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Abstract-- In this paper, we propose an asynchronous duty cycle 

adjustment MAC protocol, called ADCA, for the wireless sensor 

network (WSN). ADCA is a sleep/wakeup schedule-based protocol 

to reduce power consumption without lowering network throughput 

or lengthening transmission delay. It is asynchronous; it allows each 

node in the WSN to set its own sleep/wakeup schedule independently. 

The media access is thus staggered and collisions are reduced. 

According to the statuses of previous transmissions, ADCA adjusts 

the duty cycle length for shortening transmission delay and 

increasing throughput. Simulation results show that ADCA 

outperforms related ones in terms of energy saving, network 

throughput and transmission delay.  

Keywords--Wireless sensor networks, sleep/wakeup schedule, duty 

cycle, energy efficiency, transmission latency 

I. INTRODUCTION 

The rapid progress of wireless communications and micro-

electro-mechanical system (MEMS) technology has made 

wireless sensor networks (WSNs) a hot research topic recently. 

A WSN consists of many spatially distributed, resource-

constrained sensor nodes equipped with microcontrollers, 

short-range wireless radios, and analog/digital sensors. Sensor 

nodes sense environmental conditions, such as temperature, 

light, sound, or vibration, etc., and transmit the sensed data to 

the sink node through multi-hop communication links. There 

are many applications of WSNs, such as target tracking, 

environment monitoring, and home security, etc [1] [8] [12].  

     Energy conservation is one of the most important issues in 

WSNs, since sensor nodes are usually powered by batteries. 

The radio transceiver is the most power consuming component 

in a sensor node. A typical radio transceiver consists of four 

possible modes with different power consumption: 

transmitting, receiving, listening, and sleeping. The first three 

modes are also called active or wakeup modes, in which more 

energy is consumed. For example, the relative power 

consumptions of the four modes of MICAz mote [21] are 17.4, 

19.7, 19.7 and 0.426, respectively. Observing idle listening, 

the status that a sensor node turns on the radio to monitor 

wireless medium but do not receive any packets, wastes a lot 

of energy, some researchers propose medium access control 

(MAC) protocols [2,5-7,9,13-15,17,18] to turn the radio into 

sleeping mode as long as possible to save energy for 

prolonging the network lifetime. However, the radio should be 

scheduled to be in wakeup mode periodically to monitor, send 

or receive data packets. Those protocols that make the radio 

alternate between sleeping and wakeup modes are called the 

sleep/wakeup schedule protocols. As shown in [10], when the 

duty cycle (i.e., active period) of the radio is reduced to 1 

percent, the power consumption of the sensor node can be 

reduced by a factor of 50. 

Some sleep/wakeup schedule protocols suggest that all 

sensor nodes synchronize their timers and maintain a global 

sleep/wakeup schedule. However, timer synchronization 

causes a large overhead. Furthermore, the global schedule may 

lead to low duty cycle utilization. For example, when two 

neighboring nodes are exchanging data, all two-hop neighbors 

of the two nodes are prohibited from doing so. Those 

prohibited nodes stay at receiving mode until the data 

exchanging finished, which causes an energy-wasting status 

called overhearing. The RTS/CTS scheme [17] can be used to 

avoid overhearing as well as to solve the hidden terminal 

problem. But, the scheme’s overhead is relatively large for 

WSNs since packets in WSNs are usually very small [3] [21]. 

In this paper, we propose an Asynchronous Duty Cycle 

Adjustment (ADCA) MAC protocol to provide low energy 

consumption, low transmission latency and high throughput in 

WSNs. ADCA is an asynchronous sleep/wakeup schedule 

protocol which needs not synchronize nodes’ timers, so the 

timer synchronization overhead is avoided. It also allows each 

node to set its own sleep/wakeup schedule independently. 

Since nodes’ schedules are staggered, the channel utilization is 

increased and the occurrences of overhearing are reduced. 

Furthermore, ADCA tries to increase the throughput and to 

decrease the transmission delay by adjusting two time periods: 

the extended period and the next contention period. We will 

perform simulation experiments for ADCA and compare the 

simulation results with those of related protocols to show the 

advantages of ADCA. 

The rest of the paper is organized as follows. Section 2 

introduces some related sleep/wakeup schedule MAC 

protocols. The proposed ADCA protocol is then described in 

Section 3. The simulation results and comparisons of protocol 

performance are shown in Section 4. And at last, Section 5 

concludes this paper. 

II. RELATED WORK 

Over the past few years, several sleep/wakeup schedule 

protocols have been developed for WSNs. The goals of those 

protocols are to decrease the energy consumption, to improve 

the network throughput and/or to shorten the transmission 

delay. The protocols can be classified into two categories: 

synchronous [7, 13-15, 17] and asynchronous [2, 5, 6, 9, 18]. 

Below, we review some synchronous and asynchronous 

sleep/wakeup schedule protocols for WSNs. 

A. Synchronous sleep/wakeup schedule protocols 

S-MAC [17] and T-MAC [14] are two well-known 

sleep/wakeup schedule MAC protocols in WSNs. S-MAC 

tries to eliminate the four sources of energy waste: collision, 

overhearing, control packet overhead, and idle listening. It 

divides time axis into fixed length cycle period, which is 

further divided into SYN, contention and sleep periods (see Fig. 

1). Nodes try to synchronize their schedules in the SYN period, 
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and contend for sending packets in the contention period. It 

thus periodically puts sensor nodes into sleeping mode at a 

low and fixed duty cycle ratio. T-MAC improves S-MAC by 

using adaptive duty cycles (see Fig. 1).  

 
Fig. 1: the sleep/wakeup schedules of S-MAC and T-MAC protocols. 
Sensor nodes turn the radio into sleeping mode when there 

is no activity during a time period TA = 1.5 (C + R + T), where 

C is the length of the contention period, R is the time period of 

RTS packet transmission, and T is a short time between the 

end of the RTS and the begin of the CTS packet transmission. 

Because of the duty cycle adjustment, T-MAC provides a 

better throughput than S-MAC under varied traffic. The 

synchronous scheduling of S-MAC and T-MAC makes sensor 

nodes suffer high contention; the throughput and channel 

utilization are thus low. 

U-MAC [13] is similar to S-MAC. It provides three 

modifications to improve S-MAC: (1) to assign different duty 

cycles to nodes of different traffic loads, (2) to calculate 

suitable duty cycles based on utilization and (3) to make nodes 

go to sleeping mode selectively after transmission. The 

calculation of utilization takes transmitting time, receiving 

time and idle listening time into consideration. If the current 

utilization is larger (resp., less) than the high (resp., low) 

traffic load threshold, the duty cycle will be increased (resp., 

decreased). U-MAC can save more energy than S-MAC. 

However, the problems of low channel utilization and long 

transmission delay are still not solved efficiently. 

P-MAC [15] is a time-slotted scheduling protocol. Each 

sensor node determines its sleep/wakeup schedule based on 

the traffic patterns of itself and its neighbors. In P-MAC, time 

is divided into Super Time Frames (STFs), each of which has 

two sub-frames: PETF (Pattern Exchange Time Frame) and 

PRTF (Pattern Repeat Time Frame). In PETF, nodes collect 

and exchange with neighbors their traffic patterns which 

repeat in PRTE. The purpose of the pattern exchange is to 

ensure that the schedules of the sensor nodes can adapt to the 

current traffic load. The drawback of P-MAC protocol is that 

the time-slotted structure needs very accurate time 

synchronization which leads to a high maintenance overhead. 

P-MAC also has the problems of long transmission delay and 

low network throughput. 

H-MAC [7] combines the schemes used in the contention-

based and TDMA-based MAC protocols [16, 19] for WSNs. It 

uses a slotted frame structure and a wakeup technique to 

achieve high energy efficiency. The slots for data transmission 

in H-MAC are used on an on-demand basis. Each node 

randomly selects its own wakeup slot and notifies the slot 

number to all its neighbors. A node needs to collect one-hop 

neighbor information constantly. A sender can wake up the 

receiver by a wakeup message sent at the receiver’s wakeup 

slot. Then, the receiver will wake up at the specified data slot 

to receive the data packet. H-MAC needs very accurate time 

synchronization which causes a high overhead. 

B. Asynchronous sleep/wakeup schedule protocols 

D-MAC [6] is a non-delay forwarding scheme for 

reporting data to the sink node along a data gathering tree. A 

node skews its wakeup schedule with dt time ahead of that of 

the sink (d is the depth of the tree and t is the time of data 

packet transmission). D-MAC staggers the sleep/wakeup 

schedule of nodes in the data gathering tree to decrease the 

transmission delay. D-MAC is not flexible, though. 

Communication between arbitrary nodes is not allowed. 

Furthermore, if the network topology is changing, all the 

nodes need to re-construct their sleep/wakeup schedules. 

B-MAC [9] uses preamble signaling for a sender to wake 

up the receiver. A node periodically wakes up for a short 

period at every cycle period to check preamble signals. If no 

signal is present, the node turns the radio off after a time-out. 

It keeps the radio on if a preamble is sensed. It is obvious that 

the preamble signal should be long enough so that the 

periodically awaking receiver can detect it. The data packet is 

then sent after the preamble. Consequently, both the sender 

and the receiver waste much energy during the communication, 

and the transmission delay may be long. 

In Wise-MAC [2], each node maintains the sleep/wakeup 

schedules of its neighbors. A node periodically wakes up for a 

short interval. If there is no wake up preamble (WUP) send 

from other nodes, the node goes into sleeping mode to 

conserve energy. When a sensor node has packets to send, the 

node will hold the data packets until the receiver is active. 

According to the receiver’s schedule, the node sends a short 

duration of the WUP to wake up the receiver. Then it 

transmits data to the receiver and waits an ACK packet from 

the receiver. Wise-MAC is a simple protocol for saving 

energy. However, it also has the long transmission delay 

problem. 

SyncWUF [18] combines both the simple signaling and 

the wakeup frame (WUF) technique together. The idea of 

SyncWUF is that the sender records all nodes’ schedules and 

adjusts the wakeup signal (WUS) accordingly. To transmit a 

data packet, a sender checks the receiver’s schedule first. If 

the schedule is up-to-date, a short simple wakeup preamble 

(WUP) is used as in the Wise-MAC protocol. If the schedule 

is out-of-date, multiple short wakeup frames (SWUFs) are 

used to reduce the unnecessary waiting time. SyncWUF is an 

energy efficient protocol. However, if a sender misses the 

receiver’s active period, it must await until next cycle. The 

transmission delay of SyncWUF is thus long. 

III. ADCA PROTOCOL  

A. Overview 

ADCA (asynchronous duty cycle adjustment) protocol is 

an asynchronous sleep/wakeup schedule protocol which needs 

not synchronize nodes’ timers and allows each node to set its 

own sleep/wakeup schedule independently. When a node 

starts up, it first decides its own sleep/wakeup schedule, 

broadcasts the schedule and collects all neighbors’ schedules 

within an initial period of arbitrary length (see Fig. 2). It then 

starts executing its sleep/wakeup schedule individually. The 

sleep/wakeup schedule of a node is composed of repeated and 
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fix-lengthened cycle periods, each of which in turn consists of 

a contention period, a SYN period, an extended period and a 

sleep period as shown in Fig. 2. 

 
Fig. 2: the sleep/wakeup schedule of ADCA protocol. 

In ADCA, a node listens to the channel for possible 

incoming packets at the contention period and broadcasts a 

SYN packet to the intended senders at the SYN period. An 

extended period immediately follows the SYN period to 

prolong the active time. A node turns its radio into sleeping 

mode to save energy in the sleeping period. When a node has a 

packet to send, it checks its neighbor-schedule table and 

contends to send the data packet in the receiver’s contention 

period. The node then goes into sleeping mode after the 

transmission. If a sender fails to send the data packet in the 

receiver’s contention period, it switches the radio into the 

receiving mode to wait for the receiver’s SYN packet and tries 

to retransmit the data packet in the receiver’s extended period. 

If the transmission still fails during the receiver’s extended 

period, the sender waits for the contention period in the 

receiver’s next cycle period. 

Since nodes maintain their schedules asynchronously, the 

schedules are staggered and the successful transmission rate 

and channel utilization are thus increased. Furthermore, 

ADCA allows nodes to dynamically adjust the contention 

period and the extended period based on current transmission 

statuses and/or traffic loads. In this way, the throughput is 

increased and the transmission delay is decreased without 

scanting energy efficiency. Below, we show how to adjust the 

two periods in the next subsection. 

B. Duty cycle adjustment 

In ADCA, a node adjusts its active period based on 

transmission statuses and traffic loads. Each node records the 

time of channel idle (Ti), the time of channel busy (Tb) and the 

number of overheard packets (Noh) during the observed active 

periods, i.e., the last extended period and the current 

contention period. It then calculates, at the end of the 

contention period (the adjustment point), the length of the 

extended period (A1) and the length of the next contention 

period (A2) accordingly (see Fig. 3). The node then broadcasts 

its new schedule with the two newly calculated periods in a 

SYN packet. 

 

 
Fig. 3: the duty cycle adjustment of ADCA 

The length of extended period (EP) is adjusted according to 

Eq. 1. Tbad in Eq. 1 represents the time of collision and channel 

unstable (interference), and Noh stands for the number of 

overheard packets. As shown in Eq. 2, Tdata is defined to be the 

average transmission time of a data packet including the time 

for transmitting data (packet size/data rate) and a random 

back-off within a contention window of fixed cw slots, each of 

which is of length Tslot.  
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In Fig. 4, we show some bad receiving situations such as 

collision, overhearing and interference, which will increase the 

transmission delay and decrease the channel utilization. So, a 

node should extend the extended period to compensate for the 

bad receiving situations. If a receiver detects more collisions 

or overhearing events during the contention period, it knows 

that the sender has smaller probability to complete data packet 

transmission successfully. Therefore, it adds multiple times of 

Tdata to the extended period to increase the sender’s successful 

transmission probability and to decreases the transmission 

delay. 

 

Fig. 4: the radio statuses of a sensor node 

    The next contention period adjustment is for the purpose 

of adapting to the traffic of the observed active period. 

Therefore, the length of the next contention period is 

proportional to traffic loads. The length of the next 

contention period (CP) is adjusted according to Eq. 3, where 

Trx is the total time that a node is in the receiving mode 

during pervious cycle period, CCP means the length of the 

current contention period, and the sum of channel idle time 

Ti and channel busy time Tb is equal to Trx. Eq. 3 takes 

channel idle time and channel busy time into consideration. 

 and  are weight parameters related to the two time spans. 

 should be negative to reflect the channel idle time and  

should be positive to reflect the channel busy time. Their 

values are usually determined by the applications, and we 

suggest setting =-1 and =1 in this paper. Therefore, if Ti > 

Tb then CP gets smaller; otherwise, CP gets larger. Certainly, 

CP should be larger than a pre-specified minimum value and 

should only make the contention period last until the end of 

the cycle period.  

IV. SIMULATION RESULTS 

In this section, we simulate ADCA for the sake of comparison. 

Because all existent asynchronous protocols do not address the 

problem of long transmission delay, we do not compare 
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ADCA with them.  Also because adaptive protocols, such as 

T-MAC, have better performance than others, we only 

compare ADCA with T-MAC below. 

A. The Simulation Environment 

We use ns-2 [20] to simulate ADCA and T-MAC for two 

scenarios. One scenario is all-to-one environment where all 

nodes periodically report data to a sink node. The other is n-

to-n environment where n/2 connections are randomly 

established among all n nodes for exchanging data. The 

RTS/CTS scheme is disabled in both ADCA and T-MAC. 

AODV [4] is adopted as the routing protocol and a CSMA-

like scheme [11] is used to avoid collision. The transmission 

rate is 250kbps and the transmission range is 25m. The data, 

SYN and ACK packets are 50, 10 and 10 bytes, respectively. 

Each experiment lasts 1000s and each outcome is obtained by 

averaging 20 experiments’ results. Two parameters are tunable 

in the simulation: network density and traffic load. We assume 

20, 30 or 40 nodes are uniformly deployed in a 100m x 100m 

square area; i.e., the average degrees of nodes are 4, 6 or 8. 

The traffic loads are constant bit rates (CBR) which are set to 

1, 10, 20, 30, 40, 50 or 60 packets per second. We measure the 

following three metrics: (1) the energy consumption, (2) the 

goodput and (3) the transmission delay. Below, we compare 

ADCA and T-MAC in terms of the three metrics. Note that we 

use ADCA(i) and T-MAC(i), i=2, 4, 6 to stands for the case of 

the two protocols with the node degree 2, 4 or 6. 

B. Energy consumption 

In this subsection, we observe the average energy 

consumption among the sensor nodes. We record the time in 

transmitting (tx), receiving (rx), idle listening (idle) and 

sleeping (slp) modes for each node during the entire 

simulation. The energy cost function of a sensor node is 

shown in Eq. 4 and the ratio of energy consumption of the four 

modes is 17.4: 19.7: 19.7: 0.426. 

slpidlerxtx EEEEE 
           

 (4) 

Figs. 5 and 6 show the simulation results of ADCA and T-

MAC in terms of the energy consumption in the all-to-one and 

n-to-n scenarios, respectively. As shown in Fig. 5, the energy 

consumption of ADCA is lower than that of T-MAC. ADCA 

can be 33.65% better than T-MAC (when traffic=30 

packets/sec and node degree=8). This is because ADCA 

quickly adjusts the duty cycle to adapt to the current traffic 

and its asynchronous schedule scheme decreases the number 

of contenders to reduce collisions. As shown in Fig. 6, the 

energy consumption of ADCA is lower than that of T-MAC in 

the n-to-n environment. ADCA can conserve up to 36.95% of 

energy (when traffic=30 packets/sec and node degree=8). 

Furthermore, the results of ADCA increase smoothly but T-

MAC’s grow quickly while traffic and network density 

increase. Therefore, the duty cycle adjustments and collisions 

will directly affect the transmission delay. 

C. Transmission delay 

In sleep/wakeup schedule schemes, transmission delay 

consists of a waiting time and a processing time. The waiting 

time is the duration that a sender is ready to send the data and 

waits until the receiver tunes its radio into the receiving mode. 

The length of the waiting time is dependent on both the cycle 

period length and the active/sleep ratio. Because we assume 

all nodes have the same cycle length, the active/sleep ratio 

becomes the major factor affecting the length of the waiting 

time. The processing time is the duration that a sender 

successfully transmits a data packet to the destination. It 

consists of the back-off time, packet propagating time and 

ACK waiting time. Figs. 7 and 8 show the results of the 

average one-hop delay for the two scenarios. The delay time 

of ADCA and T-MAC grows up as traffic is heavier. 

In the all-to-one scenario (Fig. 7), ADCA has shorter delay 

than T-MAC when traffic is heavy. This is because T-MAC 

maintains a global synchronous schedule and thus sensor 

nodes contend the channel in the same period but ADCA 

maintains asynchronous schedules and the number of 

contenders is decreased. However, in light traffic cases (e.g., 1 

packet/sec), senders in ADCA need to wait for the receivers’ 

active periods to transmit data packets, but senders and 

receivers in T-MAC wake up simultaneously to handle the 

traffic. Thus, T-MAC’s waiting time is smaller than ADCA’s. 

In the n-to-n scenario (Fig. 8), T-MAC has shorter average 

hop delays than ADCA when traffic is light. However, as 

traffic is heavy, ADCA outperforms T-MAC. 

D. Goodput 

Goodput is defined to be the successful transmission rate from 

the source to the destination, i.e., the ratio of the number of 

received packets to the number of generated packets. Collision 

is the major factor affecting goodput. Figs. 9 and 10 present 

goodputs for the two scenarios. As traffic or network density 

grows, goodputs of ADCA and T-MAC both decrease. But, 

the active periods of the nodes in ADCA is stagger, so the 

collision probability of ADCA is less than T-MAC and 

goodput of ADCA is higher than T-MAC’s. The goodput of 

ADCA can be 25.62% higher than T-MAC’s in the all-to-one 

case (see Fig. 9), and 9.7 %, in the n-to-n case (see Fig. 10). 

 

 
Fig. 5: The average energy consumption in the all-to-one scenario 

 

 
Fig. 6: The average energy consumption in the n-to-n scenario 
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Fig. 7: The average transmission delay in the all-to-one scenario 

 
Fig. 8: The average transmission delay in the n-to-n scenario 

 
Fig. 9: The average goodputs in the all-to-one scenario 

 

 
Fig. 10: The average goodputs in the n-to-n scenario 

V. CONCLUSION 

This paper presents an asynchronous duty-cycle adjustment 

MAC protocol, called ADCA, for wireless sensor networks. 

ADCA is an asynchronous sleep/wakeup schedule-based 

protocol. It needs not synchronize nodes’ timers and allows 

nodes to keep schedules asynchronously. Therefore, the 

schedules are staggered and collision and overhearing are 

reduced.  A node tunes the radio into sleeping mode as long as 

possible to save energy for prolonging the network lifetime. 

However, it adjusts the length of the active period to improve 

the duty cycle utilization and to reduce the transmission delay. 

Consequently, ADCA can save a lot of energy without 

sacrificing goodput and transmission delay. By the simulation 

results, we can observe that ADCA outperforms T-MAC in 

terms of energy consumption, transmission delay and goodput. 
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