

 1

ADCA: An Asynchronous Duty Cycle Adjustment MAC Protocol for

Wireless Sensor Networks
Yu-Chia Chang

1
, Jehn-Ruey Jiang

1
, Jang-Ping Sheu

2
 and Hsin-Yi Shih

1

1
Department of Computer Science and Information Engineering, National Central University, Jhongli, 32054, Taiwan

2
Department of Computer Science, National Tsing Hua University, Hsinchu 30013, Taiwan

E-mail: jimchang@axp1.csie.ncu.edu.tw, jrjiang@csie.ncu.edu.tw and sheujp@cs.nthu.edu.tw

Abstract-- In this paper, we propose an asynchronous duty cycle

adjustment MAC protocol, called ADCA, for the wireless sensor

network (WSN). ADCA is a sleep/wakeup schedule-based protocol

to reduce power consumption without lowering network throughput

or lengthening transmission delay. It is asynchronous; it allows each

node in the WSN to set its own sleep/wakeup schedule independently.

The media access is thus staggered and collisions are reduced.

According to the statuses of previous transmissions, ADCA adjusts

the duty cycle length for shortening transmission delay and

increasing throughput. Simulation results show that ADCA

outperforms related ones in terms of energy saving, network

throughput and transmission delay.

Keywords--Wireless sensor networks, sleep/wakeup schedule, duty

cycle, energy efficiency, transmission latency

I. INTRODUCTION

The rapid progress of wireless communications and micro-

electro-mechanical system (MEMS) technology has made

wireless sensor networks (WSNs) a hot research topic recently.

A WSN consists of many spatially distributed, resource-

constrained sensor nodes equipped with microcontrollers,

short-range wireless radios, and analog/digital sensors. Sensor

nodes sense environmental conditions, such as temperature,

light, sound, or vibration, etc., and transmit the sensed data to

the sink node through multi-hop communication links. There

are many applications of WSNs, such as target tracking,

environment monitoring, and home security, etc [1] [8] [12].

 Energy conservation is one of the most important issues in

WSNs, since sensor nodes are usually powered by batteries.

The radio transceiver is the most power consuming component

in a sensor node. A typical radio transceiver consists of four

possible modes with different power consumption:

transmitting, receiving, listening, and sleeping. The first three

modes are also called active or wakeup modes, in which more

energy is consumed. For example, the relative power

consumptions of the four modes of MICAz mote [21] are 17.4,

19.7, 19.7 and 0.426, respectively. Observing idle listening,

the status that a sensor node turns on the radio to monitor

wireless medium but do not receive any packets, wastes a lot

of energy, some researchers propose medium access control

(MAC) protocols [2,5-7,9,13-15,17,18] to turn the radio into

sleeping mode as long as possible to save energy for

prolonging the network lifetime. However, the radio should be

scheduled to be in wakeup mode periodically to monitor, send

or receive data packets. Those protocols that make the radio

alternate between sleeping and wakeup modes are called the

sleep/wakeup schedule protocols. As shown in [10], when the

duty cycle (i.e., active period) of the radio is reduced to 1

percent, the power consumption of the sensor node can be

reduced by a factor of 50.

Some sleep/wakeup schedule protocols suggest that all

sensor nodes synchronize their timers and maintain a global

sleep/wakeup schedule. However, timer synchronization

causes a large overhead. Furthermore, the global schedule may

lead to low duty cycle utilization. For example, when two

neighboring nodes are exchanging data, all two-hop neighbors

of the two nodes are prohibited from doing so. Those

prohibited nodes stay at receiving mode until the data

exchanging finished, which causes an energy-wasting status

called overhearing. The RTS/CTS scheme [17] can be used to

avoid overhearing as well as to solve the hidden terminal

problem. But, the scheme’s overhead is relatively large for

WSNs since packets in WSNs are usually very small [3] [21].

In this paper, we propose an Asynchronous Duty Cycle

Adjustment (ADCA) MAC protocol to provide low energy

consumption, low transmission latency and high throughput in

WSNs. ADCA is an asynchronous sleep/wakeup schedule

protocol which needs not synchronize nodes’ timers, so the

timer synchronization overhead is avoided. It also allows each

node to set its own sleep/wakeup schedule independently.

Since nodes’ schedules are staggered, the channel utilization is

increased and the occurrences of overhearing are reduced.

Furthermore, ADCA tries to increase the throughput and to

decrease the transmission delay by adjusting two time periods:

the extended period and the next contention period. We will

perform simulation experiments for ADCA and compare the

simulation results with those of related protocols to show the

advantages of ADCA.

The rest of the paper is organized as follows. Section 2

introduces some related sleep/wakeup schedule MAC

protocols. The proposed ADCA protocol is then described in

Section 3. The simulation results and comparisons of protocol

performance are shown in Section 4. And at last, Section 5

concludes this paper.

II. RELATED WORK

Over the past few years, several sleep/wakeup schedule

protocols have been developed for WSNs. The goals of those

protocols are to decrease the energy consumption, to improve

the network throughput and/or to shorten the transmission

delay. The protocols can be classified into two categories:

synchronous [7, 13-15, 17] and asynchronous [2, 5, 6, 9, 18].

Below, we review some synchronous and asynchronous

sleep/wakeup schedule protocols for WSNs.

A. Synchronous sleep/wakeup schedule protocols

S-MAC [17] and T-MAC [14] are two well-known

sleep/wakeup schedule MAC protocols in WSNs. S-MAC

tries to eliminate the four sources of energy waste: collision,

overhearing, control packet overhead, and idle listening. It

divides time axis into fixed length cycle period, which is

further divided into SYN, contention and sleep periods (see Fig.

1). Nodes try to synchronize their schedules in the SYN period,

 2

and contend for sending packets in the contention period. It

thus periodically puts sensor nodes into sleeping mode at a

low and fixed duty cycle ratio. T-MAC improves S-MAC by

using adaptive duty cycles (see Fig. 1).

Fig. 1: the sleep/wakeup schedules of S-MAC and T-MAC protocols.
Sensor nodes turn the radio into sleeping mode when there

is no activity during a time period TA = 1.5 (C + R + T), where

C is the length of the contention period, R is the time period of

RTS packet transmission, and T is a short time between the

end of the RTS and the begin of the CTS packet transmission.

Because of the duty cycle adjustment, T-MAC provides a

better throughput than S-MAC under varied traffic. The

synchronous scheduling of S-MAC and T-MAC makes sensor

nodes suffer high contention; the throughput and channel

utilization are thus low.

U-MAC [13] is similar to S-MAC. It provides three

modifications to improve S-MAC: (1) to assign different duty

cycles to nodes of different traffic loads, (2) to calculate

suitable duty cycles based on utilization and (3) to make nodes

go to sleeping mode selectively after transmission. The

calculation of utilization takes transmitting time, receiving

time and idle listening time into consideration. If the current

utilization is larger (resp., less) than the high (resp., low)

traffic load threshold, the duty cycle will be increased (resp.,

decreased). U-MAC can save more energy than S-MAC.

However, the problems of low channel utilization and long

transmission delay are still not solved efficiently.

P-MAC [15] is a time-slotted scheduling protocol. Each

sensor node determines its sleep/wakeup schedule based on

the traffic patterns of itself and its neighbors. In P-MAC, time

is divided into Super Time Frames (STFs), each of which has

two sub-frames: PETF (Pattern Exchange Time Frame) and

PRTF (Pattern Repeat Time Frame). In PETF, nodes collect

and exchange with neighbors their traffic patterns which

repeat in PRTE. The purpose of the pattern exchange is to

ensure that the schedules of the sensor nodes can adapt to the

current traffic load. The drawback of P-MAC protocol is that

the time-slotted structure needs very accurate time

synchronization which leads to a high maintenance overhead.

P-MAC also has the problems of long transmission delay and

low network throughput.

H-MAC [7] combines the schemes used in the contention-

based and TDMA-based MAC protocols [16, 19] for WSNs. It

uses a slotted frame structure and a wakeup technique to

achieve high energy efficiency. The slots for data transmission

in H-MAC are used on an on-demand basis. Each node

randomly selects its own wakeup slot and notifies the slot

number to all its neighbors. A node needs to collect one-hop

neighbor information constantly. A sender can wake up the

receiver by a wakeup message sent at the receiver’s wakeup

slot. Then, the receiver will wake up at the specified data slot

to receive the data packet. H-MAC needs very accurate time

synchronization which causes a high overhead.

B. Asynchronous sleep/wakeup schedule protocols

D-MAC [6] is a non-delay forwarding scheme for

reporting data to the sink node along a data gathering tree. A

node skews its wakeup schedule with dt time ahead of that of

the sink (d is the depth of the tree and t is the time of data

packet transmission). D-MAC staggers the sleep/wakeup

schedule of nodes in the data gathering tree to decrease the

transmission delay. D-MAC is not flexible, though.

Communication between arbitrary nodes is not allowed.

Furthermore, if the network topology is changing, all the

nodes need to re-construct their sleep/wakeup schedules.

B-MAC [9] uses preamble signaling for a sender to wake

up the receiver. A node periodically wakes up for a short

period at every cycle period to check preamble signals. If no

signal is present, the node turns the radio off after a time-out.

It keeps the radio on if a preamble is sensed. It is obvious that

the preamble signal should be long enough so that the

periodically awaking receiver can detect it. The data packet is

then sent after the preamble. Consequently, both the sender

and the receiver waste much energy during the communication,

and the transmission delay may be long.

In Wise-MAC [2], each node maintains the sleep/wakeup

schedules of its neighbors. A node periodically wakes up for a

short interval. If there is no wake up preamble (WUP) send

from other nodes, the node goes into sleeping mode to

conserve energy. When a sensor node has packets to send, the

node will hold the data packets until the receiver is active.

According to the receiver’s schedule, the node sends a short

duration of the WUP to wake up the receiver. Then it

transmits data to the receiver and waits an ACK packet from

the receiver. Wise-MAC is a simple protocol for saving

energy. However, it also has the long transmission delay

problem.

SyncWUF [18] combines both the simple signaling and

the wakeup frame (WUF) technique together. The idea of

SyncWUF is that the sender records all nodes’ schedules and

adjusts the wakeup signal (WUS) accordingly. To transmit a

data packet, a sender checks the receiver’s schedule first. If

the schedule is up-to-date, a short simple wakeup preamble

(WUP) is used as in the Wise-MAC protocol. If the schedule

is out-of-date, multiple short wakeup frames (SWUFs) are

used to reduce the unnecessary waiting time. SyncWUF is an

energy efficient protocol. However, if a sender misses the

receiver’s active period, it must await until next cycle. The

transmission delay of SyncWUF is thus long.

III. ADCA PROTOCOL

A. Overview

ADCA (asynchronous duty cycle adjustment) protocol is

an asynchronous sleep/wakeup schedule protocol which needs

not synchronize nodes’ timers and allows each node to set its

own sleep/wakeup schedule independently. When a node

starts up, it first decides its own sleep/wakeup schedule,

broadcasts the schedule and collects all neighbors’ schedules

within an initial period of arbitrary length (see Fig. 2). It then

starts executing its sleep/wakeup schedule individually. The

sleep/wakeup schedule of a node is composed of repeated and

SMAC (n1)

SMAC (n2)

TMAC (n1)

TMAC (n2)

cycle period

fixed duty cycle

variable duty cycle

Initial period SYN period Contention period Sleep period

SMAC (n1)

SMAC (n2)

TMAC (n1)

TMAC (n2)

cycle period

fixed duty cycle

variable duty cycle

Initial period SYN period Contention period Sleep period

 3

fix-lengthened cycle periods, each of which in turn consists of

a contention period, a SYN period, an extended period and a

sleep period as shown in Fig. 2.

Fig. 2: the sleep/wakeup schedule of ADCA protocol.

In ADCA, a node listens to the channel for possible

incoming packets at the contention period and broadcasts a

SYN packet to the intended senders at the SYN period. An

extended period immediately follows the SYN period to

prolong the active time. A node turns its radio into sleeping

mode to save energy in the sleeping period. When a node has a

packet to send, it checks its neighbor-schedule table and

contends to send the data packet in the receiver’s contention

period. The node then goes into sleeping mode after the

transmission. If a sender fails to send the data packet in the

receiver’s contention period, it switches the radio into the

receiving mode to wait for the receiver’s SYN packet and tries

to retransmit the data packet in the receiver’s extended period.

If the transmission still fails during the receiver’s extended

period, the sender waits for the contention period in the

receiver’s next cycle period.

Since nodes maintain their schedules asynchronously, the

schedules are staggered and the successful transmission rate

and channel utilization are thus increased. Furthermore,

ADCA allows nodes to dynamically adjust the contention

period and the extended period based on current transmission

statuses and/or traffic loads. In this way, the throughput is

increased and the transmission delay is decreased without

scanting energy efficiency. Below, we show how to adjust the

two periods in the next subsection.

B. Duty cycle adjustment

In ADCA, a node adjusts its active period based on

transmission statuses and traffic loads. Each node records the

time of channel idle (Ti), the time of channel busy (Tb) and the

number of overheard packets (Noh) during the observed active

periods, i.e., the last extended period and the current

contention period. It then calculates, at the end of the

contention period (the adjustment point), the length of the

extended period (A1) and the length of the next contention

period (A2) accordingly (see Fig. 3). The node then broadcasts

its new schedule with the two newly calculated periods in a

SYN packet.

Fig. 3: the duty cycle adjustment of ADCA

The length of extended period (EP) is adjusted according to

Eq. 1. Tbad in Eq. 1 represents the time of collision and channel

unstable (interference), and Noh stands for the number of

overheard packets. As shown in Eq. 2, Tdata is defined to be the

average transmission time of a data packet including the time

for transmitting data (packet size/data rate) and a random

back-off within a contention window of fixed cw slots, each of

which is of length Tslot.

dataoh

data

bad TN
T

T
EP 








)(

(1)

ratedata

sizepacket
slotdata TcwT 

2

(2)

In Fig. 4, we show some bad receiving situations such as

collision, overhearing and interference, which will increase the

transmission delay and decrease the channel utilization. So, a

node should extend the extended period to compensate for the

bad receiving situations. If a receiver detects more collisions

or overhearing events during the contention period, it knows

that the sender has smaller probability to complete data packet

transmission successfully. Therefore, it adds multiple times of

Tdata to the extended period to increase the sender’s successful

transmission probability and to decreases the transmission

delay.

Fig. 4: the radio statuses of a sensor node

 The next contention period adjustment is for the purpose

of adapting to the traffic of the observed active period.

Therefore, the length of the next contention period is

proportional to traffic loads. The length of the next

contention period (CP) is adjusted according to Eq. 3, where

Trx is the total time that a node is in the receiving mode

during pervious cycle period, CCP means the length of the

current contention period, and the sum of channel idle time

Ti and channel busy time Tb is equal to Trx. Eq. 3 takes

channel idle time and channel busy time into consideration.

 and  are weight parameters related to the two time spans.

 should be negative to reflect the channel idle time and 

should be positive to reflect the channel busy time. Their

values are usually determined by the applications, and we

suggest setting =-1 and =1 in this paper. Therefore, if Ti >

Tb then CP gets smaller; otherwise, CP gets larger. Certainly,

CP should be larger than a pre-specified minimum value and

should only make the contention period last until the end of

the cycle period.

IV. SIMULATION RESULTS

In this section, we simulate ADCA for the sake of comparison.

Because all existent asynchronous protocols do not address the

problem of long transmission delay, we do not compare

ADCA (n1)

ADCA (n2)

Initial period SYN periodContention period Extended period

cycle period

cycle period

variable duty cycle

Sleep period

ADCA (n3)

cycle period

ADCA (n1)

ADCA (n2)

Initial period SYN periodContention period Extended period

cycle period

cycle period

variable duty cycle

Sleep period

ADCA (n3)

cycle period

ADCA

cycle period

SYN periodContention period Extended period Sleep period

A2 : next contention period

A1 : extended period

adjustment point

observed active period

ADCA

cycle period

SYN periodContention period Extended period Sleep period

A2 : next contention period

A1 : extended period

adjustment point

observed active period

Radio Status

Radio-on

Radio-off

Tx mode

Rx mode

Sleeping mode

Successful reception

Failed reception (collision)

Successful reception but not destination (overhear)

Idle listening

Unstable channel (interference)

Radio Status

Radio-on

Radio-off

Tx mode

Rx mode

Sleeping mode

Successful reception

Failed reception (collision)

Successful reception but not destination (overhear)

Idle listening

Unstable channel (interference)

)1(
rx

b

rx

i

T

T

T

T
CCPCP   (3)

 4

ADCA with them. Also because adaptive protocols, such as

T-MAC, have better performance than others, we only

compare ADCA with T-MAC below.

A. The Simulation Environment

We use ns-2 [20] to simulate ADCA and T-MAC for two

scenarios. One scenario is all-to-one environment where all

nodes periodically report data to a sink node. The other is n-

to-n environment where n/2 connections are randomly

established among all n nodes for exchanging data. The

RTS/CTS scheme is disabled in both ADCA and T-MAC.

AODV [4] is adopted as the routing protocol and a CSMA-

like scheme [11] is used to avoid collision. The transmission

rate is 250kbps and the transmission range is 25m. The data,

SYN and ACK packets are 50, 10 and 10 bytes, respectively.

Each experiment lasts 1000s and each outcome is obtained by

averaging 20 experiments’ results. Two parameters are tunable

in the simulation: network density and traffic load. We assume

20, 30 or 40 nodes are uniformly deployed in a 100m x 100m

square area; i.e., the average degrees of nodes are 4, 6 or 8.

The traffic loads are constant bit rates (CBR) which are set to

1, 10, 20, 30, 40, 50 or 60 packets per second. We measure the

following three metrics: (1) the energy consumption, (2) the

goodput and (3) the transmission delay. Below, we compare

ADCA and T-MAC in terms of the three metrics. Note that we

use ADCA(i) and T-MAC(i), i=2, 4, 6 to stands for the case of

the two protocols with the node degree 2, 4 or 6.

B. Energy consumption

In this subsection, we observe the average energy

consumption among the sensor nodes. We record the time in

transmitting (tx), receiving (rx), idle listening (idle) and

sleeping (slp) modes for each node during the entire

simulation. The energy cost function of a sensor node is

shown in Eq. 4 and the ratio of energy consumption of the four

modes is 17.4: 19.7: 19.7: 0.426.

slpidlerxtx EEEEE 

 (4)

Figs. 5 and 6 show the simulation results of ADCA and T-

MAC in terms of the energy consumption in the all-to-one and

n-to-n scenarios, respectively. As shown in Fig. 5, the energy

consumption of ADCA is lower than that of T-MAC. ADCA

can be 33.65% better than T-MAC (when traffic=30

packets/sec and node degree=8). This is because ADCA

quickly adjusts the duty cycle to adapt to the current traffic

and its asynchronous schedule scheme decreases the number

of contenders to reduce collisions. As shown in Fig. 6, the

energy consumption of ADCA is lower than that of T-MAC in

the n-to-n environment. ADCA can conserve up to 36.95% of

energy (when traffic=30 packets/sec and node degree=8).

Furthermore, the results of ADCA increase smoothly but T-

MAC’s grow quickly while traffic and network density

increase. Therefore, the duty cycle adjustments and collisions

will directly affect the transmission delay.

C. Transmission delay

In sleep/wakeup schedule schemes, transmission delay

consists of a waiting time and a processing time. The waiting

time is the duration that a sender is ready to send the data and

waits until the receiver tunes its radio into the receiving mode.

The length of the waiting time is dependent on both the cycle

period length and the active/sleep ratio. Because we assume

all nodes have the same cycle length, the active/sleep ratio

becomes the major factor affecting the length of the waiting

time. The processing time is the duration that a sender

successfully transmits a data packet to the destination. It

consists of the back-off time, packet propagating time and

ACK waiting time. Figs. 7 and 8 show the results of the

average one-hop delay for the two scenarios. The delay time

of ADCA and T-MAC grows up as traffic is heavier.

In the all-to-one scenario (Fig. 7), ADCA has shorter delay

than T-MAC when traffic is heavy. This is because T-MAC

maintains a global synchronous schedule and thus sensor

nodes contend the channel in the same period but ADCA

maintains asynchronous schedules and the number of

contenders is decreased. However, in light traffic cases (e.g., 1

packet/sec), senders in ADCA need to wait for the receivers’

active periods to transmit data packets, but senders and

receivers in T-MAC wake up simultaneously to handle the

traffic. Thus, T-MAC’s waiting time is smaller than ADCA’s.

In the n-to-n scenario (Fig. 8), T-MAC has shorter average

hop delays than ADCA when traffic is light. However, as

traffic is heavy, ADCA outperforms T-MAC.

D. Goodput

Goodput is defined to be the successful transmission rate from

the source to the destination, i.e., the ratio of the number of

received packets to the number of generated packets. Collision

is the major factor affecting goodput. Figs. 9 and 10 present

goodputs for the two scenarios. As traffic or network density

grows, goodputs of ADCA and T-MAC both decrease. But,

the active periods of the nodes in ADCA is stagger, so the

collision probability of ADCA is less than T-MAC and

goodput of ADCA is higher than T-MAC’s. The goodput of

ADCA can be 25.62% higher than T-MAC’s in the all-to-one

case (see Fig. 9), and 9.7 %, in the n-to-n case (see Fig. 10).

Fig. 5: The average energy consumption in the all-to-one scenario

Fig. 6: The average energy consumption in the n-to-n scenario

Energy consumption (all-to-one)

0

10

20

30

40

50

60

70

80

1 10 20 30 40 50 60

traffic (packets/s)

en
er

gy
 co

ns
um

pt
io

n
(K

J) TMAC(4)

ADCA(4)

TMAC(6)

ADCA(6)

TMAC(8)

ADCA(8)

Energy consumption (n-to-n)

0

10

20

30

40

50

60

70

1 10 20 30 40 50 60

traffic (packets/s)

en
er

gy
 co

ns
um

pt
io

n
(K

J) TMAC(4)

ADCA(4)

TMAC(6)

ADCA(6)

TMAC(8)

ADCA(8)

 5

Fig. 7: The average transmission delay in the all-to-one scenario

Fig. 8: The average transmission delay in the n-to-n scenario

Fig. 9: The average goodputs in the all-to-one scenario

Fig. 10: The average goodputs in the n-to-n scenario

V. CONCLUSION

This paper presents an asynchronous duty-cycle adjustment

MAC protocol, called ADCA, for wireless sensor networks.

ADCA is an asynchronous sleep/wakeup schedule-based

protocol. It needs not synchronize nodes’ timers and allows

nodes to keep schedules asynchronously. Therefore, the

schedules are staggered and collision and overhearing are

reduced. A node tunes the radio into sleeping mode as long as

possible to save energy for prolonging the network lifetime.

However, it adjusts the length of the active period to improve

the duty cycle utilization and to reduce the transmission delay.

Consequently, ADCA can save a lot of energy without

sacrificing goodput and transmission delay. By the simulation

results, we can observe that ADCA outperforms T-MAC in

terms of energy consumption, transmission delay and goodput.

REFERENCES

[1] A. A. Ahmed, H. Shi, and Y. Shang, “A Survey on Network Protocols for
Wireless Sensor Networks,” in Proceedings of International Conference on

Information Technology: Research and Education, pp. 301 – 305, August

2003.
[2] A. El-Hoiydi and J. D. Decotignie, ”WiseMAC: An Ultra Low Power

MAC Protocol for The Downlink of Infrastructure Wireless Sensor Networks,”

in Proceedings of the 9th International Symposium on Computers and
Communications, Vol. 1, pp. 244-251, July 2004.

[3] Chipcon AS, ”SmartRF CC2420 PRELIMINARY Datasheet,” rev. 1.2,

February 2004.
[4] C.E. Perkins, E.M. Belding-Royer, and S. Das, “Ad Hoc On-Demand

Distance Vector (AODV) Routing,” IETF Internet draft, draft-ietf-manetaodv

-11.txt, July 2002.
[5] C. Schurgers, V. Tsiatsis and M. B. Srivastava, ”STEM: Topology

Management for Energy Efficient Sensor Networks,” in Proceedings of the

Aerospace Conference, Vol. 3, pp. 1099-1108, March 2002.
[6] G. Lu, B. Krishnamachari and C. S. Raghavendra, ”An Adaptive Energy

Efficient and Low-Latency MAC for Data Gathering in Wireless Sensor

Networks,” in Proceedings of the 18th IEEE International Parallel and
Distributed Processing Symposium, pp. 224, April 2004.

[7] Heping Wang, Xiaobo Zhang and Ashfag Khokhar, “An Energy-Efficient

Low-Latency MAC Protocol for Wireless Sensor Networks,“ IEEE Global
Telecommunications Conference (GLOBECOM '06), pp. 1-5, Nov. 2006.

[8] I. Demirkol, C. Ersoy and F. Alagoz, “MAC Protocols for Wireless Sensor

Networks: A Survey,” IEEE Communications Magazine, Vol. 44, pp. 115 –
121, April 2006.

[9] J. Polastre, J. Hill and D. Culler, ”Versatile Low Power Media Access for

Wireless Sensor Networks,” in Proceedings of the 2nd International
Conference on Embedded Networked Sensor Systems, pp. 95-107, November

2004.

[10] J.M. Rabaey, M.J. Ammer, J.L. da Silva, D. Patel, and S.
Roundry,”PicoRadio Supports Ad Hoc Ultra-Low Power Wireless

Networking,” Computer, vol. 33, pp.42-48, July 2000.

[11] LAN MAN Standards Committee of the IEEE Computer Society, editor.
IEEE Std 802.11-1997, Wireless LAN Medium Access Control (MAC) and

Physical Layer (PHY) specifications. IEEE, Nov. 1997.

[12] M. A. M. Vieira, C. N. Coelho Jr., D. C. da Silva Jr., and J.M. da Mata,
“Survey on Wireless Sensor Network devices,” in Proceedings of IEEE

International Conference on Emerging Technologies and Factory Automation,

Vol. 1, pp. 537 – 544, September 2003.
[13] Shih-Hsien Yang, Hung-Wei Tseng, Wu E.H.-K., Gen-Huey

Chen, ”Utilization based duty cycle tuning MAC protocol for wireless sensor

networks,” IEEE Global Telecommunications Conference (GLOBECOM '05),
Volume 6, pp. 5, 28 Nov.-2 Dec. 2005.

[14] T. V. Dam and K. Langendoen, ”An Adaptive Energy-Efficient MAC

Protocol for Wireless Sensor Networks,” in Proceedings of the 1st
international conference on Embedded networked sensor systems ,pp. 171-

180 , November 2003.
[15] T. Zheng, S. Radhakrishnan and V. Sarangan, ”PMAC: An Adaptive

Energy Efficient MAC Protocol for Wireless Sensor Networks,” in

Proceedings of the 19th IEEE International Parallel and Distributed
Processing Symposium, pp. 8, April 2005.

[16] V. Rajendran, K. Obraczka, and J.J. Garcia-Luna-Aceves, “Energy-

Efficient, Collision-Free Medium Access Control for Wireless Sensor
Networks,” In the Journal of Wireless Networks, Vol. 12, pp. 63-78, Feb.

2006.

[17] W. Ye, J. Heidemann and D. Estrin, ”Medium Access Control with
Coordinated Adaptive Sleeping for Wireless Sensor Networks,” IEEE/ACM

Transactions on Networking, Vol. 12, pp. 493-506, June 2004.

[18] Xiaolei Shi; Stromberg, G., “SyncWUF: An Ultra Low-Power MAC
Protocol for Wireless Sensor Networks,” IEEE Transactions on Mobile

Computing, Volume 6, pp. 115-125, Jan. 2007.

[19] Zhihui Chen and Ashfaq Khokhar, “Self Organization and Energy
Efficient TDMA MAC Protocol by Wake Up For Wireless Sensor Networks,”

in The Proceedings of the First IEEE Communication Society Conference on

Sensor and Ad Hoc Communications and Networks (SECON’04), pp. 335-341,
Oct. 2004.

[20] http://www.isi.edu/nsnam/ns/

[21] http://www.tinyos.net/

Hop Delay (all-to-one)

0

1

2

3

4

5

6

1 10 20 30 40 50 60

Traffic (packets/s)

tim
e (

se
co

nd
)

TMAC(4)

ADCA(4)

TMAC(6)

ADCA(6)

TMAC(8)

ADCA(8)

Hop Delay (n-to-n)

0

0.5

1

1.5

2

2.5

3

3.5

1 10 20 30 40 50 60

Traffic (packets/s)

tim
e (

se
co

nd
)

TMAC(4)

ADCA(4)

TMAC(6)

ADCA(6)

TMAC(8)

ADCA(8)

Goodput (all-to-one)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30 40 50 60

Traffic (packets/s)

G
oo

dp
ut

TMAC(4)

ADCA(4)

TMAC(6)

ADCA(6)

TMAC(8)

ADCA(8)

Goodput (n-to-n)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 10 20 30 40 50 60

Traffic (packets/s)

G
oo

dp
ut

TMAC(4)

ADCA(4)

TMAC(6)

ADCA(6)

TMAC(8)

ADCA(8)

