
Enhancing SWF for Incremental Association

Mining by Itemset Maintenance

Chia-Hui Chang and Shi-Hsan Yang

Department of Computer Science and Information Engineering,
National Central University, Chung-Li, Taiwan 320

chia@csie.ncu.edu.tw, carry@db.csie.ncu.edu.tw

Abstract. Incremental association mining refers to the maintenance
and utilization of the knowledge discovered in the previous mining op-
erations for later association mining. Sliding window filtering (SWF) is
a technique proposed to filter false candidate 2-itemsets by segmenting
a transaction database into several partitions. In this paper, we extend
SWF by incorporating previously discovered information and propose
two algorithms to boost the performance for incremental mining. The
first algorithm FI SWF (SWF with Frequent Itemset) reuses the fre-
quent itemsets of previous mining task as FUP2 to reduce the number of
new candidate itemsets that have to be checked. The second algorithm
CI SWF (SWF with Candidate Itemset) reuses the candidate itemsets
from the previous mining task. Experiments show that the new proposed
algorithms are significantly faster than SWF.

1 Introduction

Association rule mining from transaction database is an important task in data
mining. The problem, first proposed by [2], is to discover associations between
items from a (static) set of transactions. Many interesting works have been
published to address this problem [9, 8, 11, 1, 6, 7, 10]. However, in real life
applications, the transaction databases are changed with time. For example,
Web log records, stock market data, and grocery sales data, etc. In these dynamic
databases, the knowledge previously acquired can facilitate successive discovery
processes, or become obsolete due to behavior change. How to maintain and
reuse such knowledge is called incremental mining.

Incremental mining was first introduced in [4] where the problem is to up-
date the association rules in a database when new transactions are added to the
database. The proposed algorithm, FUP, stores the counts of all the frequent
itemsets found in a previous mining operation and iteratively discover (k + 1)-
itemsets as the Apriori algorithm [2]. An extension to the work is addressed
in [5] where the authors propose the FUP2 algorithm for updating the exist-
ing association rules when transactions can be deleted from the database. In
essence, FUP2 is equivalent to FUP for the case of insertion, and is, however, a
complementary algorithm of FUP for the case of deletion.

In the recent years, several algorithms, including the MAAP algorithm [13]
and the PELICAN algorithm [12], are proposed to solve the problem incremental

2 Chia-Hui Chang et al.

mining. Both MAAP and PELICAN are similar to FUP2 algorithm, but they
only focus on how to maintain maximum frequent itemsets when the database
are updated. In other words, they do not care non-maximum frequent itemsets,
therefore, the counts of non-maximum frequent itemsets can not be calculated.
The difference of these two algorithms is that MAAP calculates maximum fre-
quent itemsets by Apriori-based framework while PELICAN calculates maxi-
mum frequents itemsets based on vertical database format and lattice decompo-
sition.

As we know, Apriori-like algorithms tend to suffer from two inherent prob-
lems, namely (1) the occurrence of a potentially huge set of candidate itemsets,
and (2) the need of multiple scans of databases. To remedy these problems, Lee
et al. proposed a sliding window filtering technique for incremental association
mining [3]. By partitioning a transaction database into several partitions, SWF
employs the minimum support threshold in each partition to filter unnecessary
candidate itemsets such that the information in the prior partition is selectively
carried over toward the generation of candidate itemsets in the subsequent par-
titions. It is shown that SWF maintains a set of candidate itemsets that is very
close to the set of frequent itemsets and outperforms FUP2 in a great deal.
However, SWF does not utilize previously discovered frequent itemsets which
are used to improve incremental mining in FUP2. In this paper, we show two
simple extensions of SWF which significantly improve the performance by in-
corporate previously discovered information such as the frequent itemsets or
candidate 2-itemsets from the old transaction database.

The rest of this paper is organized as follows. Preliminaries on association
mining are illustrated in Section 2. The idea of extending SWF with previously
discovered information is introduced in Section 3. Experiments are presented in
Section 4. Finally, the paper concludes with Section 5.

2 PRELIMINARIES

Let I={i1, i2, ..., im} be a set of literals, called items. Let D be a set of trans-
actions, where each transaction T is a set of items such that T ⊆ I. Note that
the quantities of items bought in a transaction are not considered, meaning that
each item is a binary variable representing if an item was bought. Each trans-
action is associated with an identifier, called TID. Let X be a set of items. A
transaction T is said to contain X if and only if X ⊆ T . An association rule is
an implication of the form X → Y , where X ⊂ I, Y ⊂ I and X∩Y =Ø. The rule
X → Y holds in the transaction set D with confidence c if c% of the transac-
tions in D that contain X also contain Y . The rule X → Y has support s in the
transaction set D if s% of transactions in D contain X ∪ Y . For a given pair of
confidence and support thresholds, the problem of association rule mining is to
find out all the association rules that have confidence and support greater than
the corresponding thresholds. This problem can be reduced to the problem of
finding all frequent itemsets for the same support threshold [2].

For a dynamic database, old transactions (4−) are deleted from the database

Automatic Information Extraction for Multiple Singular Web Pages 3

D and new transactions (4+) are added. Naturally, 4− ⊆ D. Denote the up-
dated database by D′, therefore D′ = (D −4−) ∪ 4+. We also denote the set
of unchanged transactions by D− = D −4−.

2.1 The SWF algorithm

In [3], Lee, et al., proposed a new algorithm, called SWF algorithm for incre-
mental mining. The key idea of SWF algorithm is to compute a set of candidate
2-itemsets as close to L2 as possible. The concept of algorithm is described as
follows. Suppose the database is divided into n partitions P1, P2, . . . , Pn, and
processed one by one. For each frequent itemset I, there must exist some parti-
tion Pk such that I is frequent from partition Pk to Pn. If we know a candidate
2-itemset is not frequent from the first partition where it presents frequent to
current partition Pk, we can delete this itemset even though we don’t know if
it is frequent from Pk+1 to Pn. If somehow this itemset is indeed frequent, it
must be frequent in some partition P ′

k, where we can add it to the candidate set
again.

The SWF algorithm maintains a list of 2-itemsets CF that is frequent for the
lasted partitions as described below. For each partition Pi, SWF adds frequent
2-itemsets (together with its starting partition Pi and supports) that is not in
CF and checks if the present 2-itemsets are continually frequent from its’ start
partition to the current partitions. If a 2-itemset is no longer frequent, SWF
deletes this itemset from CF . If an itemset becomes frequent at partition Pj

(j > i), the algorithm put this itemset into CF and check it’s frequency from
Pj to each successive partition P ′

j (j′ > j). It was shown that the number of
the reserved candidate 2-itemsets will be close to the number of the frequent
2-itemsets.

For a moderate number of candidate 2-itemsets, scan reduction technique [9]
can be applied to generate all candidate k-itemsetsss. Therefore, one database
scan is enough to calculate all candidate itemsets’ supports and determine the
frequent ones. In summary, the total number of database scans is kept as small
as 2.

However, SWF does not utilize previously discovered frequent itemsets as
applied in FUP2. In fact, for most frequent itemsets, the supports can be updated
by simply scan the changed partitions of the database. It doesn’t need to scan
the whole database for these old frequent itemsets. Only those newly generated
candidate itemsets have to be checked by scanning the total database. In such
cases, we can speed up not only candidate generation but also database scanning.
The algorithm will be described in the next section.

2.2 An Example

In the following, we use an example to introduce how to improve the SWF algo-
rithm. The example is the same as [3]. Figure 1(a) shows the original transaction
database where it contains 9 transactions, tagged t1,. . .,t9, and the database is
segmented into three partition, P1,P2,P3 (denoted by db1,3). After the database

4 Chia-Hui Chang et al.

(a) The 1st mining (b) The 2nd mining

Fig. 1. Example

is updated (delete P1 and add P4), the database contains partition P2,P3,P4 (de-
noted by db2,4) as shown in Figure 1(b). The minimum support is assumed to be
s = 40%. The incremental mining problem is decomposed into two procedures:

1. Preprocessing procedure which deals with mining in the original trans-
action database.

2. Incremental procedure which deals with the update of the frequent item-
sets for an ongoing time-variant transaction database.

Preprocessing procedure In the preprocessing procedure, each partition is
scanned sequentially for the generation of candidate 2-itemsets. Consider this
example in Figure 1(a). After scanning the first segment of 3 transactions, can-
didate 2-itemsets {AB, AC, AE, AF, BC, BE, CE} are generated, and frequent
itemsets {AB, AC, BC} are added to CF2 with two attributes start partition
P1 and count. Note that SWF begins from 2-itemset instead of 1-itemset.

Similarly, after scanning partition P2, the occurrence counts of candidate
2-itemsets in the present partition are recorded. For itemsets that are already
in CF2, add the occurrence counts to the corresponding itemsets in CF2. For
itemsets that are not in CF2, record the counts and its start partition from
P2. Then, check if the itemsets are frequent from its start partition to current
partition and delete those non-frequent itemsets from CF2. In this example. The
counts of the three itemsets {AB, AC, BC} in P2, which start from partition P1,
are added to their corresponding counts in CF2. The local support (or called the
filtering threshold) of these 2-itemsets is given by d(3 + 3) ∗ 0.4e = 3. The other
candidate 2-itemsets of P2, {AD, BD, BE, CD, CF, DE}, has filtering threshold
d3 ∗ 0.4e = 2. Only itemsets with counts greater than its filtering threshold are
kept in CF2, others are deleted. Finally, partition P3 is processed by algorithm
SWF. The resulting CF2={AB, AC, BC, BD, BE}.

After all partitions are processed, the scan reduction technique is employed
to generate C ′

3 from CF2. Iteratively, C ′

k+1
can be generated from C ′

k for k =

Automatic Information Extraction for Multiple Singular Web Pages 5

3, . . . , n, as long as all candidate itemsets can been stored in memory. Finally,
we can find ∪kLk from ∪kCk with only one database scan.

Incremental procedure Consider Figure 1(b), when the database is updated
form db1,3 to db2,4 where transaction, t1 t2 t3, are deleted from the database
and t10, t11, t12 are added to the database. The incremental step can be divided
into three sub-steps: (1) generating C2 in D− = db1,3- 4− (2) generating C2

in db2,4 = D−+4+ (3) scanning the database db2,4 for the generation of all
frequent itemsets Lk. In the first sub-step, we load CF2 and check if the counts
of itemsets in CF2 will be influenced by deleting P1. We decrease the influenced
itemstes’ counts that are suppored by P1 and set the start position of influenced
itemsets to 2. Then, we check the itemsets of CF2 from the start position of the
itemsets to partition P3, and delete non frequent itemsets of CF2. It can be seen
that itemsets {AB, AC, BC} were removed. Now we have CF2 corresponding to
db2,3.

The second sub-step is similar to the operation in the preprocessing step.
We add the counts of the 2-itemset in P4 to the counts of the same itemsets
of CF2, and reserve the frequent itemsets of CF2. New frequent 2-itemsets that
are not in CF2 will be added with its start position P4 and counts. Finally, at
the third sub-step, SWF uses scan reduction technique to generate all candidate
itemsets from CF2 = {BD,BE,DE,EF,DF} and scan database db2,4 once to
find frequent itemsets.

3 The Proposed Algorithm

The proposed algorithm combines the idea of FUP2 with SWF. Consider the
candidate itemsets generated in the preprocessing procedure ({A, B, C, D, E, F,
AB, AC, BC, BD, BE, ABC}) and the incremental procedure ({A, B, C, D, E, F,
BD, BE, DE, EF, BFE, DEF}) in SWF, we find that there are eight candidate
itemsets in common and seven of them are frequent itemsets. If we incorporate
previous mining result, i.e. the counts of the frequent itemsets, we can get new
counts by only scanning the changed portions of database instead of scanning
the whole database in the incremental procedure.

The proposed algorithm divides the incremental procedure into six sub-steps:
the first two sub-steps update CF2 as those for the incremental procedure in
SWF. Let us denote the set of previous mining result as KI (known itemsets).
Consider the example where KI = FI={A(6), B(6), C(6), D(3), E(4), F(3),
AB(4), AC(4), BC(4), BE(4)}. In the third and fourth sub-step, we scan the
changed portion of the database, P1 and P4 to update the counts of itemsets
in KI. Denote the set of verified frequent itemsets from KI as FI (frequent
itemsets). In this example, FI={A(4), B(5), C(5), D(5), E(5), F(4), BE(4)}.

In the fifth sub-step, we compare CF2 of db2,4 with KI and collect those
2-itemsets from CF2 that are not in KI to a set, named NC2 (new candidate
2-itemsets). The set NC2 contains itemsets that have no information at all and
really need to scan the whole database to get the counts. Then we use NC2 to

6 Chia-Hui Chang et al.

generate NC3 by three JOIN operations The first JOIN operation is NC2?NC2.
The the second JOIN operation is NC2?FI2 (2-itemsets of FI). The third JOIN
operation is FI2?FI2. However, result from the third JOIN can be deleted if
the itemsets are present in KI. The reason for the third JOIN operation is
that NC2 may generate itemsets which are not frequent in previous mining task
because one of the 2-itemset are not frequent. While new itemsets from NC2

sometimes makes such 3-itemsets satisfy the anti-monotone Apriori heuristic in
present mining task. From the union of the three JOIN operations, we get NC3.
Similarly, we can get NC4 by three JOIN operations from NC3?NC3, NC3?FI3

(3-itemsets of FI), and FI3?FI3. Again, result from the third JOIN can be
deleted if the itemsets are present in KI. The union of the three JOINs results
in NC4. The process goes until no itemsets can be generated. Finally, at the
sixth sub-step, we scan the database to find frequent itemsets from ∪kNCk and
add these frequent itemsets to FI.

In this example. NC2 is {BD, DE, DF, EF} (CF2 −FI). The first JOIN op-
eration, NC2?NC2, generates {DEF}. The second JOIN operation, NC2?FI2,
generates {BDE}. The third JOIN operation, FI2?FI2, generates nothing. So
NC3 is {BDE, DEF}. Again we use NC3 to generate NC4 by the three JOIN
operations. Because the three JOIN operations generate nothing for NC4, we
stop the generation. At last, we scan the database and find new frequent itemsets
({BE,DE}) from the union of NC2 and NC3. Compare the original SWF algo-
rithm with the extension version, we can find that the original SWF algorithm
needs to scan database for thirteen itemsets, {A, B, C, D, E, F, BD, BE, DE,
DF, EF, BDE, DEF}, but the proposed algorithm only needs to scan database
for six itemsets, {BD, DE, DF, EF, BDE, DEF}.

In addition to reuse previous large itemsets ∪kFk as KI, when the size of
candidate itemsets ∪kC ′

k from db1,3 is close to the size of frequent itemsets ∪kFk

from db1,3, KI can be set to the set of candidate itemsets instead of frequent
itemsets. This way, it can further speed up the runtime of the algorithm.

3.1 SWF with Known Itemsets

The proposed algorithm, KI SWF (SWF with known itemsets), employs the
preprocessing procedure of SWF and extend the incremental procedure as Fig-
ure ??. The change portion of the algorithm is presented in bold face. The prepro-
cessing procedure is the same as SWF and is omitted here. For ease exposition,
the meanings of various symbols used are given in Table 1.

At beginning, we load the cumulative filter CF2 generated in preprocessing
procedure (Step 7). From 4−, we decrease the counts of itemsets in CF2 and
delete non frequent itemsets from CF2 with the filtering threshold ds∗D−e (Step
8 to 16). Similarly, we increase the counts of itemsets in CF2 by scanning 4+

and delete non frequent itemsets with filtering threshold ds ∗ (D− +4+)e (Step
17 to 29). After these steps, we get CF2 corresponding to database dbi,j .

Automatic Information Extraction for Multiple Singular Web Pages 7

Incremental Procedure of KI SWF

1. Original databases = dbm,n;
2. New database= dbi,j ;
3. Database removed 4−=

∑
k=m,i−1Pk;

4. Database added 4+=
∑

k=n+1,jPk;
5. D−=

∑
k=i,n

Pk;

6. dbi,j = dbm,n −4− + 4+;
7. loading Cm,n

2 of dbm,n into CF2;
8. begin for k = m to i − 1
9. begin for each 2-itemset I∈Pk;
10. if(I∈CF2 and I.start≤k)
11. I.count=I.count−Npk

(I);
12. I.start=k + 1;
13. if (I.count<ds∗

∑
n
t=i|Pt|e)

14. CF2=CF2-I;
15. end
16. end
17. begin for k=n + 1 to j
18. begin for each 2-itemset I∈Pk

19. if(I /∈CF2)
20. I.count=Npk

(I);
21. I.start=k;
22. if (I.count≥ds ∗ |Pk|e)
23. CF2 = CF2∪I;
24. if (I∈CF2)
25. I.count = I.count + Npk

(I);

26. if (I.count≥ds ∗
∑k

t=i
|Pt|e)

27. CF = CF − I;
28. end
29. end
30. loading Lm,n

2,h ofdbm,n into KI;

31. begin for k=m to i − 1
32. begin for each itemset I∈Pk

33. if (I∈KI)
34. I.count=I.count-Npk

(I);
35. end
36. end
37. begin for k=n+1 to j
38. begin for each itemset I∈Pk

39. if (I∈KI)
40. I.count=I.count+Npk

(I);
41. end
42. end;

43. set FI=∅;
44. begin for each itemset I∈KI
45. if (I.count ≥ ds ∗ |dbi,j |e)
46. FI = FI∪I;
47. end
48. set NC2=CF2-KI;
49. h = 2;
50. begin while(NCh 6=∅)
51. NCh+1=New Candidate

(NCh,FIh,KIh);
52. h = h + 1;
53. end
54. refresh I.count = 0 where I∈NC2,h;
55. begin for k = i to j;
56. for each itemset I∈NC2,h;
57. I.count = I.count + Npk

(I);
58. end

59. begin for each itemset I∈NC2,h;
60. if (I.count≥ds ∗ |dbi,j |e)
61. FI = FI∪I ;
62. end
63. return FI;

Procedure of New Candidate(Ph,Qh,KIh)
1. setRh=JOIN(Pk,Qh,Ph∪Qh);
2. Rh=Rh∪JOIN(Ph,Ph,Ph∪Qh);
3. Rh=Rh∪(JOIN(Qh,Qh,Ph∪Qh)-KIh);
4. return Rh;

Procedure of JOIN(Ph,Qh,Ch)
1. set Rh=∅;
2. for any two itemsets I1 of Ph and I2 of Qh,

where I1={a1,a2,. . .,ah} I2={b1,b2,. . .,bh}
4. if (a1=b1 ∧ a2=b2 ∧ . . . ∧ ah−1=bh−1 ∧ ah > bh)
5. set I3={a1,a2,. . .,ah,bh};
6. if (all h-itemsets of I3 are in Ch)
7. Rh = Rh∪I3;
8. endfor
9. return Rh;

Figure 2. Incremental procedure of Algorithm KI SWF

8 Chia-Hui Chang et al.

dbi,j Database D from partition Pi to Pj

s Minimum support threshold

|Pk| Number of transactions in partition Pk

Npk
(I) Number of transactions in Pk that cantain itemset I

Ci,j

k The candidate k-itemsets corresponding to dbi,j

Ci,j

2,h The union of candidate k-itemset Ci,j

k (k = 2, . . . , h) from dbi,j

Li,j

2,h The union of frequent k-itemset Li,j

k (k = 2, . . . , h) from dbi,j

FIj The j-itemsets of FI

KIj The j-itemsets of KI

NCi The i-itemsets of NC

Table 1. Meanings of symbols used

Continually, we load the frequent itemsets that was generated in previous
mining task into KI. We check the frequency of every itemset from KI by
scanning 4− and 4+, and put those remaining frequent into FI (Step 30 to 47).
Let NC2 denotes the itemsets from CF2 − KI, i.e. new 2-itemsets that are not
frequent in the previous mining procedure and need to be checked by scanning
dbi,j . From NC2, we can generate new candidate 3-itemsets (NC3) by JOIN 2-
itemsets from NC2, FI2, and KI2. The function New Candidate performs three
JOIN operations: NC2?NC2, NC2?FI2, and FI2?FI2. However, if the itemsets
are present in KI, they can be deleted since they have already been checked.
The third operation is necessary since new candidates may contain supporting
(k − 1)-itemsets for a k-itemset to become candidate. We unite the results of
the three JOIN operations and get NC3. Iteratively (Step 48 to 53), NC4 can
be obtained from NC3, FI3, and KI3. Finally, we scan the database dbi,j and
count supports for itemsets in ∪i=2,hNCi and put the frequent ones to FI (Step
54 to 63).

Sometimes, the size of candidate itemsets in the previous mining procedure
is very close to the size of frequent itemsets. If we kept the support counts
for all candidate itemsets, and load them to KI at Step 30 in the incremental
procedure:

30. Loading C
m,n
2,h of dbm,n named KI;

The performance, including candidate generation and scanning, can further be
speed up. In the next section, we will conduct experiment to compare the original
SWF algorithm with the KI SWF algorithms. If the itemsets of KI are the
candidate itemsets of the previous mining task, we call this extension CI SWF.
If the itemsets of KI are the frequent itemsets of previous mining task, we call
this extension FI SWF.

Automatic Information Extraction for Multiple Singular Web Pages 9

��� � � � � � ��� � � � 	 � �

�

 �
� � �
�
 �
� � �
�
 �
� � �

� � � � � � �
 � � � � � � ���� � � � � � � � � �

�� �
� !
�"#

$ %'&
& � � $ %(&
)*� � $ %'&

+ , - . / 0 . 132 - - . 4 2 -

-
5 - -
2 - - -
2 5 - -
, - - -
, 5 - -

- 6 2 7 - 6 8 7 - 6 5 7 - 6 9 7 - 6 : 7
;�< = > ? @ A A B C D

EF G
HI J
HKL

M N'O
O / > M N'O
PQ/ > M N(O

(a)

R�S T U V W U X�S T T U Y S T[Z[\] ^ _ ` a a b c d e T f S g

h
i h
j h h
j i h
k h h
k i h
l h h

m npo o q r m npo sQq r m npo

tu v
wx y
wz{

| } ~ � � ~ � ~ � ~ | � � � � � � �
} ~ � � � } ~ � � � � � � � ~ � � � �
} ~ � } � � ~ � � � � ��| � � � � � �
~ � � � ~ � � � � � � � |
� � � � � � � ~ � � � � � � � |

� � � � � � � �3� � � � � � ����� � � � � � � ¡ ¢ £ � ¤ � ¥

�
¦ � �

� � � �
� ¦ � �

� � � �

� ¦ � �

§ ¨'© © � � § ¨'© ªQ� � § ¨'©

«¬
®¯ °
®±²

³ ´ µ ¶*· µ ¸ µ ¹ µ ³ º · ¹ » ¼ ½ ¾´ µ ¶ · ¼ ´ µ ¸ º ¿ º ¶ º À µ ¸ ¼ Á ¶´ µ Â ´ Ã Â µ ¸ º ¶ º Ä�³ Ã Å Å Á À ¸µ · · Å µ À ¸ ¼ ¸ ¼ Á ¶ ³· º Â º ¸ º Å µ À ¸ ¼ ¸ ¼ Á ¶ ³

(b)

Fig. 3. Execution time vs. minimum support

4 Experiments

To evaluate the performance of FI SWF algorithm and CI SWF algorithm, we
preformed several experiments on a computer with a CPU clock rate of 800
MHz and 768 MB of main memory. The transaction data resides in the FAT32
system and is stored on a 30GB IDE 3.5 drive. The simulation program was
coded in C++. The method to generate synthetic transactions we employed in
this paper is similar to the ones used in [4, 9, 3]. The performance comparison
of SWF, FI SWF, and CI SWF is presented in Section 4.1. Section 4.2 shows
the memory required and I/O cost for the three algorithms. Results on scaleup
experiments are presented in Section 4.3.

4.1 Running Time

First, we test the speed of the three algorithms, FI SWF, CI SWF, and SWF.
We use two different datasets, T10−I4−D100−d10 and T20−I6−D100−d10,
and set N=1000 and |L|=2000. Figure 3(a) shows the running time of the three
algorithms as the minimum support threshold decreased from 1% to 0.1%. When
the support threshold is high, the running times of three algorithms are similar.
Because there are only a limited number of frequent itemsts produced. When

10 Chia-Hui Chang et al.

the support threshold is low, the difference in the running time becomes large.
This is because when the support threshold is low (0.1%), there are a lot number
of candidate itemsets produced. SWF scanned the total databases dbi,j for all
candidate itemsets. FI SWF scanned dbi,j for the candidate itemsets that are
not frequent in previous mining tasks or not present in previous mining tasks.
CI SWF scanned dbi,j only for the candidate itemsets that are not present in
previous mining tasks. The details of the running time of three algorithms are
shown in Figure 3(b). For SWF, the incremental procedure includes four phase:
delete partitions, add partitions, generate candidates and scan database dbi,j .
For FI SWF and CI SWF, they take one more phase to count new supports for
known itemsets. The time for deleting or add partitions is about the same for
three algorithms, while SWF takes more time to generate candidates and scan
database.

4.2 The Memory Required and I/O Cost

Intuitively, FI SWF and CI SWF require more memory space than SWF because
they need to load the itemsets of the previous mining task and CI SWF needs
more memory space than FI SWF. However, the maximum memory required for
these three algorithms are in fact the same. We record the number of itemsets
kept in memory at running time as shown in Figure 4(a). The dataset used was
T10−I4−D100−d10 and the minimum support was set to 0.1%. At beginning,
the memory space used by SWF algorithm was less than the others, but the
memory space grew significantly at the candidate generation phase. The largest
memory space required at candidate generation is the same as that used by
CI SWF and FI SWF. In other words, SWF still needs memory space as large
as CI SWF and FI SWF. The disk space required is also shown in Figure 4(a),
where “CF2 + KI” denotes the number of itemsets saved for later mining task.
From this figure, CI SWF require triple disk space of SWF. However, frequent
itemsets are indeed by-product of previous mining task.

To evaluate the corresponding cost of disk I/O, we assume that each read of
a transaction consumes one unit of I/O cost. We use T10 − I4 − D100 − d10
as the dataset in this experiment. In Figure 4(b), we can see that the I/O costs
of FI SWF and CI SWF were a little higher than SWF. This is because that
FI SWF and CI SWF must scan the changed portions of the database to update
the known itemsets’ supports.

4.3 Scaleup Test

Continuously, we test the scaleup ability of FI SWF and CI SWF with large
databases. We conduct two experiments. In the first experiment, we use T10 −
I4−DX−d(X ∗0.1) as the dataset, where X represents the size of the databases
and the changed portions are 10 percents of the original databases. We set X =
300, 600, 900 with min support=0.1%. The result of the second experiment is
shown in Figure 5(a). We find the the response time of these two algorithms
were linear to the size of the databases. In the second experiment, we use T10−

Automatic Information Extraction for Multiple Singular Web Pages 11

Æ*Ç È É Ê Ë É Ì�Ç È È É Í Ç È

È
Î È È È
Ç È È È È
Ç Î È È È
Ï È È È È
Ï Î È È È
Ð È È È È
Ð Î È È È
Ë È È È È

Ñ Ò'Ó Ó Ê Ô Ñ ÒpÓ Õ Ê Ô Ñ Ò'Ó

Ö × Ø×
Ù ÚÛ ×Ü
ÝÞß
Û ÝàÚ
ÝÛ Ú

á â ã â ä âå æ ç ä è ä è é ê
æ á áå æ ç ä è ä è é ê
ë æ ê á è ë æ ä âì â ê â ç æ ä è é ê
í î ï ð ñ*ò

ó�ô õ ö ÷ ø ö ù3ô õ õ ö ú ô õ

õ
û õ
ø õ
ü õ
ý õ
ô õ õ
ô û õ
ô ø õ
ô ü õ

õ þ ô ÿ õ þ � ÿ õ þ � ÿ õ þ � ÿ õ þ � ÿ
��� � � 	
 � � � �

�� �
���
�� �
���

� ���
� � � �!�
"#� � ���

(a) Memory required at each phase (b) I/O cost for three algorithms

Fig. 4. Memory required and I/O cost

$&% ' () * (+-,-(. / ' 0 % ,-1 / 2�3 4 5 6 7 8 9 ' 0 % :�1

;
< ; ;
= ; ;
> ; ;
? ; ;
@ ; ; ;
@ < ; ;
@ = ; ;
@ > ; ;
@ ? ; ;
< ; ; ;
< < ; ;

A B B C B B D B B E B B F B BG

HI J
KLM
KNO

P QSR
R T U P QSR
V T U P QWR

X&Y Z [\] [^`_ Z Z [a bdc b�e f g h i j k Z l Y m�n

o
p o o
q o o o
q p o o
r o o o
r p o o
s o o o
s p o o
t o o o
t p o o

p o q o o q p o r o o r p o s o ou

vw xy
z { y
|}

~ �W�
� � � ~ �W�
� � � ~ �W�

(a) Execution time vs. the database size (b) Execution time vs. the changed portions

Fig. 5. Scalable test

I4 − D900 − dm as the dataset and set min support to 0.1%. The value of m

is changed from 100, 200, to 300. The result of the this experiment is shown
in Figure 5(b). As 4+ and 4− became larger, it requires more time to scan
the changed partitions of the dataset to generate CF2 and calculate the new
supports. From this two experiments, we can say that FI SWF and CI SWF
have the ability of dealing with large databases.

5 Conclusion

In this paper, we extend the sliding-window-filtering technique and focus on how
to use the result of the previous mining task to improve the response time. Two
algorithms are proposed for incremental mining of frequent itemsets from up-
dated transaction database. The first algorithm FI SWF (SWF with Frequent
Itemset) reuse the frequent itemsets (and the counts) of previous mining task as
FUP2 to reduce the number of new candidate itemsets that have to be checked.

12 Chia-Hui Chang et al.

The second algorithm CI SWF (SWF with Candidate Itemset) reuse the can-
didate itemsets (and the counts) from the previously mining task. From the
experiments, it shows that the new incremental algorithm is significantly faster
than SWF. In addition, the need for more disk space to store the previously
discovered knowledge does not increase the maximum memory required during
the execution time.

References

1. R. Agarwal, C. Aggarwal, and V.V.V Prasad. A tree projecction algorithm for
generation of frequent itemsets. Journal of Parallel and Distributed Computing
(Special Issue on High Performance Data Mining), 2000.

2. R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of
items in large databases. In Proc. of ACMSIGMOD, pages 207–216, May 1993.

3. M.-S. Chen C.-H. Lee, C.-R. Lin. Sliding-window filtering: An efficient algorithm
for incremental mining. In Intl. Conf. on Information and Knowledge Management
(CIKM01), pages 263–270, November 2001.

4. D. Cheung, J. Han, V. Ng, and C.Y. Wong. Maintenance of discovered association
rules in large databases: An incremental updating technique. In Data Engineering,
pages 106–114, February 1996.

5. D. Cheung, S.D. Lee, and B. Kao. A general incremental technique for updaing
discovered association rules. In Intercational Conference On Database Systems For
Advanced Applications, April 1997.

6. J. Han and J. Pei. Mining frequent patterns by pattern-growth: Methodology and
implications. In ACM SIGKDD Explorations (Special Issue on Scaleble Data Min-
ing Algorithms), December 2000.

7. J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.-C. Hsu. Freespan:
Frequent parrten-projected sequential pattern mining. In Knowledge Discovery
and DAta Mining, pages 355–359, August 2000.

8. J.-L. Lin and M.H. Dumham. Mining association rules: Anti-skew algorithms. In
Proc. of 1998 Int’l Conf. on Data Engineering, pages 486–493, 1998.

9. J.-S Park, M.-S Chen, and P.S Yu. Using a hash-based method with transaction
trimming for minng association rules. In IEEE Transactions on Knowledge and
Data Engineering, volume 9, pages 813–825, October 1997.

10. J. Pei, J. Han, and L.V.S. Lakshmanan. Mining frequent itemsets with convertible
constraints. In Proc. of 2001 Int. Conf. on Data Engineering, 2001.

11. A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining
association rules in large databases. In Proc. of the 21th International Conference
on Very Large Data Bases, pages 432–444, September 1995.

12. A. Veloso, B. Possas, W. Meira Jr., and M. B. de Carvalho. Knowledge manage-
ment in association rule mining. In Integrating Data Mining and Knowledge Man-
agement, 2001.

13. Z. Zhou and C.I. Ezeife. A low-scan incremental association rule maintenance
method. In Proc. of the 14th Conadian Conference on Artificial Intelligence, June
2001.

