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Abstract

Networked virtual environments (NVEs) are computer-
generated virtual worlds where users interact by exchang-
ing messages via network connections. Each NVE user of-
ten pays attention to only a limited visibility sphere called
area of interest (AOI) where interactions occur. The dis-
semination of messages to other users within the AOI (i.e.,
the AOI neighbors) thus is a fundamental NVE operation
referred to as AOI-cast. Existing studies on NVE scala-
bility have focused on system scalability, or the ability for
the system to handle a growing number of total users, by
using multicast or peer-to-peer (P2P) architectures. How-
ever, another overlooked, yet important form of scalability
relates to the handling of a growing number of users within
the AOI (or AOI scalability). In this paper, we propose two
AOI-cast schemes, called VoroCast and FiboCast, to im-
prove the AOI scalability of P2P-based NVEs. VoroCast
constructs a spanning tree across all AOI neighbors based
on Voronoi diagrams, while FiboCast dynamically adjusts
the messaging range by a Fibonacci sequence, so that AOI
neighbors would receive updates at frequencies based on
their hop counts from the message originator. Simulations
show that the two schemes provide better AOI scalability
than existing approaches.

1. Introduction

Networked virtual environments (NVEs) are distributed
systems where geographically dispersed users assume vir-
tual representations called avatars to interact by exchanging
network messages. Each user in a NVE can be seen as a co-
ordinate point on a 2D plane with a bounded visibility called
area of interest (AOI) [24]. AOI is often a circular area cen-
tered at the user, and other users within this area are called
the AOI neighbors. As users need to be aware of the current
states of its AOI neighbors, each user has to send messages
about its state changes, such as its current position and ac-
tions, to users whose AOIs cover itself. If we assume that
all AOIs are of the same size, as most NVEs do, then each

user has to send messages to all of its AOI neighbors. In
this paper, we use the term AOI-cast to refer such message
propagation. As AOI-cast is a fundamental NVE operation,
our goal is to develop efficient and scalable AOI-cast.

Creating scalable NVEs is an important topic, as suc-
cessful NVEs often host many users. For example, Mas-
sively Multiplayer Online Games (MMOGs) are NVEs that
support hundreds of thousands of simultaneous users. How-
ever, two forms of scalability exist for NVE systems: system
scalability indicates a NVE’s ability to handle a growing
number of total users in the system; whereas AOI scalabil-
ity refers to the ability to handle a growing number of users
within a particular AOI. Both are important, but different
properties of a NVE system.

Client-server is the main architecture for today’s NVEs.
However, since a server (or server cluster) has only limited
resources at any given moment, server-only designs have
inherently limited system scalability. Recent researches
thus point to peer-to-peer (P2P) architectures to improve
NVE’s system scalability (e.g., Solipsis [15, 9], SimMUD
[16], VON [11], N-tree [10], COVER [19], OPeN [8],
APOLO [17], Skip Delaunay Network (SDN) [21], Colye-
sus [4], Peers@Play [23] and HyperVerse [5]). By distribut-
ing loads to all user nodes (or peers), clients become not
just resource consumers but also providers. Besides system
scalability, other P2P-NVE issues such as overlay partition-
ing [14], voice-chatting [13], secure messaging [6] and 3D
streaming [12], have also been investigated.

While system scalability is studied extensively with P2P
approaches, the issue of AOI scalability has received less
attention. The problem is also known as the hotspot, crowd-
ing problem [11], or the user density challenge. AOI scal-
ability is potentially improvable by a P2P-based AOI-cast.
Existing schemes can be classified by how connections are
made. On one end of the spectrum are direct connection
schemes where each node exchanges messages with all AOI
neighbors directly (e.g., Solipsis, VON, COVER, OPeN,
and Colyseus). Direct connections allow small latency and
robustness, but incur high bandwidth costs. When there are
many AOI neighbors, peak bandwidth usage may exceed
the peer’s bandwidth limit (see Figure 1), causing overload



Figure 1. Bandwidth usage for AOI-cast

or degradation of the system. Towards the other end are
forwarding schemes where the number of connections be-
comes less and messages are delivered by relaying. For-
warding schemes thus may achieve better AOI scalability
at a cost of increased, but controllable latency, as the band-
width load in a densely populated AOI is shared among the
AOI neighbors. Forwarding schemes can be classified as
forming structural trees (e.g., SimMud and N-tree) or span-
ning trees (e.g., APOLO, SDN, and VON-forwarding [7]).
For structural trees (e.g., a quad-tree), each node only has
a fixed number of connections. However, latency for mes-
sage transmission may increase unevenly, as certain nodes
could require more hops to reach. Bandwidth utilization
also may not match each node’s capability. Spanning tree
designs thus are more flexible and will be our focus.

In this paper, we focus on forwarding AOI-cast due to
its more scalable nature for both system and AOI scalabil-
ity. We propose two forwarding AOI-cast designs, Voro-
Cast and FiboCast, that improve the AOI scalability for P2P
NVEs. VoroCast organizes AOI neighbors with a Voronoi
diagram [3] where each peer only connects with the closest
set of neighbors. Compared with other forwarding schemes,
VoroCast provides non-redundant message disseminations
in a bounded number of hops, and allows further bandwidth
reduction with message packing and compression. Fibo-
Cast utilizes the fact that a user usually is more interested in
changes that are nearer or clearer, and improves VoroCast
by dynamically adjusting the message dissemination range
according to a Fibonacci sequence, such that nodes with
smaller hop counts from the sender receive messages more
frequently than others. Consequently, FiboCast achieves
better AOI scalability than VoroCast. We perform simula-
tion experiments to evaluate the performances of both Voro-
Cast and FiboCast, and compare them with related schemes.

The rest of the paper is organized as follows. We de-
scribe related work on P2P AOI-cast in section 2. In sec-
tion 3, we present the design of VoroCast and FiboCast. In
section 4, we evaluate our approaches by simulations and
discuss the results. Conclusions are presented in section 5.

2. Related work

P2P AOI-cast can be seen as a form of application-layer
multicast [18] within the scoped region of a user’s AOI. It
is thus similar to a geocast [20, 21] but performed in virtual
space. Delaunay overlay [18] and CAN [22] are both gen-
eral application-layer multicast over spatial domains. How-
ever, they do not specifically support scoped multicast or
node movements. Subsequent work on Skip Delaunay Net-
work (SDN) [21] improves by providing multicast within
only a limited AOI. However, node positions are still as-
sumed to be static and thus do not reflect NVE’s dynamic
nature. APOLO [17] is the first spanning tree AOI-cast that
considers node movements. Each node connects with the
closest neighbors in each of the four quadrants, and sends
out messages to all AOI neighbors by forwarding. While the
connection size in APOLO is relatively constrained, due to
the limited connections, some routing paths become unnec-
essarily elongated, increasing the latency (see Figure 2, a
message from node s4 to s8 is forwarded with additional
hops). VON-forwarding [7] supports node movements and
has potentially fewer routing hops than APOLO. As our
work is based on VON and VON-forwarding, we first de-
scribe their designs as follows.

Figure 2. Elongated path in APOLO [17]

Each node in VON organizes its AOI neighbors with
a Voronoi diagram [3] and separates them into various
Voronoi regions. Figure 3 shows such an organization: for
a center node u, if the big circle is its AOI, then the square
nodes are its enclosing neighbors (i.e., nodes whose re-
gions directly surround the Voronoi region of u); triangle
nodes are its boundary neighbors (i.e., nodes whose regions
overlap with its AOI boundary); stars are both enclosing
and boundary neighbors; inverted triangle is a regular AOI
neighbors; and diamonds are other invisible or irrelevant
nodes.



Figure 3. Different neighbor types in VON

In VON, a node directly connects to all of its AOI neigh-
bors to send its current position and states periodically. The
boundary neighbors should also preform neighbor discov-
ery (i.e., the notification of new AOI neighbors) when they
receive position updates from a moving node, so that a mov-
ing node may learn of new AOI neighbors. This is possible
because new AOI neighbors are always the enclosing neigh-
bors of existing boundary neighbors. VON thus has low
message overhead, short latency and high consistency for
node positions [11].

VON-forwarding [7] is based on VON, but each node
connects only to the enclosing neighbors rather than all AOI
neighbors. Since a node’s enclosing neighbors are limited
(e.g., 6 on average [18]), each node’s connection size is
basically constant. When sending messages, the message
is first sent to each of the enclosing neighbors, which in
turn forwards the message to their own enclosing neighbors.
The forwarding continues until all AOI neighbors have the
message. VON-forwarding also uses message packing and
compression to reduce the overall bandwidth usage. How-
ever, redundant messages may be sent during the forward-
ing, which incurs unnecessary overhead (see Figure 4).

Figure 4. VON forwarding model [7]

3. Scalable AOI-cast

3.1. VoroCast

The basic idea of VoroCast is to construct a multicast tree
spanning all AOI neighbors for each node. Messages can
then be sent along the tree edges without redundancy. As in
VON, the AOI is partitioned by a Voronoi diagram based on
AOI neighbors’ coordinates. Each node has a unique ID and
two types of neighbors. The first is called one-hop neigh-
bors, which are basically the enclosing neighbors in VON.
Note that our definition differs from the 1-hop neighbors
in APOLO [17], which is a superset of the enclosing neigh-
bors. The second is called two-hop neighbors, which are the
one-hop neighbors of one-hop neighbors except for redun-
dant ones. Nodes always connect to their one-hop neigh-
bors to exchange the one-hop neighbor lists (containing the
neighbors’ IDs, positions and IP addresses) so that two-hop
neighbors are properly known. Messages generated by a
root node r are first sent to all of r’s one-hop neighbors.
Upon receiving the message, an intermediate node x then
forwards it to uniquely selected child nodes within r’s AOI.

To construct the spanning tree, no two nodes should se-
lect the same node as child to avoid transmission redun-
dancy. We observe that while many potential child nodes
exist when growing a tree from a root, it is possible to select
just one parent for every node, given a root location (e.g.,
the closest to the root may be selected as parent). Therefore,
to uniquely select a child, we can do so from the perspective
of the child that is selecting a parent.

In the following child selection procedure (Figure 5),
x.N stands for the one-hop neighbor set of node x; x.P
is the parent of x; r.AN is the AOI neighbor set of r; and
min dist(S, r) refers to the node from the node set S with
minimal Euclidean distance to r. To begin, node x checks
for each one-hop neighbor y, excluding its own parent or
any direct children of the root (i.e., y ∈ ((x.N − x.P −
r.N) ∩ r.AN)). If x is the closet to r among all of y’s
one-hop neighbors, it would be y’s parent. Node y is thus
selected as one of x’s children to receive forwarded mes-
sages. Upon receiving a message, y would also record x as
its parent. Note that when two nodes are equidistant from r,
their unique IDs can break the tie for choosing the parent.

// node x selects a child node to forward r’s messages
SelectChild(x, r)
// find out which child y would select x as its parent
for each y ∈ ((x.N − x.P − r.N) ∩ r.AN )

z = min dist(y.N, r);
if (z equals x)

add y as a child of x;

Figure 5. Child selection procedure



After the selection, a node forwards messages to all of its
children. Note that when several sources are sending con-
currently, multiple messages may need to be delivered to
the same one-hop neighbor. In such case, the messages can
be packed into a single packet to save headers, and be com-
pressed with a higher compression ratio than the unpacked
messages. Message packing and compression thus may re-
duce bandwidth usage significantly.

3.2. FiboCast

VoroCast utilizes the bandwidth of neighboring nodes to
relieve a sender from using up its own bandwidth. How-
ever, when nearby nodes are sending simultaneously (e.g.,
when they move at the same time), each node has to send its
own messages plus those for the neighbors. Consequently,
bandwidth depletion may still occur. We note that users in
NVEs may pay more attention to activities that are more
obvious in the vicinity. For example, the left side in Fig-
ure 6 is more crowded. So although both node u and node
v are roughly equidistant from the center node, as node u
is in the less crowded area, it may observe the center node
more easily. On the other hand, the center node may ap-
pear obscured to node v due to the other users in between.
In such a case, it makes sense for the center node to up-
date u more frequently than v, and we can adaptively adjust
the transmission frequency so that neighbors with more hop
counts away receive messages less frequently. In this way,
bandwidth usage can be reduced while keeping reasonable
interactivity. Note that such reduction is applicable only
to message types that could tolerate occasional losses (e.g.,
movement or voice packets) but not those that need to be
reliable (e.g., chat or trade messages).

FiboCast adjusts the message frequency based on a
Fibonacci sequence, which contains a series of numbers
where each is the sum of the two previous ones (e.g., 0,
1, 1, 2, 3, 5, 8...). Different sequences can thus be created
with different initial numbers. We add two more fields to
each message in FiboCast: a current hop count and a max-
imal hop count, where the latter is set by the Fibonacci se-
quence in a round-robin fashion. Each message forward-
ing would increment the current hop count (i.e., similar
to a time-to-live), and forwarding stops when the maxi-
mal hop count is reached. As Fibonacci grows slowly at
first but quickly later, with such a series of maximal hop
counts, nodes would receive messages with gradually de-
creasing frequency if they are more hops away from the
root. Note that infinity is attached to each sequence so that
all AOI neighbors can eventually receive messages. A min-
imal starting number of 2 is also assumed to allow proper
two-hop node discovery and child selection (e.g., for a se-
quence of <0, 1, 1, 2, 3, 5, 8,∞>, the maximal hop counts
would be 2, 3, 3, 4, 5, 7, 10,∞, 2, 3, 3, 4, 5, 7, and so on).

Figure 6. An unevenly crowded situation

4. Evaluation

In this section, we evaluate VoroCast and FiboCast
by simulations in terms of their bandwidth consumption,
neighborship consistency and drift distance. We also com-
pare them against the original VON scheme (referred sim-
ply as VON from now on). Since VoroCast and FiboCast
do not have message redundancy and will always incur less
messages than VON-forwarding, we do not include VON-
forwarding in the following comparisons. We first introduce
the simulation environment, and then describe the simula-
tion results.

4.1. Simulation environment

We base our simulations on the open source VAST [1]
library. In our discrete-time simulations, we assume that
nodes are initially placed at random positions on a 2D plane
that is 1000x1000 units. Each node has a fixed AOI radius
of 200 units and revokes VoroCast or FiboCast to send po-
sition updates in every discrete time step. A node moves ac-
cording to random waypoint pattern [11] at a constant speed
of 5 units per step, and each simulation lasts for 1000 steps.
For simplicity, we assume that there is no packet loss and
the transmission latency is constant, where messages are re-
ceived and processed in the next time step after their deliv-
ery. We also assume that nodes have unlimited bandwidth,
so that we can see how much bandwidth use is incurred for
a given simulation. For both VoroCast and FiboCast, mes-
sage compression is also enabled with the zlib compression
library [2].



4.2. Simulation results

4.2.1 Bandwidth consumption

Bandwidth usage is a good indicator for a system’s scala-
bility, as the main resource bottleneck in large-scale NVEs
is the bandwidth [11]. Systems are scalable as long as the
bandwidth usage of each node remains bounded. Figure 7
shows the per-node, per-second bandwidth consumption of
VoroCast, FiboCast and VON. We can see that the proposed
schemes incur less bandwidth than VON. This is because
our schemes are based on forwarding and can apply mes-
sage packing and compression to reduce bandwidth usage.
If we set a bandwidth limitation for each node, we can see
that FiboCast accommodates the most nodes, followed by
VoroCast and VON (e.g., if each node has only 15 KB/s
bandwidth, then FiboCast, VoroCast and VON can accom-
modate a total of around 1000, 500, and 200 nodes, respec-
tively). Note that by simulating a growing number of nodes
with a fixed AOI, our simulations test the performance for
both system and AOI scalability (i.e., AOI scalability is di-
rectly related to system scalability in our scenarios).
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4.2.2 Neighborship consistency

While the scalability of VoroCast and FiboCast may be su-
perior than the original VON, we should also evaluate their
main drawbacks in terms of the reduced consistency due to
more latency and less updates. Neighborship consistency
[14] can be a good indicator and is defined as follows.

NCi =
KNi

ANi

NCi is the neighborship consistency for node i, and is
defined as the ratio of the number of known AOI neighbors
KNi to the number of total, actual AOI neighbors, ANi.

For example, if a node has 100 AOI neighbors but is only
aware of 90, its neighborship consistency is 90%. A global
neighborship consistency NC can also be calculated by av-
eraging those from the individual nodes. Figure 8 shows
the global neighborship consistency of VoroCast, FiboCast
and VON. In VON, each node sends messages to all AOI
neighbors directly, so it maintains very high consistency.
The consistency of VoroCast is above 95%, which is ac-
ceptable. The overall consistency of FiboCast is worse than
VoroCast. However, if we look more closely at the consis-
tency within a smaller zone from the AOI center (e.g., 25%,
50%, 75% and 100% of the AOI radius from the center),
we see that neighborship consistency is actually higher than
95% for the 25%, 50%, and 75% zones, which means that
for practical purposes good consistency is still maintained.
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Figure 8. Neighborship consistency

4.2.3 Drift distance

Drift distance is another way to measure the consistency in
node positions, and is the difference between the real and
observed positions of nodes. It is defined as follows [11].

DDi = AVG |OPj −RPj |
j∈AOIi

DDi is the average drift distance for node i calculated
from the set of i’s known AOI neighbors (AOIi). OPj and
RPj are, respectively, the observed and the actual positions
of a known AOI neighbor j of node i. Again, a global drift
distance DD can be calculated by averaging those from the
individual nodes. Drift distance reflects the accuracy of AOI
neighbor positions, and is basically determined by message
latency. Since FiboCast adjusts the update frequency adap-
tively, its latency is highly variable, and we exclude it from
the comparisons.

Figure 9 shows the drift distances of VoroCast and VON
for 50 to 500 nodes. Drift distances for VON are near
0 since all updates are transmitted in one hop. VoroCast



trades drift distance for AOI scalability: its drift distances
grow gradually with the number of AOI neighbors. We also
observe that the drift distances grow proportionally to the
number of hops in the communication path. For example,
the drift distance of VoroCast is about 12.8 units for 500
nodes, when the average path is 7.5 hops; and around 8.7
units for 300 nodes, when the average path is about 5.2
hops. However, these drift distances are acceptable when
compared to an AOI radius of 200 units.
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5. Conclusion

In this paper, we propose two AOI-cast schemes for P2P-
based NVEs: VoroCast and FiboCast. They support better
AOI scalability than existing direct connection approaches.
VoroCast is based on Voronoi diagrams to construct a tree
spanning all AOI neighbors of a message originator, so that
a sender’s peak bandwidth usage is reduced by distribu-
tion to neighbors. Further bandwidth reduction can also be
achieved via message packing and compression. FiboCast
is useful for loss-tolerable frequent updates such as posi-
tion or voice packets. It dynamically adjusts the message
dissemination range according to a Fibonacci sequence so
that neighbors with fewer hop counts from the AOI center
can get messages more frequently than those further away.
Our simulation results show that VoroCast and FiboCast
consume less bandwidth than the direct connection scheme
VON, thus achieving better AOI scalability, while keeping
relatively fair neighborship consistency and drift distances.
One potential drawback of our schemes is that the child
node degrees are based on peers’ positions but not band-
width capacities, which may be a problem in some cases.
Also, for FiboCast, how to select a proper segment from
the Fibonacci sequence for specific environments remains
unsolved. Addressing these issues will be our future work.
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