
Reconfigurable Web Wrapper Agents for Web Information Integration

Chun-Nan Hsuy, Chia-Hui Changz, Harianto Sieky, Jiann-Jyh Luy, Jen-Jie Chiou�

yInstitute of Information Science, Academia Sinica, Nankang, Taipei, Taiwan 105
zDept. of Comp. Sci. and Info. Eng., National Central University, Chung-Li, Taiwan 320

�DeepSpot Intelligent Systems, Inc., Taipei, Taiwan, 104

Abstract

This paper provides a solution for rapidly build-
ing software agents that can serve as Web wrap-
pers for biological information integration. We de-
fine an XML-based language called WNDL, which
provides a representation of a Web browsing ses-
sion. A WNDL script describes how to locate the
data, extract the data and combine the data. By ex-
ecuting different WNDL scripts, user can automate
virtually all types of Web browsing sessions. We
also describe IEPAD, a data extractor based on pat-
tern discovery techniques. IEPAD allows our soft-
ware agents to automatically discover the extrac-
tion rules to extract the contents of a structurally
formatted Web page without the need to label a
Web page to train a wrapper. With a programming-
by-example authoring tool, a user can generate a
complete Web wrapper agent by browsing the tar-
get Web sites. We have built a variety of applica-
tions to demonstrate the feasibility of our approach.

1 Introduction
The information integration system provides its users a single
cohesive view with seamless integrated information that can-
not be easily accomplished by a single information provider.
Information integration systems allow their users to formu-
late their queries in domain relation terms defined in advance
to describe a target application domain. Then a mediator will
construct a query plan to decompose the user query into sub-
queries to external data sources and determine execution and
data flow orders of the subqueries. Mediators rely on wrap-
pers to allow for transparent access to the data sources. Wrap-
pers serve as the translators between the mediator and the data
sources. Therefore, a wrapper is required for each type of data
sources. Since the largest and the most up-to-data biological
data sources are on the Web, building wrappers for Web data
sources is important.

Web information integration is different from database in-
formation integration due to the nature of the Web, where data
are contained in interlinked Web pages rather than tables or
objects with clearly defined schema as in database systems.
Building wrappers for relational databases is relatively easy
because they are ready for access by another program. Web

wrappers, however, must automate Web browsing sessions to
extract data from the contents of the target Web pages. But
each Web site has its particular page linkages, layout tem-
plates, and syntax. A brute-force solution is to program a
wrapper for each particular browsing session. That solution,
however, may lead to wrappers that are sensitive to Web site
changes and thus may become difficult to scale up and main-
tain. Our solution emphasizes the reconfigurability of the
Web wrappers so that they can be rapidly developed and eas-
ily maintained without skillful programmers.

This paper provides a solution using an XML-based lan-
guage, called WNDL (Web Navigation Description Lan-
guage). Scripts written in WNDL are interpreted and exe-
cuted by a WNDL executor, which offers the following fea-
tures:

1. declaratively represent complex navigation and data
gathering behavior of a user session,

2. XML format that eases information interchange between
applications,

3. accumulate and integrate data extracted from Web pages
along the traversal,

4. handle dynamically generated hyperlinks and CGI query
HTML forms,

5. tolerate mal-formed HTML documents.

An early prototype of our system is equipped with a wrap-
per induction system called Softmealy [Hsu and Dung, 1998]
to generate data extractors. Recently, we have developed an-
other algorithm called IEPAD (an acronym for information
extraction based on pattern discovery) [Chang et al., 2003;
chia Hui Chang and Lui, 2001]. Unlike the work in wrap-
per induction [Kushmerick et al., 1997; Muslea et al., 1999],
IEPAD applies sequential pattern mining techniques to dis-
cover data extraction patterns from a document. This removes
the need of labeling training examples and thus minimizes
human intervention. There are some heuristic-based work on
the market that claim to be able to extract data from the Web
automatically. However, these work are limited to a very nar-
row class of Web pages that matches their heuristics. In con-
trast, IEPAD does not depend on heuristics.

A complete Web wrapper agent includes a WNDL script
as well as IEPAD data extractors. We also developed a
programming-by-example authoring tool which allows users



to generate a Web wrapper agents by browsing the target Web
sites for their particular information gathering task. The gen-
erated Web wrapper agent can be reconfigured through the
same authoring tool to maximize the maintainability and scal-
ability for a Web information integration system. This paper
describes more on WNDL and less on IEPAD due to the page
limit. For more details on IEPAD please see [Chang et al.,
2003; chia Hui Chang and Lui, 2001].

2 Web Navigation Description Language
(WNDL)

The Web Navigation Description Language (WNDL) is an
application of eXtensible Markup Language (XML) for de-
scribing a Web browsing session. This section presents the
definition of WNDL, the executor that executes a script in
WNDL, and the authoring tool that generates WNDL scripts.

Although the terminologies used in this section are primar-
ily based on a working draft, Web Characterization Terminol-
ogy & Definitions Sheet [Consortium, 1999], from the World
Wide Web Consortium (W3C), we reuse some of these terms
and endow them with slightly different meanings. Their spe-
cific meanings in this context are defined as follows.

Definition 2.1 (Logical Web Site) A cluster of Web pages
that are related to each other, each page contains certain
amount of data. The data distributed among these pages can
be integrated together and have a logical meaning.

Definition 2.2 (Web Page Class) A set of Web pages that a
given data extractor can be applied to parse and extract their
contents.

Though the definition depends on the expressive power of
the given data extractor, a Web page class usually refers to
a set of related Web pages generated by one single CGI pro-
gram or Web pages with an identical layout template. For
example, the output pages of PubMed’s keyword search ser-
vice comprise a Web page class.

2.1 WNDL Definitions
As all applications of XML, a WNDL script consists of a set
of elements. Each element may have a set of attributes and
subelements. In WNDL, a user session can be described by
a data Web map (DWM), which is conceptually a directed
graph with nodes and edges. The DWM map is the primary
data container in a WNDL script. The information stored in
DWM describes how to reach destined Web pages and how to
extract the contents from those pages. The definitions of the
subelements of DWM are enclosed in element Map. Subele-
ments ofMap includeEntrance and one or moreNode ele-
ments, and elementEntrance contains a subelementEdge.
The edge in element Entrance represents the way to ac-
cess a logical Web site outside the scope of the defined DWM
without further interaction with the Web server. Typically,
this leads to the front page of a Web data source. For ex-
ample, the entrance to retrieve papers in PubMed is via the
URL http://www.ncbi.nlm.nih.gov/PubMed, its
front page.

In the following subsections, we will go through a com-
plete example for modeling the browsing session of retrieving

<!-- This is the entrance edge to Node1. -->
<edge ID=‘1’ dest=‘Node1’ method=‘post’

url=‘http://www.ncbi.nlm.nih.gov/genome/guide/gquery.cgi’>
<QueryParam FormInput=‘db’ value=‘0’/>
<QueryParam FormInput=‘term’ value=‘AIDS’/>

</edge>

<!-- This is an edge to Node2 -->
<edge ID=‘2’ src=‘Node1’ dest=‘Node2’ method=‘form’>
<QueryForm=‘&form1’/>
<QueryParam FormInput=‘&imglink’/>

</edge>

<!-- This is an edge within Node1 -->
<edge ID=‘3’ src=‘Node1’ dest=‘Node1’ method=‘form’

timeouts=‘20’ retry=‘3’ loops=‘100’>
<QueryForm=‘&form2’/>
<QueryParam FormInput=‘&nextTen’/>

</edge>

Figure 2: Edges in the WNDL script for PubMed

papers in the well-known online biomedical paper collection
PubMed. The browsing session for PubMed can be perceived
conceptually as a graph with two nodes and three edges as
Figure 1 depicts.

Data Web Map Edge
An Edge in a DWM represents a possible mean to obtain a
page that belongs to a Web page class denoted by the desti-
nation node of this edge. A DWM edge serves as the con-
tainer of the necessary information of actual HTTP requests
for both statically and dynamically generated HTML docu-
ments. The information for the requests consists of a set of
parameters. Values of these parameters can be either speci-
fied in the WNDL script or bound during the run-time.

There are three edges in the example model. Edge 1 sim-
ulates the action of submitting a new query. Edge 2 simu-
lates the action of browsing search results page by page num-
bered from 1 to 10 (each page contains 20 search results).
Edge 3 simulates the action of jumping to the eleventh
page. For most Web sites, usually a next page button leads to
the following search results (say 21 to 40). However, PubMed
provides a next button “ii” which leads to search results 201
to 220. To get the next twenty search results, we need to fol-
lowing the ten image links (numbered 1 to 10) one by one
and then follow the button “ii” for the next 200 results if
they exist. Note that unlike URL hyperlinks that can be usu-
ally seen in a Web page, the image links for next pages are
IMAGE INPUT f“page 1” to “page 10”g of the form named
“frmQueryBox.”

The edges involved in the above browsing steps are en-
coded in WNDL as shown in Figure 2. Edge 1 is the en-
trance edge of this map that sends the query to get the re-
sulting Web page, i.e., Node1 in this case. The URL at-
tribute can be a constant or a variable. In WNDL, HTML
forms are treated as parameterized URLs. Their parameters
are specified in element QueryParam. Again, the value of
QueryParam can be a constant or a variable. Note that
some Web sites use a user session ID mechanism to recog-
nize HTTP requests from an identical user to keep track of
a user session. This mechanism helps Web servers to deter-
mine the contents of Web pages they should respond for each
user. If such a mechanism is used, we have to start from a
static link to extract the dynamically generated session ID in-



�����

�����

�����

�	�� �

�	�� �

Figure 1: Conceptual illustration of the data Web map for PubMed

stead of sending an HTTP request directly to obtain a destined
page.

Once the first connection is successful, it leads us to the
destination Node1. From Node1, we can continue the next
connection to Node2 via Edge 2. As described above,
Edge 2 simulates the action of browsing search results page
by page. The HTTP connection information is embedded in
the Web pages and can be extracted to bind the parameter
values of Edge 2. In this case, since the values underly-
ing the images of the page numbers are not URL links but
image submission INPUT, the form that specifies the action
CGI must be specified. The image submissions and the query
form can be extracted and denoted by two variables, &form1
and &imglink, respectively. The connection can be speci-
fied by elements QueryForm and QueryParam. How the
values of these variables are extracted for Node1 will be de-
scribed in Section 2.1.
Edge 3 is an edge that has identical source and destina-

tion node as depicted in Figure 1. Therefore, it is a self-
looping edge. Like Edge 2, the query type of Edge 3 is
an HTML form, where QueryForm is specified by variable
&form2 and QueryParam refers to variable &nextTen.
During the run-time, Node1 will form a self-loop. As de-
scribed above, virtually any logical browsing session can be
expressed in WNDL.

Element Timeout is also a subelement of Edge.
Timeout contains the control information of the event han-
dling for timeouts. In WNDL, the number of retry attempts

and the time interval between each attempt can be specified.
The specified time interval is equal to the time bound of a
timeout event. If all attempts fail, the executor of WNDL will
throw an exception signal to its invocator.

Data Web Map Node
A DWM node represents one Web page class in a target logi-
cal Web site. Defined again here, a Web page class is a set of
Web pages with similar layout templates such that one data
extractor can be applied to successfully. A Web page class
usually represents the pages that are generated by a CGI pro-
gram. The number of Web pages that a CGI program can
generate is innumerable.

In WNDL, each node is a container of data in the pages of
a Web page class. The contents extracted from the Web page
class of a node will be encoded as a database table, whose
attributes must be defined in a schema in advance. For exam-
ple, for the Web page class of Node2 shown in Figure 1, we
want to extract the information of the retrieved papers into a
table with the following four attributes: authors, title, source
(where the paper published), and PMID (PubMed ID). Fig-
ure 3 shows how they are defined in WNDL (see the definition
for Node2). Since each Web page contains twenty search re-
sults, the correct output for this node should be a table of
twenty records with these four attributes.

For each attribute in a table, we can specify our option for
HTML tags filtering (KeepAll, KeepLink, and NoTag).
This determines the behavior of a built-in HTML tag filter
in the executor of WNDL. WNDL also allows us to describe



<node name=‘Node1’>
<schema>
<Attr Name="form1" type=‘edge’ subtype=‘form’ TagFilter="KeepAll"/>
<ExtractRule File=‘node1/rule1/rule.txt’/>
</schema>
<schema>
<Attr Name="form2" type=‘edge’ subtype=‘form’ TagFilter="KeepAll"/>
<ExtractRule File=‘node1/rule2/rule.txt’/>
</schema>
<schema>
<Attr Name="imglink" type=‘edge’ subtype=‘image’ TagFilter="KeepAll"/>
<ExtractRule File=‘node1/rule3/rule.txt’/>
</schema>
<schema>
<Attr Name="nextTen" type=‘edge’ subtype=‘submit’ TagFilter="KeepAll"/>
<ExtractRule File=‘node1/rule4/rule.txt’/>
</schema>
</node>

<node name=‘Node2’>
<schema>
<Attr Name="Authors" type=‘Data’ TagFilter="NoTag"/>
<Attr Name="Title" type=‘Data’ TagFilter="NoTag"/>
<Attr Name="Source" type=‘Data’ TagFilter="NoTag"/>
<Attr Name="PMID" type=‘Data’ TagFilter="NoTag"/>
<ExtractRule File=‘node2/rule1/rule.txt’/>
</schema>
</node>

Figure 3: Nodes in the WNDL script for PubMed

how to join two tables extracted from adjacent nodes for the
output. That way, data extracted during the browsing session
can be aggregated in user defined manners.

The data extractor for a DWM node is specified as the
value of element ExtractRule. The data extractor must
be declarative in the sense that its extraction rules must be
allowed to replace for different Web page classes without
changing the program codes. In our implementation, we ap-
ply Softmealy [Hsu and Dung, 1998] and IEPAD (see Sec-
tion 3) as the data extractors. Other declarative data extrac-
tors can be applied, too. The value of ExtractRule can
be the raw text of a set of extraction rules or an external file,
specified as the value of attribute File of this element.

In our PubMed example, there are two nodes in the map
as shown in Figure 1. Node1 represents the result of the
entrance connection and will be used to extract the paths to
the next pages. Node2 represents query result pages returned
from the search form of PubMed.

In Node1, the information we are interested is the
<Form> HTML tag block in this page. Some Web sites
use user session ID mechanism to recognize HTTP requests
from identical user to keep track of a user session. This helps
Web servers to determine the contents of the Web pages they
should respond for different users accordingly. In some Web
sites, HTTP clients (i.e., a browser) need this ID in order to
continue navigation, whereas some Web sites use this ID op-
tionally. Since PubMed does not belong to any of the above
categories, the HTML query form can be extracted and used
directly. If session ID is used, we have to start from a static
link to extract the query form and the dynamically generated
session ID for the following steps.

There are four sets of extraction rules for Node1. The
first and second sets of the extraction rules extract the query
form that contains the CGI program to the next page of the
query results. Element Schema specifies that the extracted
data will be bound to variables &form1 and &form2. The
third and the fourth sets of the extraction rules extract the IN-

PUTs as the query parameters, which are bound to variables
&imglink and &nextTen. Node2 represents the query
results returned from the search engine of PubMed. The in-
formation we are interested in is the attributes of retrieved
papers, including authors, title, source, and PubMed ID. The
complete WNDL script for PubMed is shown in Appendix.

The schema of the output data is specified in the extrac-
tion rules. The schema dictates which attributes defined in
element Schema of the nodes will eventually appear in the
output data table. In this example, the output data consists of
a table with the four attributes defined in Node2. Section 2.3
explains how to specify the schema.

Composing extraction rules is not trivial and is another re-
search problem itself. In Section 1, we have reviewed several
systems designed to generate extraction rules from training
examples. Section 3 presents our new approach from the per-
spective of pattern mining, which minimizes the need of hu-
man intervention in the generation of extraction rules.

2.2 Architecture and Implementation of WNDL
Executor

The WNDL executor is composed of three components: ex-
ecutor kernel, page fetcher, and data extractor. Figure 4 shows
the relationship between them and the order of execution
steps. A WNDL script can be considered as the configura-
tion file of a Web wrapper agent that wraps a logical Web
site. The configuration file defines the behavior of the Web
wrapper agent. During the execution, the executor kernel in-
vokes the page fetcher and the data extractor according to the
order specified in the DWM map, handles static information
and variable binding information to complete a Web brows-
ing session. The executor kernel maintains a pointer of the
current state to traverse the DWM map. Basically, when the
pointer points to an edge, the kernel invokes the page fetcher
to obtain the next page and moves the pointer to the next node;
when the pointer points to a node, the kernel invokes the data
extractor and moves the pointer to the next edge.

The page fetcher abstracts HTTP connections to higher
level interfaces for the executor. HTML and HTTP fea-
tures that the page fetcher can handle include form element
parsing, GET and POST HTTP methods, cookies, timeout,
user authentication and mal-formed URL handling. The page
fetcher transforms the parameters received from the executor
into low level, executable HTTP requests. After actually ob-
taining a Web page from a Web server, the page fetcher sends
this page back to the executor kernel directly. The executor
kernel then feeds this page and the corresponding extraction
rules to the data extractor. One page may go through this pro-
cess multiple times if there are more than one set of the ex-
traction rules required for this page. The extracted data will
be returned to the executor for further processing.

2.3 WNDL Authoring Tool
In the early version of WNDL [Huang, 2000], the script is
designed to be written by programmers. In this version of
WNDL, the script can be generated automatically by an au-
thoring tool. This authoring tool allows a user to generate a
WNDL script in a programming-by-example manner, that is,
the user simply browse the Web to show the authoring tool



 

 

WNDL Executor Kernel 

Data Extractor Page Fetcher 

Pre and Post 
Processor 

Application 

 

World Wide Web 

WNDL 
script 

Extraction 
Rules 

1

5 HTTP Request 

6 Webpage 

9 

Data 

10

3

11 

2

8 
Webpage 
Scripts 

4 
HTTP 
parameters 

7 

Webpage 

Figure 4: Architecture of WNDL Wrapper Executor

an example user session and the authoring tool will general-
ize the example into a WNDL script that describes this user
session. Figure 5 shows a snapshot of its interface after gener-
ating the complete WNDL script for PubMed. The authoring
tool is equipped with IEPAD and the wrapper induction sys-
tem Softmealy [Hsu and Dung, 1998] to generate extraction
rules for the data extractors. With this authoring tool, it takes
only four steps to generate a WNDL script.

1. Open the front page of the target Web site by specifying
its URL as using a Web browser;

2. Create nodes by clicking the “Add Nodes” button
when browse to a new Web page class;

3. Invoke IEPAD to generate extraction rules for each
node;

4. If more than one node is needed, go back to step 2.

As shown on the left frame of Figure 5, the example script
contains two nodes with five sets of extraction rules.

We can create the edges as described below. The first edge
is created to reach Node1. This is accomplished by click-
ing the submit button with parameters term and db set to
value “aids” and “PubMed”. The submission of this query
is monitored by the system and compared to all forms con-
tained in the front page of NCBI. The submitted parameters
are recorded in QueryParam, which can be a constant value
specified in the script or a variable bound to other query terms
specified by the user during the execution time. For Node1,
we also need to generate four extraction rules as well as spec-
ifying its schema. Each attribute in the schema is either of
type Edge or Data. A Data attribute will appear in the final
output, while an Edge attribute can be one of the four types:
static link, form, submit button or image button. An edge can
be created by a static link or a form with submit/image IN-

Figure 5: Snapshot of the authoring tool of WNDL

PUT. For each Edge attribute, the user has to specify the des-
tination node. Two Edge attributes pointing to the same des-
tination can be combined to create a dynamic edge. Node2
is created similarly.

Once all the nodes and edges are specified, the com-
plete WNDL script can be generated by clicking the “Make
Agent” button. The authoring tool also provides a “Launch
Agent” button for invoking the executor to test the generated
WNDL script.

3 Information Extraction based on Pattern
Discovery (IEPAD)

IEPAD can automatically discover extraction patterns with-
out user-labeled training examples [Chang et al., 2003; chia
Hui Chang and Lui, 2001]. This feature is accomplished by



applying sequential pattern mining to discover the repeats
in a Web page that contains multiple entries of data, such
as tables, itemized lists, etc. The pattern discoverer applies
the PAT-tree based sequence mining technique [Morrison,
1968] to discover possible patterns, and a multi-level ana-
lyzer, which conducts several multiple string alignments for
attribute extraction. A user interface of IEPAD has been im-
plemented and integrated with the authoring tool of WNDL
for users to generate extraction rules of Web pages. IEPAD
discovers a set of candidate patterns for the users to select and
then generate labeled training examples for Softmealy [Hsu
and Dung, 1998; Hsu and Chang, 1999]. Softmealy is a wrap-
per induction system that can generalize the labeled training
examples into extraction rules for the WNDL executor to ex-
tract data from input Web pages.

4 Conclusion
In this paper, we presented a tool to exploit online Web data
sources using reconfigurable Web wrapper agents. We de-
scribed how these agents can be generated and executed based
on the script language WNDL and extraction rule generator
IEPAD. This tool has been applied successfully in a number
of real-world projects. One of the largest projects aims at
integrating seven different classes of public information (e.g.,
government press releases, public announcements, schedules,
public hearing minutes, etc.) available on the Web sites of
1,000 government agencies. A team of about twenty part-
time college students uses our tool to build agents during their
off hours. In four months, the team has successfully built
about 3,000 software agents to accomplish the task. We be-
lieve this tool can boost the productivity of the Web and help
facilitate Web information integration.

Acknowledgements
We acknowledge the contribution of the alumni of AIIA Lab:
Hung-Hsuan Huang, Chien-Chi Chang and Elan Hung for im-
plementing the early version of the system. This research is
supported in part by the National Science Council in Taiwan
under grant NSC-90-2213-E-008-053.

A Complete WNDL Script for PubMed
<map> <header inputValuesPath=‘./inputValues.txt’>

<edge name=‘edge1’ dest=‘Node1’ method=‘post’
url=‘http://www.ncbi.nlm.nih.gov/genome/guide/gquery.cgi’>

<QueryParam FormInput=’db’ value=’0’/>
<QueryParam FormInput=’term’ value=’AIDS’/>

</edge>
<node name=‘Node1’>

<schema>
<Attr Name="form1" type=‘edge’ subtype=‘form’

TagFilter=’’KeepAll"/>
<ExtractRule File=‘node1/rule1/rule.txt’/>

</schema>
<schema>

<Attr Name="form2" type=‘edge’ subtype=‘form’
TagFilter="KeepAll"/>

<ExtractRule File=‘node1/rule2/rule.txt’/>
</schema>
<schema>

<Attr Name="imglink" type=‘edge’ subtype=‘image’
TagFilter="KeepAll"/>

<ExtractRule File=‘node1/rule3/rule.txt’/>
</schema>
<schema>

<Attr Name="nextTen" type=‘edge’ subtype=‘submit’
TagFilter="KeepAll"/>

<ExtractRule File=‘node1/rule4/rule.txt’/>

</schema>
</node>
<edge name=‘edge2’ src=‘Node1’ dest=‘Node2’ method=‘form’>

<QueryForm=‘&form1’/>
<QueryParam FormInput=‘&imglink’/>

</edge>
<edge name=‘edge3’ src=‘Node1’ dest=‘Node1’ method=‘form’

timeouts=‘20’ retry=‘3’ loops=‘100’>
<QueryForm=‘&form2’/>
<QueryParam FormInput=‘&nextTen’/>

</edge>
<node name=‘Node2’>

<schema>
<Attr Name="Authors" type=‘Data’ TagFilter="NoTag"/>
<Attr Name="Title" type=‘Data’ TagFilter="NoTag"/>
<Attr Name="Source" type=‘Data’ TagFilter="NoTag"/>
<Attr Name="PMID" type=‘Data’ TagFilter="NoTag"/>

<schema>
<ExtractRule File=‘node2/rule1/rule.txt’/>

</node>
</map>

References
[Chang et al., 2003] Chia-Hui Chang, Chun-Nan Hsu, and

Shao-Chen Lui. Automatic information extraction from
semi-structured web pages by pattern discovery. Decision
Support Systems, 35(1):129–147, 2003. Special Issue on
“Web Retrieval and Mining”.

[chia Hui Chang and Lui, 2001] chia Hui Chang and Shao-
Chen Lui. IEPAD:information extraction based on pat-
tern discovery. In Proceedings of the Tenth International
Conference on the World Wide Web, pages 681–688, Hong
Kong, China, 2001.

[Consortium, 1999] World Wide Web Consortium. Web
characterization terminology and definitions sheet, May
1999. Working Draft.

[Hsu and Chang, 1999] Chun-Nan Hsu and Chien-Chi
Chang. Finite-state transducers for semi-structured text
mining. In Proceedings of IJCAI-99 Workshop on Text
mining: Foundations, Techniques and Applications, pages
38–49, Stockholm, Sweden, 1999.

[Hsu and Dung, 1998] Chun-Nan Hsu and Ming-Tsong
Dung. Generating finite-state transducers for semi-
structured data extraction from the web. Information
Systems, 23(8):521–538, 1998.

[Huang, 2000] Hung-Hsuan Huang. Design and implemen-
tation of a configurable wrapper for web information inte-
gration. Master’s thesis, Department of Computer Science
and Information Engineering, National Taiwan University,
Taipei, Taiwan, July 2000.

[Kushmerick et al., 1997] Nickolas Kushmerick, Dan Weld,
and Robert Doorenbos. Wrapper induction for information
extraction. In Proceedings of the 15th International Joint
Conference on Artificial Intelligence (IJCAI), pages 729–
737, Japan, 1997.

[Morrison, 1968] D.R. Morrison. Patricia–practical algo-
rithm to retrieve information coded in alphanumeric. Jour-
nal of ACM, 15(4):514–534, Jan 1968.

[Muslea et al., 1999] Ion Muslea, Steve Minton, and
Craig A. Knoblock. A hierarchical approach to wrapper
induction. In Proceedings of the 3rd International Con-
ference on Autonomous Agents, pages 190–197, Seattle,
WA, 1999.


