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Abstract

Mining frequent patterns in databases is a fundamental and

essential problem in data mining research. A continuity is

a kind of causal relationship which describes a definite tem-

poral factor with exact position between the records. Since

continuities break the boundaries of records, the number of

potential patterns will increase drastically. An alternative

approach is to mine closed frequent continuities. Mining

closed frequent patterns has the same power as mining the

complete set of frequent patterns, while substantially reduc-

ing redundant rules to be generated and increasing the ef-

fectiveness of mining. In this paper, we propose a method

called projected window list technology for the mining of

frequent continuities. We present a closed frequent continu-

ity mining algorithm, ClosedPROWL. Experimental result

shows that our algorithm is more efficient than previously

proposed algorithms.

Temporal databases, association rules, Min-

ing methods and algorithms

1 Introduction

Mining frequent patterns in databases is a fundamental
and essential problem in data mining. Over the past
few years, a considerable number of studies have been
made in frequent pattern mining. There are various di-
rections in pattern mining, such as frequent itemsets,
sequential patterns, frequent episodes [4], periodic pat-
terns [1], frequent continuities [3, 5], etc. The funda-
mental paradigm of association rule mining (e.g. fre-
quent itemsets) identifies correlations between objects
in transaction databases (market baskets) without tak-
ing any ordering of the objects into account. Such rules
can be useful for decisions concerning product pricing,
promotions, store layout and many others.

In addition to the mining tasks on transaction
databases, there are also works on temporal association
mining, which concerns the occurrences of events along
time, e.g. frequent episodes, periodic patterns, frequent
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continuities, etc. To distinguish these two kinds of
mining tasks, prior researches [5] use the term intra-
transaction associations for the former mining tasks and
inter-transaction association for the latter ones. As
suggested in [5], inter-transaction associations are better
for trend prediction than intra-transaction associations.
For instance, the investors may be more interested in
a rule like “When the price of stock TSMC goes up
for two consecutive days, the price of stock UMC will
go up with 60% probability on the third day.” This
kind of the temporal association with definite temporal
relationships between stocks can be envisioned as a
tool for describing and forecasting of the behavior of
temporal databases.

The above rule can be generated from frequent con-
tinuities [3], an inter-transaction association which cor-
relates the definite time with each object. The problem
is first introduced by Tung et al in [5], where an algo-
rithm called FITI (First Intra Then Inter) is proposed
for mining frequent continuities. FITI is a three-phase
algorithm. The first phase discovers intra-transaction
itemsets. The second phase transforms the original
database into another database to facilitate the min-
ing of inter-transaction associations. The third phase
follows the Apriori principle to perform a level-wise
mining. In order to make search quickly, FITI is de-
vised with serval hashing structures for pattern search-
ing and generation. Similar to Apriori-like algorithms,
FITI could generate a huge number of candidates and
require several scans over the whole database to check
which candidates are frequent. Therefore, Huang et al.
introduce a projected window list (PROWL) technique
[3] which enumerates new frequent continuities by con-
catenating frequent items in the time lists of the fol-
lowing time slots (called the projected window list) of
an existent frequent continuity. PROWL utilizes mem-
ory for storing both vertical and horizontal formats of
the database, therefore it discovers frequent continuities
without candidate generation. Note that PROWL was
designed to mining frequent continuity from a sequence
of events instead of a sequence of eventsets.

Since inter-transaction associations break the
boundaries of transactions, the number of potential con-



tinuities and the number of rules will increase drasti-
cally. This reduces not only efficiency but also effective-
ness since users have to sift through a large number of
mined rules to find useful ones. Although compressed
continuity (and the corresponding algorithm COCOA)
[2] reduces the number of continuities, they are not
the minimum set that can represent all continuities.
They are simply continuities that are composed of closed
frequent itemsets. Therefore, we focus on discovering
closed frequent continuities which have no proper
super-continuity with the same support in databases.

What are super-continuity and sub-continuity?
Given two continuities P = [p1, p2, . . . , pu] and P ′ =
[p′1, p

′
2, . . . , p

′
v], we say that P is a super-continuity of

P ′ (i.e., P ′ is a sub-continuity of P ) if and only if,
for each non-* pattern p′j (1 ≤ j ≤ w), p′j ⊆ pj+o is
true for some integer o. The integer o is also called the
offset of P . For example, continuity P = [AC,E,BD] is
a super-continuity of continuity P ′ =[E, B,*], since the
pattern E (B, resp.) is a subset of the (BD, resp.) with
offset 1. On the contrary, continuity P ′′ =[E,B,AC] is
not a sub-continuity of P , since P ′′ can not map to P

with a fixed offset. It is worth mentioning that if we
don’t consider the offset in the continuity matching, the
continuity P ′ will not be a sub-continuity of continuity
P .

The problem of closed frequent continuity mining
is similar to frequent continuity mining [3], except for
the closed constraint. Mining closed frequent continu-
ities has the same power as mining the complete set of
frequent continuities, while substantially reduce redun-
dant rules to be generated and increase the effective-
ness of mining. Therefore, the problem is formulated
as follows: given a minimum support level minsup and
a maximum time window bound maxwin, our task is
to mine all closed frequent continuities from temporal
database with support greater than minsup and win-
dow bound less than maxwin.

2 The ClosedPROWL Algorithm

Similar to FITI [5] and COCOA [2], the ClosedPROWL
algorithm also consists of three phases. The first phase
involves the mining of closed frequent intra-transaction
itemsets. The idea is based on the observation that a
closed continuity is composed of only closed itemsets
and don’t care characters (see Theorem4.3). Since the
third phase of the algorithm requires the time lists of
each intra-transaction itemset, this phase is mined using
a vertical mining algorithm, CHARM [6], for closed
frequent itemsets mining.

The second phase is database transformation, where
it encodes each closed frequent itemset (abbreviated
C.F.I.) with a unique ID. Next, based on the time

lists of the C.F.I together with the encoding table, we
construct a recovered horizontal database.

In the third phase, we discover all closed frequent
continuities from the recovered horizontal database by
concatenating a frequent continuity with its closed
frequent itemsets using depth first enumeration. For
ease exposition, we first define the projected window
list below.

Definition 2.1. Given the time list of a continuity
P , P.timelist = {t1, t2, . . . , tk} in the database D, the
projected window list (PWL) of P with offset d is
defined as P.PWLd = {w1, w2, . . . , wk} , wi = ti +d for
1 ≤ i ≤ k. Note that a time slot wi is removed from the
projected list if wi is greater than |D|, i.e. wi ≤ |D| for
all i.

For each frequent 1-continuity P , or equivalently
closed frequent itemset (C.F.I.), the mining steps are as
follows:

1. Calculate the projected window list (PWL) with
offset 1 from P.timelist. Find all frequent C.F.I.
in P.PWL1 by examining the recovered horizontal
database.

2. Then apply subitemset-pruning strategy to remove
unnecessary extensions.

3. For each remaining C.F.I. x, generate a new fre-
quent continuity P · [x]. Step 1 to 3 are applied re-
cursively to find all frequent continuities until the
size of (P · [x]).PWL1 becomes less than the re-
quired counts specified by minsup or the window
of a continuity is greater than maxwin.

4. Finally, we apply subcontinuity-checking to remove
non-closed frequent continuities.

Starting from any 1-continuity P , all frequent con-
tinuities having prefix P can be generated by concate-
nating P with a closed frequent eventset in P.PWL or
the don’t care character without candidate generation.
As with the PROWL algorithm [3] and COCOA [2],
the timelists (vertical format) record the locations of
a continuity, while the recovered database (horizontal
format) is used for fast access to see what itemsets are
frequent enough to extend current frequent continuity.
What makes ClosePROWL different is Step 2 and 4,
where we incorporate the property of closed continuities
to reduce the search space.

Sub-itemset pruning: For two C.F.I. x and y in
the project window list of a continuity P , if Sup(P ·
[x]) = Sup(P · [y]), the sub-itemset pruning works as
following properties:



Mining Task Phase I Phase III Algorithm

Continuity Frequent Itemset FITI-3 FITI
PROWL PROWL+

Compressed FITI-3 ComFITI
Closed Frequent Itemset PROWL COCOA

Closed PROWL+Pruning ClosedPROWL

Table 1: Comparison of various mining tasks

1. If x ⊂ y, then remove x since all extensions of P ·[x]
must not be closed.

2. If x ⊃ y, then remove y since all extensions of P · [y]
must not be closed.

3. If x.timelist = y.timelist and neither x ⊂ y

nor x ⊃ y, then remove both x and y, since all
extensions of P · [x] and P · [y] must not be closed.

In order to make the pruning efficient, we devise
a hash structure, PHTab (prune header table) with
PHsize buckets. All C.F.I.s with the same support
counts are hashed into the same bucket. Each entry in
the same bucket records a frequent ID x of the current
continuity P , the time list of P · [x], and the support
count of P · [x]. The comparison of two frequent C.F.I.
x and y in the projected window lists of a continuity
P is restricted to the frequent IDs in the same buckets
with the same support.

The sub-itemset pruning technique removes the
non-closed sub-continuity of closed frequent continuities
with zero offset since the pruning is invoked within a
local search of a continuity. For those sub-continuities
of closed frequent continuities with non-zero offset, they
can still be generated in the mining process. Therefore,
we need a checking step (Step 4) to remove non-closed
continuities. Again, a hash structure, FCTab (frequent
continuity table), is devised to facilitate efficient sub-
continuity checking using the following as the hashing
function:

bkNum = Sup(P )%BucketSize.(2.1)

The correctness of the pruning technique and the
overall algorithm can be proven by the theorems in
Appendix A and B respectively.

3 Experiments

In this section, we report the performance study of the
proposed algorithm on synthetic data. Since the three
phases of the proposed algorithms have good correspon-
dence with three phases of the FITI algorithm, it is pos-
sible to mine various continuities by combining various
Phase Is with Phase IIIs of FITI (called FITI-3) and

PROWL. We already know the mining process of FITI.
Combining frequent itemset mining with Phase III of
ClosedProwl without pruning produces the same result
with FITI. If we mine closed frequent itemsets at Phase
I and apply FITI-3 or PROWL, we will get compressed
frequent continuities. We call the algorithms ComFITI
and COCOA, respectively. Finally, the closed frequent
itemset mining at Phase I combined with PROWL and
the pruning strategies at Phase III results the mining
of ClosedPROWL for frequent closed continuities. The
combinations are shown in Table 1. We compare the
five algorithms using synthetic data.

The synthetic data sets which we used for our ex-
periments were generated using the generator described
in [2]. We start by looking at the performance of
ClosedPROWL with default parameter minsup = 0.6%
and maxwin = 5. Figure 1(a) shows the scalability
of the algorithms with varying database size. Closed-
PROWL is faster than FITI (by a magnitude of 5 for
|D| = 500K). The scaling with database size was lin-
ear. Therefore, the scalability of the projected window
lists technique is proved. Another remarkable result is
that COCOA performs better than ComFITI for the
same mining task (compressed frequent continuity min-
ing). The reason for the considerable execution time
of FITI and ComFITI is that they must count the sup-
ports of all candidate continuities. The memory require-
ment of the algorithms with varying database size is
shown in Figure 1(b). In this case, the number of fre-
quent continuities and closed frequent continuities are
13867 and 1183 respectively. The compression rate (#
of closed frequent continuities /# of frequent continu-
ities) is about 9%. As the data size increases, the mem-
ory requirement of ClosedPROWL, COCOA and FITI
increases as well. However the memory usages of FITI
and ClosedPROWL are about the same at |D| = 100K
and the difference is only 18MB at |D| = 500K, with an
original database of 12.2 MB. Since ClosedPROWL re-
quires additional memory to maintain frequent continu-
ities (FCTab), we modify the algorithm to disk-resident
ClosedPROWL (labelled ClosedPROWL(Disk)). As il-
lustrated in Figure 1(b), the memory requirement of the
ClosedPROWL(Disk) is thus less than FITI but more
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Figure 1: Performance comparison I

than COCOA for subitemset pruning (PHTab).
The runtime and memory usage of FITI and Closed-

PROWL on the default data set with varying mini-
mum support threshold, minsup, from 0.4% to 1.6%
are shown in Figures 1(c) and (d). Clearly, Closed-
PROWL is faster and more scalable than both FITI
and ComFITI with the same memory requirements (by
a magnitude of 5 and 3 for minsup = 0.4% respec-
tively), since the number of frequent continuities grows
rapidly as the minsup diminishs. ClosedPROWL and
ClosedPROWL(Disk) require 129MB and 94MB at the
minsup = 0.4%, respectively. Thus maintaining closed
frequent continuities (FCTab) in ClosedPROWL needs
35MB main memory approximately. Meanwhile, we can
observe that the pruning strategies of ClosedPROWL
increase the efficiency considerably (by a magnitude of
2) through the comparison between ClosedPROWL and
COCOA in Figure 1(c). In summary, projected win-
dow list technique is more efficient and more scalable
than Apriori-like, FITI and ComFITI, especially when
the number of frequent continuities becomes really very
large.

4 Conclusion

In this paper, we propose an algorithms for the mining
of closed frequent continuities. We show that the three-
phase design lets the projected window list technique,
which was designed for sequences of events, also appli-
cable to general temporal databases. The proposed al-
gorithm uses both vertical and horizontal database for-
mats to reduce the searching time in the mining process.
Therefore, there is no candidate generation and multi-
pass database scans. The main reason that projected
window list technique outperforms FITI/ComFITI is
that it utilizes memory for fast computation. This the
same reason that later algorithms for association rule
mining outperform Apriori. Even so, we have demon-
strated that the memory usage of our algorithms are
actually more compact than the FITI/ComFITI algo-
rithm. Furthermore, with subitemset pruning and sub-
continuity checking, ClosedPROWL successfully discov-
ered efficiently all closed continuities. For future work,
maintaining and reusing old patterns for incremental
mining is an emerging and important research. Fur-
thermore, using continuities in prediction is also an in-
teresting issue.
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Appendix A

Lemma 4.1. Let P = [p1, p2, . . . , pw] and
Q = [q1, q2, . . . , qw] be two frequent continuities
and P.timelist = Q.timelist. For any frequent conti-
nuity U , if P ·U is frequent, then Q ·U is also frequent,
vice versa.

Theorem 4.1. Let P = [p1, p2, . . . , pw, pw+1] and Q =
[p1, p2, . . . , pw, p′w+1] be two continuities. If pw+1 ⊂
p′w+1 and Sup(P ) = Sup(Q), then all extensions of P

must not be closed.

Proof. Since pw+1 is a subset of p′w+1, wherever
p′w+1 occurs, pw+1 occurs. Therefore, P.timelist ⊇
Q.timelist. Since Sup(P ) = Sup(Q), the equal
sign holds, i.e. P.timelist = Q.timelist. For any
extension P · U of P , there exists Q · U (Lemma
4.1), such that Q · U is a super-continuity of P ·
U , and (P · U).timelist = P.PWL|U |

⋂
U.timelist=

Q.PWL|U |

⋂
U.timelist = (Q · U).timelist. Therefore,

P · U is not a closed continuity.

Theorem 4.2. Let P = [p1, p2, . . . , pw, pw+1] and Q =
[p1, p2, . . . , pw, p′w+1] be two continuities. If pw+1 ⊂
p′w+1 and Sup(P ) = Sup(Q), then all extensions of P

must not be closed.

Proof. Consider the continuity U = [p1, p2,

. . . , pw, pw+1∪ p′w+1]. U.timelist=P.timelist
⋂

Q.timelist. Since P.timelist = Q.timelist, we have
U.timelist=P.timelist=Q.timelist. Using Theorem
4.2, all extensions of P and Q can not be closed be-
cause Sup(U) = Sup(P ) = Sup(Q).

Appendix B

We also prove the correctness of the ClosedPROWL
algorithm below.

Lemma 4.2. The time list of a continuity P =
[p1, p2, ...., pw] is P.timelist =

⋂w

i=1
pi.PWLw−i.

We define the closure of an itemset p, denoted c(p),
as the smallest closed set that contains p. If p is closed,
then c(p) = p. By definition, Sup(p) = Sup(c(p)) and
p.timelist = c(p).timelist.

Theorem 4.3. A closed continuity is composed of only
closed itemsets and don’t care characters.

Proof. Assume P = [p1, p2, . . . , pW ] is a closed
continuity, and some of the pis are composed
of non-closed itemsets. Consider the continu-
ity CP = [c(p1), c(p2), . . . , c(pW )], CP.timelist =⋂w

i=1
c(pi).PWLw−i =

⋂w

i=1
pi.PWLw−i = P.timelist.

Therefore, P is not a closed continuity. We thus have
a contradiction to the original assumption that P is
a closed continuity and thus conclude that “all closed
continuities P = [p1, p2, . . . , pW ] are composed of only
closed itemsets and the don’t-care characters”.

Theorem 4.4. The ClosedPROWL algorithm gener-
ates all closed frequent continuities.

Proof. First of all, the anti-monotone property “if a con-
tinuity is not frequent, all its super-continuities must be
infrequent” is sustained for closed frequent continuities.
According to Theorem 4.3, the search space composed
of only closed frequent itemset covers all closed frequent
continuities. ClosedPROWL’s search is based on a com-
plete set enumeration space. The only branches that
are pruned as those that do not have sufficient support.
The sub-itemet pruning only removed non-closed conti-
nuities (Theorem 4.2). Therefore, ClosedPROWL cor-
rectly identifies all closed frequent continuities. On the
other hand, sub-continuity checking remove non-closed
frequent continuities. Therefore, the ClosedPROWL al-
gorithm generates all and only closed frequent continu-
ities.


