1. Let $\operatorname{KANP}(k, j, Y)$ represent the problem:

$$
\begin{aligned}
& \text { maximize } \sum_{k \leq i \leq j} p_{i} x_{i} \\
& \text { subject to } \sum_{k \leq i \leq j} w_{i} x_{i} \leq Y \\
& x_{i}=0 \text { or } 1, k \leq j
\end{aligned}
$$

Then the $0 / 1$ knapsack problem is $\operatorname{KNAP}(1, n, M)$. Let $g_{j}(c)$ be the value of an optimal solution to $\operatorname{KNAP}(j+1, n, c)$. Clearly, $g_{0}(M)$ is the value of an optimal solution to $\operatorname{KNAP}(1, n, M)$ and $g_{n}(c)=0$ for all c.
(a). Please find the recurrence relation of $g_{j}(c)$ and $g_{j+1}(c)$. (10\%)
(b). Given $n=3, M=10$, and P_{i} and W_{i} as follows:

i	W_{i}	P_{i}
1	10	40
2	3	20
3	5	30

Please represent the above $0 / 1$ knapsack problem $\operatorname{KNAP}(1,3,10)$ as a multistage graph. (10\%)
Ans:
(a)

$$
g_{j}(\mathrm{c})=\max \left\{\mathrm{g}_{\mathrm{j}+1}(\mathrm{c}), \mathrm{g}_{\mathrm{j}+1}\left(\mathrm{c}-\mathrm{w}_{\mathrm{j}+1}\right)+\mathrm{p}_{\mathrm{j}+1}\right\}
$$

(b)

2. A string is a sequence of symbols; for example, $X=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$ is a string of m symbols $x_{1}, x_{2}, \ldots, \chi_{m}$. When we delete 0 or more symbols (not necessarily consecutive) from X, we get a subsequence of X. Write an algorithm using principle of optimality (dynamic programming) to calculate the length of the longest common subsequence of $X=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$ and $Y=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$. (15\%) What is principle of optimality? (5\%)
Ans :
(1)
\rightarrow Let $L[i, j]$ be the length of an LCS of the prefixes
$X i=\langle x 1, x 2, \ldots, x i>$ and $Y j=\langle y 1, y 2, \ldots, y j\rangle$,
for $1 \leqq i \leqq m$ and $1 \leqq j \leqq n$.

$$
\begin{aligned}
& L[i, j]=0 \text { if } i=0 \text {, or } j=0 \\
& =L[i-1, j-1]+1 \text { if } i, j>0 \text { and } x i=y j \\
& =\max (L[i, j-1], L[i-1, j]) \text { if } i, j>0 \text { and } x i \neq y j
\end{aligned}
$$

(2)

Principle of Optimality: In an optimal sequence of decisions or choices, each subsequence must also be optimal.

3．Write the Dijkstra＇s single－source shortest path algorithm（10\％）and show that it is optimal in the worst case．（10\％）

Ans：
（a）

```
Dijkstra (G, w, s) { //G=(V,E)
    for each vertex v \in V[G] // Initialization
        do d[v]}\leftarrow\infty //將所有的 S 到 v 的距離設爲 \infty
            |[v]}\leftarrow\textrm{NIL
    d[s]}\leftarrow0 //將 s 到 s 的距離設爲 
    S\leftarrow\varnothing // S 爲已確定最短路徑之 vertex 的集合
    Q \leftarrow V[G]
    while Q # \varnothing
        do u \leftarrow Extract-Min(Q) //從Q 中找出路徑爲最短之
    vertex
                S}\leftarrow\textrm{S}\cup{\textrm{u}}\quad//將u加入 S 中,
                for each vertex v \in Adj[u]
                //對於每一個與u相鄰的v,若 s到v的距離比 s 經由u到v的
                    距離長,則將最短路徑設爲此
                        if d[v]>d[u]+w(u,v)
                                then d[v]}\leftarrowd[u]+w(u,v
                                \pi[v]}\leftarrow\textrm{u
    }
```

（b）It can be easily seen that the worst－cast time complexity of Dijkstra＇s algorithm is $\mathrm{O}\left(\mathrm{n}^{2}\right)$ due to the repeated operations to calculate $\mathrm{L}(\mathrm{w})$ ．From another view of point，the minimum number of steps to solve the single－source shortest path problem is $\Omega(\mathrm{e})$ where e is the number of edges in the graph because every edge has to be examined．In the worst case，$\Omega(\mathrm{e})=\Omega\left(\mathrm{n}^{2}\right)$ ． Therefore，in this sense，Dijkstra＇s algorithm is optimal．

4．Let $\mathrm{T}(n)$ be the time complexity of an algorithm and $\mathrm{T}(n)=2 \mathrm{~T}(n / 2)+n$ ．Please represent $\mathrm{T}(n)$ in the Big O notation．（10\％）
Ans：
O（nlogn）

5．Given a Voronoi diagram for the 6 points below，please find the Delaunay
triangulation for the 6 points. (10\%)

6. Please merge the following left and right Voronoi diagrams into one Voronoi diagram (10\%)

7. A triomino is an L shaped object that can cover three squares of a chessboard. Please tile the following 8×8 defective chessboard with 21 triominos. (10\%)

