Peer-to-Peer Midterm report

93522071 凌瑋駿

Basic Idea

The basic idea behind all the techniques is to reduce the number of nodes that receive and process each query. Doing so reduces the aggregate load generated by each query across the network. Assuming that each node can only answer queries about their own content, then naturally, the fewer nodes that process the query, the fewer results that will be returned. The techniques will only be effective if most queries can be answered by querying fewer nodes

Problem Overview

The purpose of a data-sharing P2P system is to accept queries from

users, and locate and return data (or pointers to the data) to the

users. Each node owns a collection of files or records to be shared with other nodes.

A P2P overlay network can be viewed as an undirected graph, where the vertices correspond to nodes in the network, and the edges correspond to open connections maintained between the nodes. Two nodes maintaining an open connection between themselves are known as neighbors. Messages may be transferred in either direction along the edges. For a message to travel from node A to node B, it must travel along a path in the graph. The length of this traveled path is known as the number of hops taken by the message. Similarly, two nodes are said to be n hops apart if the shortest path between them has length n.

When a user submits a query, her node becomes the source of the query. A source node S may send the query message to any number of its neighbors. The routing policy in use determines to how many neighbors, and to which neighbors, the query is sent. When a node receives a Query message, it will process the query over its local collection. If any results are found at that node, the node will send a single Response message back to the query source.

When a node receives a Query message, it must also decide whether to

forward the message to other neighbors, or to drop it.

Metrics

To measure the effectiveness of the techniques following metrics are measured

Cost: When a query message is propagated through the network, it passes

through a number of nodes. Each of these nodes spends processing

resources (i.e., cycles) on behalf of the query, whether it be to

forward the query, to process the query, or to forward responses back to the source. Similarly, each node uses bandwidth resources on behalf of the query, as it sends and receives Query and Response messages. The

main cost of queries can therefore be described in terms of bandwidth

and processing cost. As the cost of a given query Q is not incurred at any single node in the network therefore the costs are discussed in aggregate. Hence, the two cost metrics are:

· Average Aggregate Bandwidth: the average, over a set of representative queries Qrep, of the aggregate bandwidth consumed (in bytes) over every edge in the network on behalf of each query.

· Average Aggregate Processing Cost: the average, over a set of

 representative queries Qrep, of the aggregate processing power

 consumed at every node in the network on behalf of each query.

Quality of Results: Quality of results can be measured in a number of ways; The following metrics are used:

· Number of results: the size of the total result set.

· Satisfaction of the query: Notifying the first Z results only to the user. The idea is that given a sufficiently large Z, the user can find what she is looking for from the first Z results.

· Time to Satisfaction: Another important aspect of the user experience is how long the user must wait for results to arrive

Local Indices

In the Local Indices technique, a node n maintains an index over the data of each node within r hops of itself, where r is a system-wide variable known as the radius of the index (r = 0 is the degenerate case, where a node only indexes metadata over its own collection). When a node receives a Query message, it can then process the query on behalf of every node within r hops of itself. In this way, the collections of many nodes can be searched by processing the query at few nodes, thereby maintaining a high satisfaction rate and number of results while keeping costs low.

The Local Indices technique works as follows: a policy specifies the depths at which the query should be processed. All nodes at depths not listed in the policy simply forward the query to the next depth.

To create and maintain the indices at each node, extra steps must be taken whenever a node joins or leaves the network, and whenever a user updates his local collection (e.g., inserts a file). When a node X joins the network, it sends a Join message with a TTL of r, which will be received by all nodes within r hops. The Join message contains sufficient metadata over X's collection for another node to answer

queries on node X's behalf. When a node receives the Join message from X , it will in return send a Join message containing metadata over its collection directly to X (i.e., over a temporary connection). Both nodes then add each other's metadata to their own index.

When a node leaves the network or dies, other nodes that index the leaving node's collection will remove the appropriate metadata after a timeout.

When a user updates his collection, his node will send out a small Update message with a TTL of r, containing the metadata of the affected data element (e.g., file or record), and indicates whether the element was inserted, deleted, or updated. All nodes receiving this message subsequently update their index.

· Problem 1：

[image: image1.png]
上圖顯示 Radius(r)在4個或是8個鄰居節點下，Index的大小關係。由於實驗最多只考慮8個neighbors，但是實際的 peer-to-peer network 下neighbor並不只8個而已。因此，Local Indices 於實際的 peer-to-peer network 可能會出現 Index 太大的問題。而且，當處理join/leave時，也會使的bandwidth cost 以及 processing cost 增加許多。
· Problem 2：
[image: image2.png]
上圖顯示 Local Indices 於 r=1 的時候 performance 最佳，即 aggregate bandwidth cost可以降低許多。但是我的疑問是，如果 radius 取1的話表示各點只 keep周圍與其距離1hop的點的資訊，感覺上並沒有發揮到Local Indices的精神，若是 r 值可以更大則搜尋速度將會提高更多。
Solution：
1. 由於 Local Indices 每一個節點需要Keep距離他 r 個hop點的index，neighbors增加太多時勢必造成Index量過大。可使用以下的方式解決：
變更原有 Local Indices 中各節點所keep的hops範圍。在新加入的節點中，節點可以自行考慮要Keep的範圍，即 r 值。其動作如下：

a. r值最少為1而最多為7，且各節點於join時必須提供其r值給相鄰節點作為參考指標。若是在自己選定的r範圍內，其節點的r值比自己大，則自己就不必去Keep它，否則會有大量多餘的indices出現，但是會紀錄對方的r值。
b. 紀錄對方r值的目的在於：若自己(A)的r=1，對方(B)r=5，則若是相鄰(距離r=1)則自己(A)只需要Forward給鄰居(B)點查詢即可。
c. 依照各節點的網路頻寬、處理速度以及儲存容量來決定 r 值得大小。網路頻寬越大、處理速度越快者希望其所能keep的範圍就越大，一來這些節點在做join的動作時較其他節點快，且別的節點來查詢時的搜尋時間也較少。
d. 各節點於搜尋時，參考與其相鄰節點的r值，由r值由大至小的點搜尋之，若是沒有找到結果則將其相鄰點都搜尋完之後跳到r值最大的點繼續搜尋。
e. 為了降低index大小，節點自行決定要keep index的大小，並採用 LRU方式來紀錄 indices，即只保存最近比較常被查詢的index的資料，查詢率較低的index則捨棄之。因此，原本 Local indices於join時即建立好index的方式則要改成固定一時間重新做refresh index的動作。

f. 當節點斷線時不必去通知相鄰節點消除其indices，我認為這個動作的負擔很大，若是有查詢到index但是搜尋不到檔案就視同檔案消失，並且由上一點的做法一段時間再去更新index。
2. 優缺點：

若是依照原本的Local indices是每一個節點都需要keep r hops，對於能力比較差的節點是一項負擔，因此其r的範圍也不能提高太大。上述的做法就是在有條件的擴大r值下，讓整體indices的量不要增加太多。
a. 優點：由於各點可以依照其能力來決定r值大小，因此速度快頻寬高的點搜尋速度會提高，但是相對的其需要服務的範圍也越大。

b. 缺點：r值大的點需要的負擔(頻寬以及儲存的indices)會提高。
· Problem 3：
[image: image3.png]
於上圖中，Iterative Deepening 的 Number of results = 19% 似乎太少了。因為d=5,W=6表示搜尋到離原始點4個hops範圍的點都沒有結果，到了第五個hops範圍才找到。但是Iterative Deepening的方式類似 BFS，而普通BFS搜尋範圍約在7個hops左右，如果7個hops可以有100%的number of results(基準量)，那麼5個hops應該起碼也有50%左右的number of results才算合理。
Reference:
1. http://www.ece.uc.edu/~annexste/Courses/cs690/Search in Peer to Peer Network.doc
2. Improving Search in Peer-to-Peer NetWorks fbyang, hectorg@cs.stanford. Edu Computer Science Department, Stanford University Beverly Yang Hector Garcia-Molina

[image: image4.png]
PAGE
6

