Peer-to-Peer Computing

Homework 2
Ting-Yao Chiou 邱鼎堯 93522077
Freenet keys
1. Key pairs：
It is important to distinguish "Keys" and "key pairs" on Freenet. The former is used to address content in Freenet (see next section), the latter is used to check authenticity of data that is in Freenet. Most utilities allow you to generate a key pair, if you need one. However fproxy does not have a nice form for that purpose. So if you need a key pair (e.g. for some tests with SSK keys), you have to open a terminal window or command prompt, change to your Freenet directory and type
java -cp freenet.jar freenet.client.cli.Main genkeys
there. The result will show you a public and a private key, like this:
Priv. key: AK3AmGr3TtoJYK8pH8TapcHgL7p9
Pub. key: zqAWHHcbu2KtCRbOrnZMJ7loajo
 These keys are valid keys - however, do not use them for anything besides tests; as the private key is available to everyone here, this key pair has lost all of its security now.
2. Keys：
 Keys are used in Freenet to store or retrieve information. Information on Freenet consists of data and metadata. The data is what the user sees from a key, the metadata contains information needed for the retriever to use the content (e.g. redirects, mapfiles, or simply the type of a file). As freenet cannot be searched (yet), it is important to know the key if you want to get information. Data stored into a key cannot be removed from freenet (except if it gets dropped because no one requests it). Trying to store data into a key that is already used creates a "key collision". So data cannot be overwritten or updated either. Generally a key looks like "freenet:type@name". The freenet: prefix is optional. Key types consist of three uppercase letters of which the last on is (at least, until now), a "K". When you reference an absolute key from a freesite, you use the syntax
link
CHK (Content Hash Key)

	Example:
	CHK@hdXaxkwZ9rA8-SidT0AN-bniQlgPAwI,XdCDmBuGsd-ulqbLnZ8v~w

	Description:
	A content hash key consists of two parts of machine readable data (separated by a comma) that are generated from the content of the file. As this key type is the only one that is not limited to 32K data, it is usually used to store the actual files. All other key types usually only contain metadata. As two identical files will get the same CHK, one will get a key collision if he tries to upload a file that is already in Freenet - so CHK files save space in Freenet by preventing to insert the same file several times.
As for generation of the key both data and metadata are used, you can, on the one hand, reinsert a file by changing its metadata slightly. On the other hand, CHKs with metadata mostly do not collide because of the different metadata different programs use. So for insertion programs it is a good idea not to use metadata on CHKs at all (for splitfile chunks (see below) it is mandatory not to have any metadata.) [I planned to add this paragraph to part two, but as Kadmos wanted it here, I added it here...]
Theroetically, it would be possible to have two files that get the same CHK (as chk length is short and files are usually longer), but you would have to "brute force" lots of files if you want to archieve this, as the way CHKs are computed can not be reversed. I myself did not hear of any case where two different files collided.
Usually you won't see many CHKs, as they are usually "hidden" in a redirect or a mapfile. If you see it, there is usually a "/filename.ext" part appended to it. Although that is not officially specified, fproxy will use that file name if you try to save a CHK target to a file.

	Inserting:
	For inserting something as CHK, simply specify "CHK@" as key. Freenet will calculate the real key for you and show it to you.

	Advantages:
	· Every CHK content is only stored once

· no size limitations of the content

· low risk of key collisions (with different data)

· cannot be hijacked

· insertion is easy (no key pair needed)

	Disadvantages:
	· You cannot determine the key before you have the file (you cannot say: next version will be here)

· The keys cannot be remembered by humans

· you don't know what the content should be when you see the link

· the filenames look ugly if you save them

	Uses:
	· Saving files that are referenced from metadata of other keys

· saving huge metadata (e.g. large mapfiles)

· saving split file metadata

· Files you announce via another channel (e.g. a mailing list)

· One shot freesites

KSK (Keyword Signed Key)

	Example:
	KSK@gpl.txt

	Description:
	A keyword signed key is simply some human-readable text that does not need to have any relation to the file that is in it. However, usually it will describe what is in the key. The problem of those keys is that there is no control - everyone can insert data to any KSK if he does not get a key collision. Even if a KSK is used in Freenet, one can try to upload another file to that KSK with some small HTL value (HTL specifies how many nodes should be searched for the data) - if that succeeds (he "hijacked" the key), it will be kind of random which content is found first by someone who requests it. So if you try to fetch the key above, you will not necessarily get the GPL (General Public License, the license Freenet uses) - more likely you will get (i. e. I also got) a picture of a naked woman or the BSD Licence - or something completely different.
Due to that fact, KSKs cannot be used well to announce places where one gets the next "edition" of a site - as everyone could insert something there and it would not even be possible to determine who did that.
Usually this key type will only contain metadata that redirects to the CHK with the actual content.

	Inserting:
	The key for instering and retrieving is completely the same - something inserted as KSK@example will be retrievable as KSK@example.

	Advantages:
	· Key can easily be remembered

· Keys can be determined before having the actual content (NIM systems)

· Everyone can insert into a given key

· when data can be indexed uniquely (e. g. author/title), information can be retrieved without knowing the special key

· insertion is easy (no key pair needed)

	Disadvantages:
	· can be hijacked

· higher risk of a key collision (people use short names)

	Uses:
	· NIM - sending a message to a freesite author

· nessage indexes in chat systems like Frost

· Saving files you announce via another channel (e.g. a mailing list), if you don't think someone hijacks them

· tests

SSK (Signed/SVK Subspace Key)

	Example:
	SSK@kWu5Osv~VAI3-kH7z8QIVxklv-YPAgM/fishtools/34/active.jpg

	Description:
	A signed subspace key consists of two parts: a public key from a keypair and some human-readable text (that may contain slashes) separated by the characters "PAgM/". To insert a file into a SSK, you need the private key of that keypair - for retrieving you only need the public key. So these keys allow to control a "subspace" of Freenet keys by your key pair. So you can insert a file as e.g. SSK@zqAWHHcbu2KtCRbOrnZMJ7loajoPAgM/example/1/test.txt and tell others that you'll upload the next version at SSH@zqAWHHcbu2KtCRbOrnZMJ7loajoPAgM/example/2/test.txt. A more automated way to do this are DBRs (see below) or Edition sites (although the latter use exactly that principle to tell people where they can find the next editions). If you do not give your private key away, virtually no one will be able to hijack your SSK keys.
Usually this key type will only contain metadata that redirects to the CHK with the actual content.

	Inserting:
	For inserting you need your private key. A file inserted as SSK@AK3AmGr3TtoJYK8pH8TapcHgL7p9/example.txt can be retrieved at SSK@zqAWHHcbu2KtCRbOrnZMJ7loajoPAgM/example.txt (I'm using the example keypair mentioned above for this example)

	Advantages:
	· Keys cannot be hijacked - even if they are still empty

· If you use your own key pair, and do not use keys twice, there is no risk of key collisions

· Keys can be determined before having the actual content (for "updating")

	Disadvantages:
	· insertion is more difficult (you need a key pair)

· Only some people can insert into a given key

	Uses:
	· Freesites (DBR or Edition)

· announcement boards in chat systems like Frost

SVK (Signature Verifying/Verification Key)

	Example:
	Did not find one in Freenet, structure is like SVK@zqAWHHcbu2KtCRbOrnZMJ7loajoPAgM,EkEn2wH1J9Z2NSVIuYn~3Q

	Description:
	These keys are rarely used in Freenet - most likely because they don't have advantages. The first part of the key is a public key (with "PAgM"), the second one is generated from the file. However, a SVK collides as soon as the first part is used; so you can only insert one file per key pair. These keys should get a way of ebing updated some time ago (in V0.3 documentation that is mentioned), but most likely this will never happen.

	Inserting:
	Why inserting that kind of key? Okay, For inserting you need only your private key. A file inserted as SVK@AK3AmGr3TtoJYK8pH8TapcHgL7p9 can be retrieved at e. g. (depends on the contents) SVK@zqAWHHcbu2KtCRbOrnZMJ7loajoPAgM,EkEn2wH1J9Z2NSVIuYn~3Q (I'm using the example keypair mentioned above for this example).

	Advantages:
	· None - use SSKs

	Disadvantages:
	· Only one file per key pair

· All disadvantages of SSK and CHK above.

	Uses:
	I did not find any SVKs in Freenet. However, for the lazy ones of you who prefer asking me instead of trying it, it is still possible to use them in 0.5/0.6

Abstract：

1. Freenet是英國學生Ian Clarke創建的一種點對點應用程式(Peer-to-Peer Application)，他能在讀者和作者都處在匿名的狀態下容許發佈、複製和搜索資料。Freenet很重要的一個特點是：所有資料都是加密傳輸、分散的方式存放，而且多次存放，具體一份資料的位置是沒人曉得的。而且它們的網址(IP address)和連接埠(Port)是不斷變化著的，Freenet中的檔案是通過二進位的Index key進行標示的，而Index key又是透過雜湊運算(Hash function)得到的，目前Freenet使用的是160 bits SHA-1作為進行運算的Hash function。
2. KSK是最簡單、用戶最易使用的key type，因為他的名字是用戶建立檔案時自己所選擇的，一個典型的KSK具有以下的形式：
Freenet: KSK@meaningful_name.txt
對於一些用戶端，可以省略KSK@，用戶端若沒輸入則預設便是使用就是KSK。當新建立一個檔案時，如果已經有其他用戶用不同的名字將相同內容的檔案插入到Freenet中，系統將會通知用戶已經存在有一份拷貝，這樣兩個不同的KSK可以共用同一個CHK。例如：要插入freenet:KSK@coolboat.jpg，而其他用戶已經建立過這個檔案了，不過他的KSK為：freenet:KSK@red_sailboat.jpg，這時，你將會收到通知，這個檔案的CHK已存在於網路中，但你的KSK仍然可以建立，這時將會有兩個不同的KSK指向同一個CHK。然而，由於KSK的這種統一名字空間結構，使得目前還存在很多問題。如：現在還沒有辦法防止兩個用戶獨立的為兩個不同的檔選擇同一個描述性字串，使用流行的術語描述插入大量的垃圾檔案等。
3. 另外SSK提供個人名字空間來標示不同的用戶的key attribute。一名用戶透過隨機產生的一對公鑰(public key)、私鑰(private key)標示他自己的名字空間。當要建立一個檔案時，他像前面提到KSK一樣，選擇一個簡短的、描述性文本字串。名字子空間公鑰和描述性字串分別進行雜湊運算產生單向字串，然後對這兩個字元進行互斥或(XOR)運算，XOR運算的結果再進行雜湊運算，產生的字串就做為這個檔的檔索引，標示插入的檔案。另外因儲存資料需出示名字子空間的私鑰(private key)，因此只有子空間的擁有人才能增加檔案。
4. 一個CHK直接來自於對相關檔案的內容做雜湊運算。這給每個檔提供一個唯一的檔密鑰匙。檔案自身的資料安全通過隨機生成的私鑰(private key)進行加密。為了允許Freenet中的其他用戶可以檢索到這筆檔案，用戶還要在發佈CHK索引鑰匙的同時，一同發佈檔的解密鑰匙。值得注意的是，解密鑰匙從來不和發佈檔案儲存在一起，而是與檔索引鑰匙一起發佈。另外，在使用間接連接的機制時，CHK和SSK的協同工作非常重要。為了更新一個檔案，用戶首先在用CHK密鑰方式插入這個檔案。接著他在以CHK密鑰為內容的SSK密鑰下插入一個間接的檔案。第一步：為了更新一個檔案，檔案的擁有者首先產生一個新的CHK（根據更新的檔案內容），這個版本應該不同於之前舊版本的內容雜湊密鑰，並把檔案插入網路中，第二步：接下來他在原有SSK下插入一個新的間接檔案指向更新後的檔案，當這次插入建立時碰到擁有這個檔案的舊版本節點的時候，將會導致發生密鑰衝突。這個節點將檢查新版本數字簽名，經過驗證，這個版本的密鑰是有效的，而且版本更新，於是決定取代舊版本的索引密鑰。因此SSK保證指向最新的版本的檔，而舊版本的密鑰也能繼續通過CHK索引直接查詢（當然，如果很少得到索引請求，舊版本檔案最後會從網路中刪除）。這個機制能被用來像管理一般檔案一樣對目錄進行管理。
參考資料：
http://www.freenetproject.org/
 http://freenetgw.bishopston.net/freenet-explained/.
 http://www.freenethelp.org/html/FreenetInternals.html
