

𝑁−2

= 2 𝐿 − 1 2：2𝑁 𝐿 − 1 ：𝑁 𝑁 − 1 1 +
 𝑁−2

3 𝐿−1
 (5)

It is reasonable to assume L>>1 and N>>1, and take L–1

as L, and N–1, N–2 as N. We then have

𝑒 0 ：𝑒 1 ：𝑒 𝑚 = 2𝐿2: 2𝑁𝐿 ∶ 𝑁2 1 +
𝑁

3𝐿
 (6)

By Eq.6, we can calculate the expected ratios of e(0),

e(1) and e(m) for different values of L and N. We show

such ratios in Table 2.

Table 2. The expected ratios of e(0), e(1) and e(m) for different

values of L and N (we assume L>>1)

L vs. N e(0) e(1) e(m)

L=2N 2 1 7/24

L=N 1 1 2/3

L=N/2 1/2 1 5/3

With the expected ratios of e(0) , e(1) and e(m) in Table 2,

we can adjust L to approach N by keeping track of N0, N1

and Nm. For example, if the reader finds that N0 : N1 : Nm ≅

2 : 1 : 7/24 during the identification process, it presumes

that L≥2N and forces all unidentified tags right-shift their

counters one bit to make L approach N. On the other hand,

if the reader finds that N0 : N1 : Nm ≅ 1/2 : 1 : 5/3 during

the identification process, it presumes that L≤N/2 and

forces all unidentified tags left-shift their counters one bit

and add one or zero randomly to make L approach N. In

summary, we have the following two rules to make L

approach N.

Rule 1: If N0 > 2 N1 and N1 > 3.4 Nm, then all unidentified

tags right-shift their counters one bit to divide L by

2.

Rule 2: If 2N0 < N1 and 1.7N1 < Nm, then all unidentified

tags left-shift their counters one bit to multiply L

by 2, and subsequently add one or zero randomly

to the counters.

Below, we give an overview of PS protocol, which has

two phases. In phase I, all tags are split in parallel until the

first tag is identified successfully. In phase II, tags are

identified one by one according to the normal identification

procedure of ISO/IEC 18000-6B protocol. It is noted that

the above-mentioned Rule1 and Rule2 may be applied in

phase II for adjusting the number of leaf nodes to approach

the actual number N of tags even though N is unknown.

Besides the COLLISION and SUCCESS commands

used in ISO/IEC 18000-6B protocol, PS protocol utilizes

two more commands, PS_COLLISION and PS_SUCCESS,

to facilitate parallel tag splitting. We assume each tag has a

K-bit counter that can store up to 2
K
 different counter values.

If the number of tag splitting is over K, the counter value

will overflow and errors will occur. We use parameter C to

record and control the number of tag splitting. When C < K,

PS_COLLISION command is sent to make all tags split in

parallel; otherwise, COLLISION command is sent to make

tags split in serial. In this way, the counter value hardly

overflows.

The operations of the reader and the tag are described

in Fig. 2 and Fig. 3, respectively.

The operation of the reader

(Phase I)

/* K is the length of tag counter

/* C records the number of PS_COLLISION commands sent in

the current round.

1. The reader sends a REQUEST command to make all

tags start a new round and reset counter values to 0.

The reader waits for responses from tags.

2. If two or more responses are received, then the reader

checks if C < K. If so, PS_COLLISION command is

sent to make all tags split in parallel. If not so, the

reader sends COLLISION command to make tags

split in serial and the reader goes to Step 5 in Phase II.

3. If no or only one response is received, then the reader

sends SUCCESS command to make all unidentified

tags decrease their counters by 1 and the reader goes

to Step 5.

4. The reader waits for responses from tags. On

receiving responses, the reader goes to Step 2.

7

 (Phase II)

5. The reader waits for responses from tags.

6. If collisions occur, the reader performs either a or b

a. If Rule2 is applicable, then the reader checks if C

< K. If so, PS_COLLISION command is sent.

Otherwise, COLLISION command is sent.

b. If Rule2 is not applicable, then COLLISION

command is sent.

7. If only one or no tag responds, the reader performs

either a or b

a. If Rule1 is applicable, then PS_SUCCESS

command is sent and C is decreased by 1.

b. If Rule1 is not applicable, then SUCCESS

command is sent.

8. If there are still tags to be identified, the reader goes

to Step 5.

Figure 2. The operation of the reader in PS protocol

The operation of tags

1. All tags reset counter value to be 0 on receiving the

REQUEST command sent by the reader.

2. The tags with counter value 0 will send their IDs to

the reader.

3. On receiving a command from the reader, tags take

actions according to the following cases:

case command = COLLISION:

The tag with counter value 0 randomly adds 0 or 1

to counters, while other unidentified tags increase

their counters by 1.

case command = PS_COLLISION:

All unidentified tags left-shift their counters one

bit and randomly add 0 or 1 to the counters

case command = SUCCESS:

The tag with counter value 0 will keep silent and

become an identified tag until next round of the

identification procedure, while other tags decrease

their counters by 1.

case command = PS_SUCCESS:

All unidentified tags right-shift their counters by

one bit.

Figure 3. The operation of tags in PS protocol

5. The analysis of PS protocol

5.1. The minimum number of iterations for identifying all tags

We have the minimum number of iterations to identify

all N tags if the identification tree is a full tree when the first

tag is identified. Such a tree has a height of lg𝑁 , and the

number of leaf nodes is N. Since lg𝑁 iterations are

needed in phase I to split tags into N groups and to identify

the first tag, and further N–1 iterations are needed in phase

II to identify other N–1 tags, we have that lg𝑁 +N–1 is

the minimum number of iterations to identify all N tags.

5.2. The average number of iterations for identifying all tags

Suppose the identification procedure has gone through

H iterations when the first tag is identified. We have the

number L of leaf nodes in the identification tree is 2
H
. Each

leaf node can contain none, one or multiple tags. In the case

of none and one tag residing at a leaf node, no more split is

needed for tag identification, while in the case of multiple

tags residing at a leaf node, more splits are needed.

We define f(S) as the identification iterations needed to

identify S tags at a leaf node. For example, f(2) can be

utilized to estimate the number of iterations needed to

identify 2 tags at a leaf node. Table 3 shows the four

possible cases after a split of 2 tags. By Table 3, the total

number f(2) of iterations needed to identify 2 tags residing

at a leaf node can be easily calculated as

𝑓 2 =
1

22
 1 + 𝑓 2 + 𝑓 0

+
1

22
 1 + 𝑓(0) + 𝑓 2

+
1

22
 1 + 𝑓 1 + 𝑓(1)

+
1

22
 1 + 𝑓(1) + 𝑓(1) (7)

It is obviously, when only one tag residing at a leaf

node, the total number f(1) of iteration needed to identify is

1. From Eq.7, we obtain f(2)=5.
In order to figure out the general case, we can rewrite

the Eq.7 as

𝑓 2 = 1 +
1

22
(𝑓 2 + 𝑓 0 + 𝑓 0 + 𝑓 2

+ 𝑓 1 + 𝑓 1 + 𝑓 1 + 𝑓 1)

 = 1 +
1

22
(𝑓 0 + 𝑓 2 + 2 𝑓 1 + 𝑓 1

+ 𝑓 2 + 𝑓 0)

= 1 +
1

22 2
𝑖
 𝑓 𝑖 + 𝑓 2 − 𝑖 2

𝑖=0 (8)

Table 3. An example of splitting two tags residing at a leaf node

The identification

tree after one

splitting

The probability of the

occurrence

The number of iterations

needed at each node of

the identification tree

1

4

1

4

1

4

1

4

1

1 1

1

1 1

tag A

tag B

tag A

tag B

tag A tag B

tag B tag A

f(2)

1

1

f(2)

1

1

tag A

tag Bf(2)

8

The number of iterations needed to identify S tags at a

leaf node for general cases is given below as

𝑓 S =

 1 , 𝑆 = 0
 1 , 𝑆 = 1

1 +
1

2𝑆

𝑠

𝑖
 𝑓 𝑖 + 𝑓 S − 𝑖

𝑆

𝑖=0

 , 𝑆 ≥ 2

 9

As shown in Eq. 2, the probability of S tags residing at

one of the L leaf nodes is 𝑝 𝑆 = 𝑁
𝑆

1

𝐿

𝑆

 1 −
1

𝐿

𝑁−𝑆

 .

Combining Eqs. 2 and 9, we can easily calculate the total

number T(N) of iterations needed to identify N tags under

the assumption that the first tag is identified at iteration H

(hence, there are L=2
H
 leaf nodes). We define 𝑔𝑗 𝑘 as

the probability that there are exactly k tags at the first

node in 2j
nodes.

𝑔𝑗 𝑘 =
𝑁
𝑘

1

2𝑗

𝑘

 1 −
1

2𝑗

𝑁−𝑘

 (10)

The probability that the first tag is identified at the j th

iteration is

𝑕𝑗 (1) = 1 − 𝑔𝑖 1
𝑗−1

𝑖=1
 × 𝑔𝑗 1 (11)

We have T(N) as

 𝑇 𝑁 =
 𝑕𝑖 1

 𝑕𝑗 1
𝑁
𝑗=1

 𝑖 + 2𝑖 × 𝑝 𝑆 × 𝑓 𝑆 𝑁
𝑆=0 n

𝑖=1

(12)

Because we do not consider the adaptive tree-height

adjustment mechanism in Eq. 12, the actual average number

of iterations should be less than T(N) in Eq. 12. We will

show that by some simulation experiments.

6. Simulation

In this section, we describe simulation experiments that

measure the number of iterations needed to identify tags in

PS protocol. In the first set of simulations, we perform

experiments 1000 times for the cases of N=1025, 1075,

1125,…, 2025 tags. As we have shown, PS protocol

performs well if the condition holds that the first tag is

identified after H= lg𝑁 =11 iterations, where H is the

height of the associated identification tree and N is the

number of tags. However, by the simulation results, we

observe that not all experiment instances meet with the

condition. To see the effect of the identification tree height

H on the number of iterations needed to identify all N tags,

we groups experiment instances into 5 groups, denoted as

 lg𝑁 +α , whereα = –2, –1, 0, 1 and 2. The grouping is

according to the height of the identification tree when the

first tag is identified. For example, if the identification tree

height is lg𝑁 –2 when the first tag is identified for a case,

the case if added into the lg𝑁 –2 group.

For each group of experiment instances, we derive the

average number of iterations needed to identify all tags and

plot the results in Figure 4. We can check that the

simulation results coincide with the analysis results

perfectly in the cases of lg 𝑁 , lg𝑁 –1 and lg𝑁 –2

groups. For the other two cases of lg𝑁 +1 and lg𝑁 +2

groups, the simulate results are much better than the

analysis results. This is because the simulation of PS

protocol considers the adaptive mechanism to adjust the

height of the identification tree, while the analysis does not.

This also demonstrates that the adaptive tree height

adjustment mechanism indeed improve performance

dramatically.

 By Figure 4, we can also observe thatα =0 leads to

relatively small numbers of iterations for identify all N tags.

This is because the number L of leaf nodes approaches the

number of tags whenα =0 (i.e., when the identification tree

height H is lg𝑁) . On the contrary, the number of

iterations needed to identify all tags is relatively large when

α =1 or 2. This is because L is twice or four times of N

whenα =1 or 2 and there are far more iterations needed to

identify all N tags for such a number L of leaf nodes.

Figure 4. The simulation results and analysis results of the

number of iterations needed to identify N tags for different

 lg 𝑁 +α groups, whereα = –2, –1, 0, 1 and 2

In the second set of simulations, we perform

experiments for both PS protocol and ISO/IEC 18000-6B

protocol for the cases of N=512, 562, 612,…, 2012 tags.

The simulation results are plotted in Figure 5 for the sake of

comparison. We can observe that PS protocol outperforms

ISO/IEC 18000-6B protocol in terms of the number of

iterations needed to identify all tags. We can also observe

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1
0

2
5

1
0

7
5

1
1

2
5

1
1

7
5

1
2

2
5

1
2

7
5

1
3

2
5

1
3

7
5

1
4

2
5

1
4

7
5

1
5

2
5

1
5

7
5

1
6

2
5

1
6

7
5

1
7

2
5

1
7

7
5

1
8

3
5

1
8

7
5

1
9

2
5

1
9

7
5

2
0

2
5

Th
e

 n
u

m
b

e
r

o
f

it
e

ra
ti

o
n

s

The number of tags (N)

 lgN +2 group(analysis) lgN +2 group(simulation)
 lgN +1 group(analysis) lgN +1 group(simulation)
 lgN group(analysis) lgN group(simulation)
 lgN -1 group(analysis) lgN -1 group(simulation)
 lgN -2 group(analysis) lgN -2 group(simulation)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1025
1075
1125
1175
1225
1275
1325
1375
1425
1475
1525
1575
1625
1675
1725
1775
1835
1875
1925
1975
2025

T
he

 n
um

be
r

of
 it

er
at

io
ns

 n
ee

de
d

The number of tags (N)

 lgN +2 group (analysis) lgN +2group (simulation)

 lgN +1 group (analysis) lgN +1 group (simulation)

 lgN group (analysis) lgN group (simulation)

 lgN -1 group (analysis) lgN -1 group (simulation)

 lgN -2 group (analysis) lgN -2 group (simulation)

9

that the outperformance is more evident when the number N

of tags is larger. In Figure 5, we also plot the analysis result

of Eq. 12, which does not consider the adaptive adjustment

of the identification-tree height during the identification

procedure, in order to again show the advantage of the

adaptive identification-tree height adjustment mechanism. It

is very obvious that with the help of the mechanism, PS

protocol needs fewer iterations to identify all tags.

Figure 5. The comparison between PS protocol and ISO/IEC

18000-6B protocol in terms of the number of iterations needed

to identify all tags

7. Conclusion

In this paper, we have proposed a probabilistic

counter-based anti-collision protocol, called parallel

splitting (PS) protocol, using the parallel splitting

mechanism to speed up RFID tag identification. Before the

first tag is identified, all unidentified tags left shift their

counters (i.e. multiply the counter values by 2) and then

randomly add 0 or 1 to the counters when collisions occur.

In this way, the unidentified tags are split into subgroups in

parallel. After the first tag is identified, the tags are

identified one by one according to the normal identification

procedure of ISO/IEC 18000-6B protocol. We have also

embedded an adaptive identification-tree height adjustment

mechanism to make the number of leaf nodes approach the

actual number of tags to keep the number of iterations

needed to identify all tags as small as possible.

We have analyzed PS protocol and simulated it in terms

of the number of iterations needed to identify all N tags. We

can see that the analysis results coincide with the simulation

results perfectly when the identification tree is about lg𝑁
height when the first tag is identified. We have also

compared the simulation results with those of ISO/IEC

18000-6B protocol. The comparison shows that PS protocol

is evidently better than ISO/IEC 18000-6B protocol.

REFERENCES

[1] N. Abramson, "The ALOHA system - another alternative for

computer communications", Proc. of AFIPS Spring Joint Computer

Conf., vol. 37, pp. 281-285, 1970.

[2] J. I. Capetanakis, "Tree algorithms for packet broadcast channels",

IEEE Trans. Inf. Theory, Vol. 25, pp.505–515, 1979.

[3] Jae-Ryong Cha and Jae-Hyun Kim, "Novel anti-collision algorithms

for fast object identification in RFID system", Proc. of the 11th

International Conf. Parallel and Distributed Systems (ICPADS'05),

pp.63-67, 2005.

[4] H. Choi, J. R. Cha, and J. H. Kim, "Fast wireless anti-collision

algorithm in ubiquitous ID system", Proc. of IEEE VTC '04, Sep.

2004.

[5] K. Finkenzeller, RFID handbook: Fundamentals and Applications

in Contactless Smart Cards and Identification, John Wiley & Sons,

2003.

[6] J. F. Hayes, "An adaptive technique for local distribution", IEEE

Trans. Commun., vol. 26, pp.1178–1186, 1978.

[7] T. W. Hwang et al., "Improved anti-collision scheme for high speed

identification in RFID system", Proc. of ICICIC, pp449-452, Aug.

2006.

[8] ISO/IEC, Information technology automatic identification and data

capture techniques – radio frequency identification for item

management air interface - part 6: parameters for air interface

communications at 860-960 MHz, Final Draft International Standard

ISO 18000-6, Nov. 2003.

[9] Girish Khandelwal et al., "ASAP: A MAC protocol for sense and

time constrained RFID systems", Proc. of IEEE International Conf.

Communications, ICC’06, Jun. 2006.

[10] M. Kodialam and Thyaga Nandagopal, "Fast and Reliable

Estimation Schemes in RFID Systems", Proc. of ACM Mobicom,

Sept. 2006.

[11] S. Lee, S. D. Joo, and C. W. Lee, "An enhanced dynamic framed

slotted aloha algorithm for RFID tag identification", Proc. of

Mobiquitous 2005, pp.166-172, 2005.

[12] Leian Liu, Shengli Lai,"ALOHA-Based Anti-Collision Algorithms

Used in RFID System", Proc. of International Conf. on Wireless

Communications, Networking and Mobile Computing (WiCOM

2006), pp.1 – 4, Sep. 2006.

[13] J. L. Massey, "Collision-resolution algorithms and random-access

communications", Multi. User Communication Systems,

Springer-Verlag, pp. 73-99, 1981.

[14] J. Myung et al., "Tag-Splitting: Adaptive Collision Arbitration

Protocols for RFID Tag Identification", IEEE Trans. Parallel and

Distributed Systems, vol. 18, no. 6, Jun. 2007.

[15] L. G. Roberts, "Extensions of Packet Communication Technology to

a Hand Held Personal Terminal", Proc. of AFIPS Spring Joint

Computer Conf., vol. 40, pp. 295-298, 1972.

[16] B. S. Tsybakov, V. A. Mikhailov, "Free synchronous packet access

in broadcast channel with feedback", Probl. Pereda. Inf, vol. 14(4),

pp. 32–59 ,1978.

[17] H. Vogt, "Efficient Object Identification with Passive RFID Tags",

Proc. of Pervasive Computing, pp.98–113, 2002.

[18] Ming-Kuei Yeh, Jehn-Ruey Jiang and Shing-Tsaan Huang, "

Adaptive splitting and pre-signaling for RFID tag anti-collision",

Computer Communications, to appear.

[19] Feng Zhou et al., "Evaluating and optimizing power consumption of

anti-collision protocols for applications in RFID systems", Proc. of

the International Symposium on Low Power Electronics and Design,

Aug. 09-11, 2004.

0

1000

2000

3000

4000

5000

6000

7000

5
1

2

6
1

2

7
1

2

8
1

2

9
1

2

1
0

1
2

1
1

1
2

1
2

1
2

1
3

1
2

1
4

1
2

1
5

1
2

1
6

1
2

1
7

1
2

1
8

1
2

1
9

1
2

2
0

1
2

Th
e

 n
u

m
b

e
r

o
f

it
re

at
io

n
s

The number of tags

ISo/IEC 18000-6B(simulation)

PS(simulation)

PS(best case of simulation)

PS(analysis-wothout tree-height adjustment)

http://www.cs.utexas.edu/~lili/classes/F06/reading/rfid.pdf
http://www.cs.utexas.edu/~lili/classes/F06/reading/rfid.pdf

