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Abstract—In an RFID system, a reader identifies tags by 

interrogating them through a shared wireless communication 

channel. Collisions occur when multiple tags transmit their IDs 

to the reader simultaneously, degrading the performance of tag 

identification. How to reduce tag collisions to speed up the 

identification is thus important. There are several anti-collision 

protocols proposed for dealing with tag collisions. They can be 

categorized into two classes: ALOHA-based protocols and 

tree-based protocols that include deterministic tree-based and 

probabilistic counter-based subclasses of protocols. The 

ALOHA-based protocol has the tag starvation problem that a tag 

may never be successfully identified; the deterministic tree-based 

protocol has the problem that its performance is influenced by 

the tag ID length and/or distribution. On the contrary, the 

probabilistic counter-based protocol has no such problems. In 

this paper, we propose a probabilistic counter-based 

anti-collision protocol using the idea of parallel splitting to speed 

up RFID tag identification. The proposed protocol also utilizes 

an adaptive identification-tree height adjustment mechanism to 

fine tune the effect of parallel splitting. We analyze and simulate 

the proposed protocol and compare it with the counter-based 

protocol adopted by the well known ISO/IEC 18000-6B standard 

to demonstrate its advantages. 

 

1. Introduction 

The RFID (Radio Frequency IDentification) technique 

[5] attracts a lot of attention recently due to its automatic 

identification capability through RF communications. An 

RFID system consists of readers and tags. Tags store unique 

IDs and are attached to objects; a reader recognizes an 

object by issuing RF signals to interrogate the ID of the 

attached tag. Most RFID tags do not have on-tag power 

source; they derive energy from the RF field generated by 

the reader to drive the circuit. This is an advantage over 

other electronic products that are energized by batteries or 

other power sources. Furthermore, tags are usually of tiny 

sizes and low costs. The RFID system is thus suitable for 

many applications, such as logistic control, supply chain 

management, and asset tracking, etc. 

When a tag and a reader are close enough, they can 

communicate with each other. For such a situation, we say 

that the tag is in the interrogation zone of the reader. To 

figure out which tags are within its interrogation zone, a 

reader initiates an identification procedure (or interrogation 

procedure) to request tags to send back their IDs. When 

multiple tags respond to the reader request simultaneously, 

signal collisions occur and no tag can be identified by the 

reader successful. How to reduce tag collisions to speed up 

the identification procedure is thus important. There are 

several anti-collision protocols proposed for reducing tag 

collisions. They can be categorized into two classes [17]: 

ALOHA-based protocols and tree-based protocols that 

include deterministic tree-based and probabilistic 

counter-based subclasses of protocols. 

This paper presents a novel probabilistic counter-based 

anti-collision protocol, called Parallel Splitting (PS) 

protocol, to speed up RFID tag identification procedure by 

splitting tags in parallel. PS protocol utilizes two 

mechanisms: the parallel splitting mechanism and the 

adaptive identification-tree height adjustment mechanism. 

In the best case, PS protocol needs only  lg𝑁 +N–1 

iterations to identify all N tags, while the related ISO/IEC 

18000-6B protocol needs 2N–1 iterations. We analyze and 

simulate PS protocol and compare it with ISO/IEC 

18000-6B protocol to show its advantages. 

The rest of this paper is organized as follows. We 

describe the anti-collision protocols in Section II and show 

some observations about tag splitting of the probabilistic 

counter-based protocol in Section III and describe PS 

protocol in Section IV. We analyze PS protocol in Section 

V, and simulate it and compare it with ISO/IEC 18000-6B 

protocol in Section VI. And finally, conclusion is drawn in 

Section VII.  

 

2. Anti-collision protocols 

2.1. The ALOHA-based protocols 

In ALOHA-based protocols [3],[7],[9],[11] tags respond 

to the reader by transmitting IDs in a probabilistic manner. 

In ALOHA protocol [1], on receiving the reader‟s 

interrogation request, each tag in the interrogation zone 

independently chooses a random back-off time and 

responds its tag ID to the reader at that time. If no collision 

occurs during a tag‟s ID response, its ID can be identified 

properly and acknowledged by the reader. A tag with 

acknowledged ID will stop responding to the reader. On the 

other hand, an unacknowledged tag will repeatedly select a 

random back-off time and send its ID until it is identified 

and acknowledged by the reader. In slotted ALOHA 

protocol [12], the random back-off time must be a multiple 

of a pre-specified slot time. If collisions occur in a slot, the 

reader will notify the colliding tags to re-select a response 

time randomly. As shown in [14], the performance of 

slotted ALOHA protocol is twice that of ALOHA protocol 

since there is no partial collision of tag ID responses in 

slotted ALOHA protocol. 
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Frame slotted ALOHA protocol [16] is similar to slotted 

ALOHA protocol. However, to limit the response time, 

frame slotted ALOHA protocol [16] divides the whole 

interrogation procedure into a set of frames. Each frame has 

a fixed number of time slots, and a tag sends its ID to the 

reader in only one randomly chosen slot during a frame 

period. One drawback of frame slotted ALOHA protocol is 

that its performance will degrade when the number of slots 

in the frame does not properly match with the number of 

tags in the interrogation zone. Dynamic frame slotted 

ALOHA protocols [3], [9], [10], [11] try to eliminate the 

drawback by dynamically adjusting the frame size 

according to the estimated number of tags. Their 

performances are therefore better than that of frame slotted 

ALOHA protocol. 

2.2. The deterministic tree-based protocols 

In [2], [6], [16], the splitting tree concept was proposed to 

solve the collision problem. The deterministic tree-based 

protocols [4], [18] rely on tag IDs to repeatedly split 

colliding tags into subgroups until there is only one tag in a 

subgroup to be identified successfully. In query tree 

protocol (QT) [13],[18], a reader first broadcasts a bit string 

S of a specified length. The tag with an ID whose prefix 

matches with S will respond its whole ID to the reader. If 

only one tag responds at a time, the tag is identified 

successfully. But if multiple tags respond simultaneously, 

the responses collide. In such a case, the reader appends 

string S with bit 0 or 1 and broadcasts again the longer bit 

string (i.e., S0 or S1). In this manner, the colliding tags are 

divided into two subgroups. If there is only one tag in a 

subgroup, it can be identified successfully. The reader keeps 

track of the request strings needed to broadcast with the 

help of a stack and perform tag identification procedure 

until all tags are identified. Query tree protocol is a 

memory-less protocol because it does not require tags to be 

equipped with additional writable on-chip memory. We can 

observe that QT protocol‟s identification delay is affected 

by the distribution and the length of tag IDs. Specifically, if 

the tags have long and continuous IDs, the request bit string 

will grow very quickly for identifying all tags. The delay 

time of the identification procedure will then increase 

significantly. 

In bit-by-bit binary tree protocol [4], on receiving a 

reader‟s interrogation request, each tag responds with the 

first bit of its tag ID. The reader then responds with 0 (or 1), 

and only the tags with the first bit being 0 (or 1) will 

respond with its next ID bit. The above procedure repeats 

bit by bit until there is only one responding tag. The reader 

can then ask the tag to send remaining ID bits for the 

purpose of identification. The protocol requires tags to be 

equipped with writable on-tag memory so that tags can keep 

track of the identification procedure to respond with a 

certain bit properly. Unlike QT protocol, bit-by-bit binary 

tree protocol does not require a reader to send long ID 

prefixes; the reader and the tag send out only one bit at a 

time. Consequently, the delay time of the identification 

procedure is reduced. However, in the case of sparse tags 

with uniform ID distribution, the identification performance 

may be worse than that of query tree protocol. 

2.3. The probabilistic counter-based protocols 

Probabilistic counter-based protocols [8], [11], [13] rely 

on dynamically changing counters to split colliding tags. In 

the anti-collision protocol
1
 proposed in the well known 

ISO/IEC 18000-6B standard [8], each tag maintains a 

counter which is initially 0. Every tag with counter value 0 

can transmit its tag ID to respond to the interrogation 

request. When a collision occurs, the reader will notify all 

tags of this. And the tags with counter values larger than 0 

will increase their counters by 1, while the tags with counter 

value 0 will randomly add 0 or 1 to their counters. In this 

way, the colliding tags (i.e., the tags with counters value 0) 

are split into two subgroups. The splitting procedure will be 

repeated until there is only one or no tag with counter value 

0. In the former case, the tag with counter value 0 can be 

identified successfully. And in both cases, the reader sends 

a command to inform all unidentified tags to decrease their 

counters by 1. In this way, every tag will be the unique one 

to have counter value 0 and be identified successfully. 

ABS (Adaptive Binary Splitting) protocol [13] is 

proposed to improve ISO/IEC 18000 6B protocol by 

keeping counter information of the last tag interrogation 

round. A tag in ABS protocol keeps two counters. The first 

counter (Allocated Slot Counter, ASC) is similar to that of 

ISO/IEC 18000 6B protocol, and the second counter 

(Progressed Slot Counter, PSC) is to keep track of the 

number of tags identified successfully. The two counters are 

initially in the first round, but only PSC is reset to be 0 in 

following rounds. Tags with ASC equal to PSC can transmit 

their tag IDs to respond to a reader request. When there is 

only one response, the responding tag can be identified and 

each tag increases PSC by one. When there is no response, 

all tags with ASC larger than PSC decrease ASC by one. 

When collisions occur, the tags with ASC larger than PSC 

then increase ASC by 1, while the tags with ASC equal to 

PSC randomly generate a random bit, 0 or 1, and add it to 

ASC. Note that tags with ASC less than PSC do not 

increase ASC; they even do not attempt to transmit their 

IDs until the tag interrogation round is finished. After all 

tags are identified in a round, they have unique and 

successive ASC values. These values can be reserved for 

use in the next tag interrogation round to speed up the 

interrogation procedure. Even if there are tags joining or 

leaving after the last interrogation round, ABS protocol can 

work properly. As shown in [13], the performance of 

ISO/IEC 18000-6B protocol is improved significantly by 

the ABS protocol. 

Among the two types of anti-collision protocols, 

ALOHA-based protocols are simple and have fair 

performance. However, they have the tag starvation 

problem that a tag may never be identified when its 

responses always collide with others‟. Deterministic 

                                                      
1 For the sake of simplicity, we use “ISO/IEC 18000-6B protocol” 

to refer to the counter-based anti-collision protocol adopted by the 

well known ISO/IEC 18000-6B standard. 
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Tree-based protocols and probabilistic counter-based 

protocols do not have the tag starvation problem. Yet, the 

former have the problem that their performance is 

influenced by the tag ID length and/or distribution, while 

the latter have not. We thus focus on probabilistic 

counter-based protocols in this paper. 

 

3. Tag-splitting of the counter-based protocol 

As we have shown, in the representative probabilistic 

counter-based protocol, ISO/IEC 18000-6B protocol, the 

tags with counter value 0 are split into two subgroups, one 

for tags with counter value 0 and the other for tags with 

counter value 1. The splitting procedure continues until 

(case-1) only one tag is of counter 0 or (case-2) none tag is 

of counter value 0. In case-1, the tag having counter value 0 

will respond to the reader and be identified successfully. It 

should keep silent until the tag interrogation is finished. In 

both cases the reader sends a command to inform all tags to 

decrease their counters by 1. Afterwards, tags with counter 

value 0 are split again. In this way, all tags can be identified 

successfully. 

For the purpose of observing tag splitting of ISO/IEC 

18000-6B protocol, we show below an example of the 

protocol‟s identification procedure. We assume there are 

four tags with unique IDs 0010, 0110, 1001 and 1110. The 

iterations (steps) of the tag identification procedure and 

associated identification trees are depicted in Table 1. The 

iterations are also described as follows. 

Iteration 1: At the beginning, the reader requests tags to 

start a round of tag interrogation. On receiving the request, 

tags reset their counters to 0. Tag1 (with ID 0010), tag2 

(with ID 0110), tag3 (with ID 1001) and tag4 (with ID 1110) 

respond with their IDs to the reader simultaneously and 

collisions happen. 

Iteration 2: The reader sends a collision-notification 

command to make all tags randomly add 0 or 1 to their 

counters. This is the first tag splitting. As shown in Table 1, 

tags 1 and 4 are with counter value 0, while tags 2 and 3 are 

of counter value 1 after the splitting. Tags 1 and 4 respond 

with their IDs simultaneously and collisions occur again. 

Iteration 3: The reader sends a collision-notification 

command to make tags 1 and 4 randomly add 0 or 1 to their 

counters, while tags 2 and 3 increase 1 to their counters. 

This is the second tag splitting. Tag 1 is the only tag of 

counter value 0 after the splitting; it responds with its ID to 

the reader and is identified successfully. 

Iteration 4: The reader acknowledges the identified ID 

with a success-notification command. The identified tag 1 

enters the silent state, and all unidentified tags 2, 3 and 4 

decrease their counters by 1. Tag 4 is the only tag of counter 

value 0; it responds with its ID to the reader and is 

identified successfully. 

Iteration 5: The reader acknowledges the identified ID 

with a success-notification command. The identified tag 4 

enters the silent state, and all unidentified tags 2 and 3 

decrease their counters by 1. Tags 2 and 3 are of counter 

value 0; they respond their IDs to the reader and collision 

occurs. 

Iteration 6: The reader sends a collision-notification 

command to make tags 2 and 3 randomly add 0 or 1 to their 

counters. This is the third tag splitting. Tag 3 is the only tag 

of counter value 0 after the splitting; it responds with its ID 

to the reader and is identified successfully. 

Iteration 7: The reader acknowledges the identified ID 

with a success-notification command. The identified tag 3 

enters the silent state, and the unidentified tag 2 decreases 

its counter by 1. Tag 2 is the only tag of counter value 0; it 

responds with its ID to the reader and is identified 

successfully. 

Iteration 8: The reader acknowledges the identified ID 

with a success-notification command. The identified tag 2 

enters the silent state. At that time, all tags are identified 

and thus will be silent until the reader sends a request to 

start the next round. 

 

Table 1. The iterations of the identification procedure of 

ISO/IEC 18000-6B protocol and the associated identification 

tree (The tag ID marked by „*‟ means that the associated tag has 

been identified.) 
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By investigating the tag identification procedure and its 

associated identification trees of ISO/IEC 18000-6B 

protocol, we have the following observations: 

1. A successfully identified tag corresponds to a leaf node 

in the identification tree. 

2. Each node in the identification tree corresponds to an 

iteration of the identification procedure. 

3. The tag splitting occurs among only the tags with 

counter value 0. Other tags do not perform splitting but 

just increase their counters by 1 even though they have 

the same counter value and their responses to the reader 

will collide in a coming iteration. 

By the first two observations, we can infer that the 

ISO/IEC 18000-6B protocol needs 2N–1 iterations for 

identifying N tags in the best case. This is because a tree 

with N leaf nodes has a total number of 2N–1 of nodes 

(Note that in a worse case, a leaf node may not correspond 

to any tag ID, which leads to a total number of nodes more 

than 2N-1. This occurs if no tag is with the counter value 0 

when the reader requests tags to send their IDs.) The one 

shown in Table 1 is actually a best case example of the tag 

identification procedure of ISO/IEC 18000-6B protocol. It 

takes 7 iterations, excluding the first iteration to start a new 

round, to identify 4 tags. 

The last observation further inspires us to develop a 

counter-based protocol that splits tags in parallel to speed 

up the tag identification procedure. We propose a protocol, 

called parallel splitting (PS) protocol, to achieve this goal. 

In the next section, we will elaborate all details of PS 

protocol. 

4. The Proposed Protocol 

The basic concept of PS protocol is for unidentified tags 

to left shift their counters (i.e. multiply the counter values 

by 2) and then randomly add 0 or 1 to the counters when 

collisions occur before the first tag is identified. And after 

the first tag is identified, PS protocol will follow the normal 

0110
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0010 0 11101
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identification procedure of ISO/IEC 18000-6B protocol. In 

this way, tags are split into groups in parallel and the delay 

to identify all tags can be shortened. 

In ISO/IEC 18000-6B protocol, only tags of counter 

value 0 are split, while in PS protocol, all unidentified tags 

are split simultaneously before the first tag is identified. Fig. 

1 shows the comparison of the best case identification trees 

of ISO/IEC 18000-6B and PS protocols. By Fig. 1, we can 

observe that PS protocol can generate more leaf nodes than 

ISO/IEC 18000-6B protocol within the same number of 

iterations. Since leaf nodes correspond to a tag ID to be 

identified, we can infer that PS protocol needs fewer 

iterations for all tags to be identified successfully. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The identification trees of ISO/IEC 18000-6B protocol 

(left) and PS protocol (right) before the first tag is identified (Note 

that tag splitting will occur at shaded nodes.) 

By Fig.1, we can observe that after H iterations, there 

will be 2
H
 leaf nodes in the identification tree in PS protocol. 

Therefore, the minimum iterations to generate N leaf nodes 

in the identification tree is  lg𝑁 , which corresponds to the 

height of a full tree of N leaf nodes. If each leaf node 

corresponds to only one tag (i.e., all tags have different 

counters), then no further tag splitting is needed for tags to 

be identified successfully. However, the parallel splitting 

stops when the first tag is identified. At that time, if less 

than  lg𝑁  iterations have been executed, then the number 

of leaf nodes will be less than N and there will be several 

tags residing at the same node, which will call for more tag 

splitting. On the other hand, if more than  lg𝑁  iterations 

have been executed, then there will be some empty leaf 

nodes (i.e., no tag is with the counter values associated with 

the nodes). This will lengthen the identification procedure, 

since an empty leaf node corresponds to an iteration in 

which no tag responds to the reader. Therefore, a 

mechanism is needed to adjust the height of the 

identification tree once the first tag is identified.  

Below we introduce the adaptive identification-tree 

height adjustment mechanism to adjust the height of the 

identification tree for the purpose of making the number of 

leaf nodes approximate the number of tags. Since the 

number of tags is unknown beforehand, we set the tree 

height according to the ratio of N0, N1 and Nm, which are the 

numbers of leaf nodes with zero tag, one tag and multiple 

(i.e., two or more) tags, respectively, when the first tag is 

successfully identified. In the following context, we will 

show how to derive an approximate ratio of N0, N1 and Nm 

for adjusting the tree height. 

Suppose that the number of tags is N. When the first tag 

is identified, we have the minimum number of iterations for 

identifying all tags if the identification tree is a full tree. 

Such a tree has a height of  lg𝑁 , and the number L of leaf 

nodes of the tree is 2 lg 𝑁 . We have 

𝐿 = 2 lg 𝑁                                          (1) 

 

Let the probability that there are S tags residing at a 

leaf node be p(S). Assuming a tag has the same 

probability to reside at every leaf node, we have 

𝑝 𝑆 =  𝑁
𝑆
  

1

𝐿
 
𝑆

 1 −
1

𝐿
 
𝑁−S

                                        (2) 

 

We let 𝑝 𝑚  be the probability of 2 or more tags 

residing at a leaf node. We have 

𝑝 𝑚 = 𝑝 2 + 𝑝 3 + 𝑝 4 + ⋯ 

 

From Eq. 2, we have 
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It is reasonable to assume L >> 1 and N >> 1. It is thus 

reasonable to take L1 as L, and to take N – 2, N – 3 and 

N – 4 as N. Then we have 
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𝑝 2 : 𝑝 3 : 𝑝 4 : 𝑝 5 : …:p(i):…  

= 1:
𝑁

3𝐿
∶

𝑁2

12𝐿2 ∶  
𝑁3

60𝐿3 : … :
2 𝑁(𝑖−2)

𝑖! 𝐿(𝑖−2) : …                 (3) 

 

By Eq. 3, we can observe that p(4), p(5),… are 

relatively small when compare with p(2). We thus omit 

the probability that there are more than 3 tags residing at 

a leaf node. We have 

 

𝑝 𝑚 ≈ 𝑝 2 + 𝑝 3  

=
𝑁 𝑁 − 1 
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Let the expected numbers of leaf nodes containing none, 

one and multiple tags be e(0), e(1) and e(m), respectively.  

 

𝑒 0 ：𝑒 1 ：𝑒 𝑚    
= 𝐿 × 𝑝 0 ：𝐿 × 𝑝 1 ：𝐿 × 𝑝 𝑚  

= 𝐿  1 −
1

𝐿
 
𝑁

：𝑁  1 −
1

𝐿
 
𝑁−1

：𝐿  1 +
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1
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= 2 𝐿 − 1 2：2𝑁 𝐿 − 1 ：𝑁 𝑁 − 1  1 +
 𝑁−2 

3 𝐿−1 
   (5) 

 

It is reasonable to assume L>>1 and N>>1, and take L–1 

as L, and N–1, N–2 as N. We then have 

 

𝑒 0 ：𝑒 1 ：𝑒 𝑚   =  2𝐿2: 2𝑁𝐿 ∶  𝑁2  1 +
𝑁

3𝐿
    (6) 

By Eq.6, we can calculate the expected ratios of e(0), 

e(1) and e(m)  for different values of L and N. We show 

such ratios in Table 2. 

Table 2. The expected ratios of e(0), e(1) and e(m) for different 

values of L and N (we assume L>>1) 

L vs. N e(0) e(1) e(m) 

L=2N 2 1 7/24 

L=N 1 1 2/3 

L=N/2 1/2 1 5/3 

 

With the expected ratios of e(0) , e(1) and e(m) in Table 2, 

we can adjust L to approach N by keeping track of N0, N1 

and Nm. For example, if the reader finds that N0 : N1 : Nm ≅ 

2 : 1 : 7/24 during the identification process, it presumes 

that L≥2N and forces all unidentified tags right-shift their 

counters one bit to make L approach N. On the other hand, 

if the reader finds that N0 : N1 : Nm ≅ 1/2 : 1 : 5/3 during 

the identification process, it presumes that L≤N/2 and 

forces all unidentified tags left-shift their counters one bit 

and add one or zero randomly to make L approach N. In 

summary, we have the following two rules to make L 

approach N. 

 

Rule 1:  If N0 > 2 N1 and N1 > 3.4 Nm, then all unidentified 

tags right-shift their counters one bit to divide L by 

2. 

Rule 2:  If 2N0 < N1 and 1.7N1 < Nm, then all unidentified 

tags left-shift their counters one bit to multiply L 

by 2, and subsequently add one or zero randomly 

to the counters. 

 

Below, we give an overview of PS protocol, which has 

two phases. In phase I, all tags are split in parallel until the 

first tag is identified successfully. In phase II, tags are 

identified one by one according to the normal identification 

procedure of ISO/IEC 18000-6B protocol. It is noted that 

the above-mentioned Rule1 and Rule2 may be applied in 

phase II for adjusting the number of leaf nodes to approach 

the actual number N of tags even though N is unknown. 

Besides the COLLISION and SUCCESS commands 

used in ISO/IEC 18000-6B protocol, PS protocol utilizes 

two more commands, PS_COLLISION and PS_SUCCESS, 

to facilitate parallel tag splitting. We assume each tag has a 

K-bit counter that can store up to 2
K
 different counter values. 

If the number of tag splitting is over K, the counter value 

will overflow and errors will occur. We use parameter C to 

record and control the number of tag splitting. When C < K, 

PS_COLLISION command is sent to make all tags split in 

parallel; otherwise, COLLISION command is sent to make 

tags split in serial. In this way, the counter value hardly 

overflows. 

The operations of the reader and the tag are described 

in Fig. 2 and Fig. 3, respectively. 

 

 

The operation of the reader 

(Phase I) 

/* K is the length of tag counter 

/* C records the number of PS_COLLISION commands sent in 

the current round. 

1. The reader sends a REQUEST command to make all 

tags start a new round and reset counter values to 0. 

The reader waits for responses from tags. 

2. If two or more responses are received, then the reader 

checks if C < K. If so, PS_COLLISION command is 

sent to make all tags split in parallel. If not so, the 

reader sends COLLISION command to make tags 

split in serial and the reader goes to Step 5 in Phase II. 

3. If no or only one response is received, then the reader 

sends SUCCESS command to make all unidentified 

tags decrease their counters by 1 and the reader goes 

to Step 5. 

4. The reader waits for responses from tags. On 

receiving responses, the reader goes to Step 2. 
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 (Phase II) 

5. The reader waits for responses from tags. 

6. If collisions occur, the reader performs either a or b 

a. If Rule2 is applicable, then the reader checks if C 

< K. If so, PS_COLLISION command is sent. 

Otherwise, COLLISION command is sent. 

b. If Rule2 is not applicable, then COLLISION 

command is sent.  

7. If only one or no tag responds, the reader performs 

either a or b 

a. If Rule1 is applicable, then PS_SUCCESS 

command is sent and C is decreased by 1.  

b. If Rule1 is not applicable, then SUCCESS 

command is sent. 

8. If there are still tags to be identified, the reader goes 

to Step 5. 

Figure 2. The operation of the reader in PS protocol 

The operation of tags 

1. All tags reset counter value to be 0 on receiving the 

REQUEST command sent by the reader.  

2. The tags with counter value 0 will send their IDs to 

the reader.  

3. On receiving a command from the reader, tags take 

actions according to the following cases:  

case command = COLLISION: 

The tag with counter value 0 randomly adds 0 or 1 

to counters, while other unidentified tags increase 

their counters by 1. 

case command = PS_COLLISION: 

All unidentified tags left-shift their counters one 

bit and randomly add 0 or 1 to the counters 

case command = SUCCESS: 

The tag with counter value 0 will keep silent and 

become an identified tag until next round of the 

identification procedure, while other tags decrease 

their counters by 1.  

case command = PS_SUCCESS: 

All unidentified tags right-shift their counters by 

one bit.  

Figure 3. The operation of tags in PS protocol 

5. The analysis of PS protocol 

5.1. The minimum number of iterations for identifying all tags 

We have the minimum number of iterations to identify 

all N tags if the identification tree is a full tree when the first 

tag is identified. Such a tree has a height of  lg𝑁 , and the 

number of leaf nodes is N. Since  lg𝑁  iterations are 

needed in phase I to split tags into N groups and to identify 

the first tag, and further N–1 iterations are needed in phase 

II to identify other N–1 tags, we have that  lg𝑁 +N–1 is 

the minimum number of iterations to identify all N tags. 

5.2. The average number of iterations for identifying all tags 

Suppose the identification procedure has gone through 

H iterations when the first tag is identified. We have the 

number L of leaf nodes in the identification tree is 2
H
. Each 

leaf node can contain none, one or multiple tags. In the case 

of none and one tag residing at a leaf node, no more split is 

needed for tag identification, while in the case of multiple 

tags residing at a leaf node, more splits are needed. 

We define f(S) as the identification iterations needed to 

identify S tags at a leaf node. For example, f(2) can be 

utilized to estimate the number of iterations needed to 

identify 2 tags at a leaf node. Table 3 shows the four 

possible cases after a split of 2 tags. By Table 3, the total 

number f(2) of iterations needed to identify 2 tags residing 

at a leaf node can be easily calculated as 

𝑓 2 =  
1

22
  1 + 𝑓 2 + 𝑓 0    

+  
1

22
  1 + 𝑓(0) + 𝑓 2    

+ 
1

22
  1 + 𝑓 1 + 𝑓(1 )  

+ 
1

22
 1 + 𝑓(1) + 𝑓(1)                                    (7) 

 
It is obviously, when only one tag residing at a leaf 

node, the total number f(1) of iteration needed to identify is 

1. From Eq.7, we obtain f(2)=5. 
In order to figure out the general case, we can rewrite 

the Eq.7 as 

𝑓 2 = 1 +  
1

22
(  𝑓 2 + 𝑓 0  +  𝑓 0 + 𝑓 2  

+  𝑓 1 + 𝑓 1  +  𝑓 1 + 𝑓 1 )   

          = 1 +  
1

22
(  𝑓 0 + 𝑓 2  + 2 𝑓 1 + 𝑓 1  

+  𝑓 2 + 𝑓 0  )  

 

= 1 +
1

22    2
𝑖
  𝑓 𝑖 + 𝑓 2 − 𝑖  2

𝑖=0            (8) 

Table 3. An example of splitting two tags residing at a leaf node  

 

 

 

The identification 

tree after one 

splitting 

The probability of the 

occurrence 

The number of iterations 

needed at each node of 

the identification tree 
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1
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1 1
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1 1
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tag B tag A
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1

1
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1

1

tag A

tag Bf(2)
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The number of iterations needed to identify S tags at a 

leaf node for general cases is given below as 

𝑓 S =

 
 
 

 
 

    1                                                                   , 𝑆 = 0
    1                                                                   , 𝑆 = 1

1 +
1

2𝑆
   

𝑠

𝑖
  𝑓 𝑖 + 𝑓 S − 𝑖  

𝑆

𝑖=0

    , 𝑆 ≥ 2

               9  

      

As shown in Eq. 2, the probability of S tags residing at 

one of the L leaf nodes is 𝑝 𝑆 =  𝑁
𝑆
  

1

𝐿
 
𝑆

 1 −
1

𝐿
 
𝑁−𝑆

 . 

Combining Eqs. 2 and 9, we can easily calculate the total 

number T(N) of iterations needed to identify N tags under 

the assumption that the first tag is identified at iteration H 

(hence, there are L=2
H
 leaf nodes). We define 𝑔𝑗  𝑘  as 

the probability that there are exactly k tags at the first 

node in 2j 
nodes. 

𝑔𝑗  𝑘 =  
𝑁
𝑘
  

1

2𝑗
 
𝑘

 1 −
1

2𝑗
 
𝑁−𝑘

                      (10) 

The probability that the first tag is identified at the j th 

iteration is 

𝑕𝑗 (1) =    1 − 𝑔𝑖 1  
𝑗−1

𝑖=1
 × 𝑔𝑗  1                     (11) 

 

We have T(N) as                 

 𝑇  𝑁 =    
 𝑕𝑖 1 

 𝑕𝑗  1 
𝑁
𝑗=1

  𝑖 +  2𝑖 × 𝑝 𝑆 × 𝑓 𝑆 𝑁
𝑆=0   n

𝑖=1   

(12) 

Because we do not consider the adaptive tree-height 

adjustment mechanism in Eq. 12, the actual average number 

of iterations should be less than T(N) in Eq. 12. We will 

show that by some simulation experiments. 

6. Simulation 

In this section, we describe simulation experiments that 

measure the number of iterations needed to identify tags in 

PS protocol. In the first set of simulations, we perform 

experiments 1000 times for the cases of N=1025, 1075, 

1125,…, 2025 tags. As we have shown, PS protocol 

performs well if the condition holds that the first tag is 

identified after H= lg𝑁 =11 iterations, where H is the 

height of the associated identification tree and N is the 

number of tags. However, by the simulation results, we 

observe that not all experiment instances meet with the 

condition. To see the effect of the identification tree height 

H on the number of iterations needed to identify all N tags, 

we groups experiment instances into 5 groups, denoted as 

 lg𝑁 +α , whereα = –2, –1, 0, 1 and 2. The grouping is 

according to the height of the identification tree when the 

first tag is identified. For example, if the identification tree 

height is  lg𝑁 –2 when the first tag is identified for a case, 

the case if added into the  lg𝑁 –2 group.  

For each group of experiment instances, we derive the 

average number of iterations needed to identify all tags and 

plot the results in Figure 4. We can check that the 

simulation results coincide with the analysis results 

perfectly in the cases of  lg 𝑁 ,  lg𝑁 –1 and  lg𝑁 –2 

groups. For the other two cases of  lg𝑁 +1 and  lg𝑁 +2 

groups, the simulate results are much better than the 

analysis results. This is because the simulation of PS 

protocol considers the adaptive mechanism to adjust the 

height of the identification tree, while the analysis does not. 

This also demonstrates that the adaptive tree height 

adjustment mechanism indeed improve performance 

dramatically. 

 By Figure 4, we can also observe thatα =0 leads to 

relatively small numbers of iterations for identify all N tags. 

This is because the number L of leaf nodes approaches the 

number of tags whenα =0 (i.e., when the identification tree 

height H is  lg𝑁 ) . On the contrary, the number of 

iterations needed to identify all tags is relatively large when

α =1 or 2. This is because L is twice or four times of N 

whenα =1 or 2 and there are far more iterations needed to 

identify all N tags for such a number L of leaf nodes. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The simulation results and analysis results of the 

number of iterations needed to identify N tags for different 

 lg 𝑁 +α groups, whereα = –2, –1, 0, 1 and 2  

 

In the second set of simulations, we perform 

experiments for both PS protocol and ISO/IEC 18000-6B 

protocol for the cases of N=512, 562, 612,…, 2012 tags. 

The simulation results are plotted in Figure 5 for the sake of 

comparison. We can observe that PS protocol outperforms 

ISO/IEC 18000-6B protocol in terms of the number of 

iterations needed to identify all tags. We can also observe 
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that the outperformance is more evident when the number N 

of tags is larger. In Figure 5, we also plot the analysis result 

of Eq. 12, which does not consider the adaptive adjustment 

of the identification-tree height during the identification 

procedure, in order to again show the advantage of the 

adaptive identification-tree height adjustment mechanism. It 

is very obvious that with the help of the mechanism, PS 

protocol needs fewer iterations to identify all tags. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The comparison between PS protocol and ISO/IEC 

18000-6B protocol in terms of the number of iterations needed 

to identify all tags 

7. Conclusion 

In this paper, we have proposed a probabilistic 

counter-based anti-collision protocol, called parallel 

splitting (PS) protocol, using the parallel splitting 

mechanism to speed up RFID tag identification. Before the 

first tag is identified, all unidentified tags left shift their 

counters (i.e. multiply the counter values by 2) and then 

randomly add 0 or 1 to the counters when collisions occur. 

In this way, the unidentified tags are split into subgroups in 

parallel. After the first tag is identified, the tags are 

identified one by one according to the normal identification 

procedure of ISO/IEC 18000-6B protocol. We have also 

embedded an adaptive identification-tree height adjustment 

mechanism to make the number of leaf nodes approach the 

actual number of tags to keep the number of iterations 

needed to identify all tags as small as possible. 

We have analyzed PS protocol and simulated it in terms 

of the number of iterations needed to identify all N tags. We 

can see that the analysis results coincide with the simulation 

results perfectly when the identification tree is about  lg𝑁  
height when the first tag is identified. We have also 

compared the simulation results with those of ISO/IEC 

18000-6B protocol. The comparison shows that PS protocol 

is evidently better than ISO/IEC 18000-6B protocol. 
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