
Applying Pattern Mining to Web

Information Extraction

Chia-Hui Chang, Shao-Chen Lui, and Yen-Chin Wu

Dept. of Computer Science and Information Engineering

National Central University, Chung-Li, 320, Taiwan

chia@csie.ncu.edu.tw, fanyway, trisdang@db.csie.ncu.edu.tw

Abstract. Information extraction (IE) from semi-structured Web doc-

uments is a critical issue for information integration systems on the In-

ternet. Previous work in wrapper induction aim to solve this problem

by applying machine learning to automatically generate extractors. For

example, WIEN, Stalker, Softmealy, etc. However, this approach still re-

quires human intervention to provide training examples. In this paper, we

propose a novel idea to IE, by repeated pattern mining and multiple pat-

tern alignment. The discovery of repeated patterns are realized through a

data structure call PAT tree. In addition, incomplete patterns are further

revised by pattern alignment to comprehend all pattern instances. This

new track to IE involves no human e�ort and content-dependent heuris-

tics. Experimental results show that the constructed extraction rules can

achieves 97 percent extraction over fourteen popular search engines.

Keywords: information extraction, semi-structured documents, wrapper
generation, pattern discovery, multiple alignment

1 Introduction

Information extraction (IE) is concerned with extracting from a collection of
documents the information relevant to a particular extraction task. For instance,
the meta-search engine MetaCrawler extracts the search results from multiple
search engines; and the shopping agent Junglee extracts the product information
from several online stores for comparison. With the growth of the amount of
online information, the availability of robust, exible IE has become a stringent
necessity.

Contrast to \traditional" information extraction which roots in natural lan-
guage processing (NLP) techniques such as linguistic analysis, Internet informa-
tion extraction rely on syntactic structures identi�cation marked by HTML tags.
The di�erence is due to the nature of Web such that the page contents have to
be clear at glance. Thus, \itemized list" and \tabular format" have been the
main presentation style for Web pages on the Internet. Such presentation styles
together with the multiple records contained in one documents contribute the
so called semi-structured Web pages.

The major challenge of IE is the problem of scalability as the extraction
rules must be tailored for each particular page collection, To automate the con-
struction of extractors (or wrappers), recent research has identi�ed important
wrapper classes and induction algorithms. For example, Kushmerick et. al. iden-
ti�ed a family of wrapper classes and the corresponding induction algorithms
which generalize from labeled examples to extraction rules [9]. More expressive
wrapper structure are introduced lately. Softmealy by Hsu and Dung [6] uses a
wrapper induction algorithm to generate extractors that are expressed as �nite-
state transducers. Meanwhile, Muslea et al. [10] proposed \STALKER" that
performs hierarchical information extraction to redeem Softmealy's inability to
use delimiters that do not immediately precede and follow the relevant items
with extra scans over the documents (see [11] for a complete survey).

In all this work, wrappers are induced from training examples such that
landmarks or delimiters can be generalized from common pre�xes or suÆxes.
However, labeling these training examples is sometimes time-consuming. Hence,
another track of research is exploring new approaches to fully automate wrapper
construction. For example, Embley et. al. describe a heuristic approach to dis-
cover record boundaries in Web documents by identifying candidate separator

tags using �ve independent heuristics and selecting a consensus separator tag
based on a heuristic combination [3]. However, one serious problem in this one-
tag separator approach arises when the separator tag is used elsewhere among a
record other than the boundary.

On the other hand, our work here attempts to eliminate human intervention
by pattern mining. The motivation is from the observation that useful informa-
tion in a Web page is often placed in a structure having a particular alignment
and order. For example, Web pages produced by Web search engines generally
have regular and repetitive patterns, which usually represent meaningful and
useful data records. In the next section, we �rst give an example showing the
repeated pattern formed by multiple aligned records.

2 Motivation

One observation from Web pages is that the information to be extracted is often
placed in a structure having a particular alignment and forms repetitive patterns.
For example, query-able or search-able Internet sites such as Web search engines
often produceWeb pages with large itemized match results which are displayed in
a particular template format. The template can be recognized when the content
of each match is ignored or replaced by some �xed-length string. Therefore,
repetitive patterns are formed. For instance, in the example of Figure 1, the
sequence \Text()<I>Text()</I>" is repeated four times, when all text
strings between two tags such as \Congo", \Egypt", \Belize" etc. are replaced
by token class Text().

This is a simple example that demonstrates a repeated pattern formed by
tag tokens in a Web page following a simple translation convention. In prac-
tice, many search-able Web sites also exhibit such repeated patterns since they

<H1>Country Code</H1>

Congo<I>242</I>

Egypt<I>20</I>

Belize<I>501</I>

Spain<I>34</I>

Fig. 1. Sample HTML page

usually extract data from relational database and produce dynamic Web pages
with a prede�ned format style. Therefore, what we ought to do is kind of reverse
engineering to discover the original format style and the content we need to
extract. Meanwhile, we also �nd that extraction patterns of the desired informa-
tion (called main information block as de�ned in [3]) often occur regularly and
closely in a Web page. These observations motivate us to look for an approach
to discover repeated patterns and validation criteria to �lter desired repeats that
are spaced regularly and closely.

Since HTML tags are the basic components for data presentation and the text
string between tags are exactly what we see in the browsers. Hence, it is intuitive
to regard the text string between two tags as one unit as well as each individual
tag. This simple version of HTML translation will be used in the following paper
where any text string between two tags is translated to one unit called Text()
and every HTML tag is translated to a token Html(<tag>) according to its tag
name.

Such translation convention enables the show-up of many repeated patterns.
By repeated patterns, we mean any substring that occurs twice in the encoded
token string. Thus, not only the sequence \Html() Text() Html(<I>)
Text() Html(<I>)" conforms to the de�nition of repeated pattern but also the

subsequence \Html() Text() Html(<I>)," \Text() Html (<I>) Text()",
\HMLT(<I>)Text()Html(</I>)," etc. To distinguish from these repeats, we
de�ne maximal repeats to uniquely identify the longest pattern as follows.

De�nition Given an input string S, we de�ne maximal repeat � as a substring
of S that occurs in k distinct positions p1; p2; :::; pk in S, such that the (pi-
1)th token in S is di�erent from the (pj -1)th token for at least one i; j pair,
1 � i < j � k (called left maximal), and the (px + j�j)th token is di�erent
from the (py + j�j)th token for at least one x; y pair, 1 � x < y � k (called
right maximal).

The de�nition of maximal repeats is necessary for identifying the well-used
and popular term, repeats. Besides, it also captures all interesting repetitive
structures in a clear way and avoids generating overwhelming outputs. In the
next section, we will describe how the problem of IE can be addressed by pattern
discovery.

3 IE by Pattern Discovery

To discover patterns from an input Web page, �rst an encoding scheme is used
to translate the Web page into a string of abstract representations, referred
to here as tokens. Each token is represented by a binary code of length l. To
enable pattern discovery, we utilizes a data structure called a PAT tree [4] in
which repeated patterns in a given sequence can be eÆciently identi�ed. Using
this data structure to index an input string, all possible repeats, including their
occurrence counts and their positions in the original input string can be easily
retrieved. Finally, the discovered maximal repeats are forwarded to the validator,
which �lters out undesired patterns and to produces a candidate pattern.

3.1 Translator

Since HTML tags are the basic components for document presentation and the
tags themselves carry a certain structure information, it is intuitive to examine
the tag token string formed by HTML tags and regard other non-tag text content
between two tags as one single token called Text(). Tokens seen in the translated

token string include tag tokens and text tokens, denoted as Html(<tag name>)
and Text(), respectively. For example, Html() is a tag token, where
is the tag. Text() is a text token, which includes a contiguous text string located
between two HTML tags.

Tags tokens can be classi�ed in many ways. The user can choose a classi�ca-
tion depending on the desired level of information to be extracted. For example,
tags in the BODY section of a document can be divided into two distinct groups:
block-level tags and text-level tags. The former de�nes the structure of a doc-
ument, and the latter de�nes the characteristics, such as format and style, of
the contents of the text. Block level tags include categories such as headings,
text containers, lists, and other classi�cations, such as tables and forms. Text-
level tags are further divided into categories including logical markups, physical
markups, and special markups for marking up texts in a text block.

The many di�erent tag classi�cations allow di�erent HTML translations to
be generated. With these di�erent abstraction mechanisms, di�erent patterns
can be produced. For example, skipping all text-level tags will result in higher
abstraction from the input Web page than all tags are included. In addition, dif-
ferent patterns can be discovered and extracted when di�erent encoding schemes
are translated.

For example, when only block-level tags are considered, the correspond-
ing translation of Fig. 1 is a token string: \Html(<H1>)Text()Html(</H1>)

Html()Html()Text()Html()Text()Html()Text()Html()

Text() Html()", where each token is encoded as a binary strings of "0"s
and "1"s with length l. For example, suppose three bits encode the tokens in the
Congo code as shown in Fig. 2. The encoded binary string for the token string
of the Congo code will be "100110 101000 010110 010110 010110 010110 001$"
of 3*13 bits, where "$" represents the ending of the encoded string.

,QGH[LQJ SRVLWLRQ�

VXIIL[� ��

VXIIL[� �������������������������������������

VXIIL[� ����������������������������������

VXIIL[� �������������������������������

VXIIL[� ����������������������������

VXIIL[� �������������������������

VXIIL[� ����������������������

VXIIL[� �������������������

VXIIL[� ����������������

VXIIL[�� �������������

VXIIL[�� ����������

VXIIL[�� �������

VXIIL[�� ����

+WPO��+�!�7H[W�B�+WPO���+�!�+WPO��8/!�+WPO��/,!�7H[W�B�

+WPO��/,!�7H[W�B�+WPO��/,!�7H[W�B�+WPO��/,!�7H[W�B�+WPO���8/!�

+WPO��8/!�

+WPO��/,!�

+WPO��+�!�

7H[W�B�

���

���

���

���

100110101000010110010110010110010110001$

+WPO���8/!�

+WPO���/,!�

+WPO���+�!�

���

���

���

11

4

�

Ä

1

1
Ä

Ã

Ä

ÄÃ

1

Ã

31

Ä

Ã

8

12

Ã

13

9

Ã

Ä

57

20

Ã

Ã

11

0

10

L

Ä

I

6

M

Ã

4

Ä

N

5

Ä

Ã

2

1
D

2
J

2
E

3

F

14

H

3
K

17
O

8

G

Fig. 2. The PAT tree for the Congo Code

3.2 The PAT Tree

Our approach for pattern discovery uses a PAT tree to discover repeated patterns
in the encoded token string. A PAT tree is a Patricia tree (Practical Algorithm
to Retrieve Information Coded in Alphanumeric [11]) constructed over all the
possible suÆx strings. A Patricia tree is a particular implementation of a com-
pressed binary (0,1) digital tree such that each internal node in the tree has
two branches: zero goes to left and one goes to right. Like a suÆx tree [4], the
Patricia tree stores all its data at the external nodes and keeps one integer, the
bit-index, in each internal node as an indication of which bit is to be used for
branching. For a character string with n indexing point (or n suÆx), there will
be n external nodes in the PAT tree and n � 1 internal nodes. This makes the
tree O(n) in size.

When a PAT tree is to index a sequence of characters (or tokens here) not
just 0 or 1, the binary codes for the characters can be used. For simplicity,
each character is encoded as �xed-length binary code. Speci�cally, given a �nite
alphabet � of a �xed size, each character x 2 � is represented by a binary code
of length l = dlog2 j�je. For a sequence S of n characters, the binary input B will
have n� l bits, but only the [i� l+1]th bit has to be indexed for i = 0; : : : ; n�1.

Referring to Fig. 2, a PAT tree is constructed from the encoded binary string
of the Congo example. The tree is constructed from thirteen sequences of bits,
with each sequence of bits starting from each of the encoded tokens and extending
to the end of the token string. Each sequence is called a "semi-in�nite string" or
"sistring" in short. Each leaf, or external node, is represented by a square labeled
by a number that indicates the starting position of a sistring. For example, leaf
2 corresponds to sistring 2 that starts from the second token in the token string.

Each internal node is represented by a circle, which is labeled by a bit position
in the encoded bit string. The bit position is used when locating a given sistring
in PAT tree.

Virtually, each edge in the PAT tree has a edge label. For example, the edge
labels between node d and e are \101100", the 8th bit to 13th bit for suÆx 9,

7, and 5. Edges that are visited when traversing downward from root to a leave
form a path that leads to a sistring corresponding to the leave. The concatenated
edge labels along the path form a virtual path label. For example, the edge labels
"1", "10", and "1..." on the path that leads from root to leave 2 form a pre�x
"1101...", which is a unique pre�x for sistring 2.

As shown in Fig. 2, all suÆx strings with the same pre�x will be located in
the same subtree. Hence, it allows surprisingly eÆcient, linear-time solutions to
complex string search problems. For example, string pre�x searching, proximity
searching, range searching, longest repetition searching, most frequent searching,
etc. [4, 5] Since every internal node in a PAT tree indicates a branch, it implies
a di�erent bit following the common pre�x between two suÆxes. Hence, the
concatenation of the edge-labels on the path from the root to an internal node
represents one repeated string in the input string. However, not every path-label
or repeated string represents a maximal repeat. Let's call the (pk�1)th character
of the binary string pk the left character. For a path-label of an internal node v to
be a maximal repeat, at least two leaves (suÆxes) in the v's subtree should have
di�erent left characters. By recording the occurrence counts and the reference
positions in the leaf nodes of a PAT tree, we can easily know how many times a

pattern is repeated. Hence, given the pattern length, occurrence count, we can
apply postorder traversal to the PAT tree to enumerate all repeats.

The essence of a PAT tree is a binary suÆx tree, which has also been applied
in several research �eld for pattern discovery. For example, Kurtz and Schleier-
macher have used suÆx trees in bioinformatics for �nding repeated substring in
genomes [8]. As for PAT trees, they have been applied for indexing in the �eld of
information retrieval since a long time ago [4]. It has also been used in Chinese
keyword extraction [1] for its simpler implementation than suÆx trees and its
great power for pattern discovery. However, in the application of information
extraction, we are not only interested in repeats but also repeats that appear
regularly in vicinity. Discovered maximal repeats have to be further validated
or compared to �nd the best one that corresponds to the information to be
extracted.

3.3 Pattern Validation Criteria

In the above section, we discussed how to �nd maximal repeats in a PAT tree.
However, there may be over 60 maximal repeats discovered in an Web page.
To classify these maximal repeats, we introduce two measures regularity, and
compactness as described below. Let the suÆxes of a maximal repeat � are
ordered by its position such that suÆx p1 < p2 < p3 : : : < pk, where pi denotes
the position of each suÆx in the encoded token sequence.

Regularity of a pattern is measured by computing the standard deviation of the
interval between two adjacent occurrences (pi+1�pi), that is, the sequence of
spacing between two adjacent occurrences (p2�p1), (p3�p2), ..., (pk�pk�1).
Regularity of the maximal repeat � is equal to the standard derivation of
the sequence divided by the mean of the sequence.

Compactness is a measure of the density of a maximal repeat. It is used to
eliminate maximal repeats that are scattered far apart beyond a given bound.
Compactness is de�ned as k � j�j/

Pk

i=2 pi � pi�1, where j�j is the length of
� in number of tokens.

The value of regularity is located between 0 and 1 while the value of density
is greater than 0. Ideally, the extraction pattern should have regularity equal to
zero and compactness equal to one. To �lter potentially good patterns, a simple
approach will be to use a threshold for each of these measures above. Implicitly,
good patterns have small regularity and density close to one. Therefore, only
patterns with regularity less than the regularity threshold and density between
the density thresholds are considered validated patterns.

4 Performance Evaluation

We �rst show the number of validated maximal repeats validated by our sys-
tem using fourteen state-of-the-art search engines, each with ten Web pages.
There are several control parameters which can a�ect the number of maximal
repeats validated, including encoding scheme, minimum pattern length, occur-
rence count, and threshold values for regularity and compactness. Given the
minimum length 3 and count 5, the e�ect of di�erent encoding scheme is shown
in Table 1. Conform to general expectation, higher-level encoding scheme of-
ten results in less patterns. From this table, we can also see how each control
parameter �lters patterns where the thresholds are decided by the following
experiments. The value of density can be greater than one because maximal re-
peats may be overlapped. For example, suppose a maximal repeat � occurs ten
times in a row. In such case, � will has regularity 0 and density 1. In addition,
��, ���, etc. are also quali�ed for regular maximal repeats, only with density
greater than 1.

Table 1. No. of Patterns validated with di�erent encoding scheme

Encoding Maximal Regularity Compactness

Scheme Repeat < 0.5 > 1.5 < 0.25

All-tag 117 39 22 7.6

NoPhysical 88 41 25 6.5

NoSpecial 82 29 18 5.7

Block-level 66 32 17 3.9

�

�

�

�

�

��

��

��

� ���� ��� ���� �

Density

o

f
p

at
te

rn
s

5 ����

5 ���

5 ����

Fig. 3. # of patterns sucessfully validated

Fig. 3 shows the e�ect of various regularity and density thresholds using
all-tag encoding scheme. Basically, low regularity threshold and high density
threshold reduce the number of patterns, but could have missed good patterns.
Therefore, the thresholds are chosen empirically to include as many good pat-
terns as possible.

Table 2 shows the performance of di�erent encoding scheme measured in
retrieval rate, accuracy rate and matching percentage. Retrieval rate is de�ned
as the ratio of the number of desired data records enumerated by a maximal
repeat to the number of desired data records contained in the input text. Like-
wise, accuracy rate is de�ned as the ratio of the number of desired data records
enumerated by a maximal repeat to the number of occurrence of the maximal
repeat. A data record is said to be enumerated by a maximal repeat if the match-
ing percentage is greater than a bound determined by the user. The matching
percentage is used because the pattern may contain only a portion of the data
record.

With the simple encoding scheme of using block-level tags, our approach
could discover patterns which extract 86% records with matching percentage
78%. Nearly half the test Web sites are correctly extracted (with matching per-
centage greater than 90%). Among them, nine of the fourteen Web sites have
retrieval rate and accuracy rate both greater than 0.9. However, examining other
discovered patterns, many are incomplete due to exceptions. In the next section,
we will further improve the performance by occurrence partition and multiple
string alignment.

5 Constructing Extraction Pattern

Generally speaking, search engines utilize a \while loop" to output their results
in some template. However, they may use \if clauses" inside the while loop
to decorate the text content. For example, the keywords that are submitted

Table 2. Performance of di�erent encoding scheme

Encoding Scheme Retrieval Rate Accuracy Rate Matching Percentage

All-tag 0.73 0.82 0.60

NoPhysical 0.82 0.89 0.68

NoSpecial 0.84 0.88 0.70

Block-level 0.86 0.86 0.78

to search engines are shown in bold face for Infoseek and MetaCrawler, thus,
breaking their \while loop" patterns.

From the statistics above, we summarize that \maximal repeat" and \reg-
ularity" are the two primary criteria we �lter candidate patterns. However, we
also found that the extraction pattern may not be maximal repeats and regu-
lar. For example, the regularity of the pattern for Excite is greater than default
regularity threshold 0.5 because a banner is inserted among the search results,
dividing the ten matches into two parts. Besides, the \if-e�ect" often hinders us
from discovering complete patterns. These issues are what we would address in
the following.

5.1 Occurrence Partition

To handle patterns with regularity greater than the speci�ed threshold 0.5, these
patterns are carefully segmented to see if any partition of the pattern's occur-
rences satis�es the requirement for regularity. By de�nition, the regularity of
a pattern is computed through all occurrences of the pattern. For example, if
there are k occurrences, the k�1 intervals (between two adjacent instances) are
the statistics we use to compute the standard deviation and the mean. However,
in examples such as Lycos, the search result is divided into three blocks. Such
occurrences increase the regularity over all instances. Nonetheless, the regularity
of the occurrences in each information block is still small. Therefore, the idea
here is to segment the occurrences into partitions so that we can analyze each
partition individually.

We don't really have to apply clustering algorithm on this matter, instead,
a simple loop can accomplish the job if the occurrences are ordered by their
position aforehand. Let Ci;j denotes the set of occurrences pi; pi+1; :::; pj and
initialize s = 1; j = 1. For instance pj+1, if the regularity of Cs;j+1 is greater
than � then output Cs;j as a partition and assign j + 1 to s.

Once the partitions are separated, we can then compute the regularity for
each individual partition. If a partition includes occurrences more the minimum
count and has regularity less than threshold �, the pattern as well as the occur-
rences in this partition are outputted. Note that the threshold � is set to a small
value much less than 0.5 to control the number of outputted patterns. With
this modi�cation, the performance is improved greatly. As shown in Table 3, the
retrieval rate is increased to 93% and accuracy rate to 90%. The only tradeo� is
the increased number of patterns from 3.9 to 8.9.

Table 3. Performance of advanced technique

Advanced Technique Retrieval Rate Accuracy Rate Matching Percentage

Occurrence Partition 0.93 0.93 0.84

Multiple Alignment 0.97 0.94 0.90

5.2 Multiple String Alignment

For the tough work regarding incomplete pattern discovered, the technique for
multiple string alignment is borrowed to �nd a good presentation of the critical
common features of multiple strings. For example, suppose \adc" is the discov-
ered pattern for token string \adcwbdadcxbadcxbcadc". If we have the following
multiple alignment for strings \adcwbd", \adcxb" and \adcxbd":

a d c w b d

a d c x b �

a d c x b d

The extraction pattern can be generalized as \adc[wjx]b[dj�]" to cover these
three instances. Speci�cally, suppose a validated maximal repeat has k + 1 oc-
currence, p1, p2, ..., pk+1 in the encoded token string. Let string Pi denote the
string starting at pi and ending at pi+1 � 1. The problem is to �nd the multiple
alignment of the k strings S = fP1; P2; :::; Pkg so that the generalized pattern
can be used to extract all records we need.

Multiple string comparison is a natural generalization of alignment for two
strings which can be solved in O(n � m) by dynamic programming to obtain
optimal edit distance, where n and m are string lengths. As an example of two
string alignment, consider the alignment of two strings acwbd and adcxb shown
below:

a � c w b d

a d c x b �

In this alignment, character w is mismatched with x, two ds are opposite hy-
phens (or called space), and all other characters match their counterparts in the
opposite string. If we give each match a value of �, each mismatch a value of
, and each space a value of Æ, the two string alignment problem is to optimize
the weighted distance D(P1; P2) � (nmatch � � + nmis � + nspace � Æ), where
nmatch, nmis, and nspace denote the number of mismatch, match, and space,
respectively (nmatch = 3, nmis = 1, and nspace = 2 here).

Extending dynamic programming to multiple string alignment yieds a O(nk)
algorithm. Instead, an approximation algorithm is available such that the score
of the multiple alignment is no greater than twice the score of optimal multi-
ple alignment [5]. The approximation algorithm starts by computing the center
string Sc in k strings S that minimizes consensus error

P
Pi2S

D(Sc; Pi). Once
the center string is found, each string is then iteratively aligned to the center
string to construct multiple alignment, which is in turn used to construct the
extraction pattern.

For each patterns with density less than one, the center star approximation
algorithm for multiple string alignment is applied to generalize the extraction
pattern. Suppose the generalized extraction pattern is expressed as \c1c2c3:::cn",
where each ci is either a symbol or a subset of � [f�g containing symbols that
can appear at position i. An additional step is taken to generate pattern of
this form `cjcj+1cj+2:::cnc1c2:::cj�1" for position j with single symbol of the
following special tags such as <DL>, <DT>, <TR> or <P>,
, <HR>,
because extraction patterns often begin or end up with them1.

We adopt this additional step because the generated extraction pattern may
not be the beginning of a record. The experimental results show that with the
help of multiple string alignment and the additional step, the performance is
improved to 97% retrieval rate, 94% accuracy rate and 0.90 matching percentage.
The high percentage of retrieval rate is pretty encouraging. The ninety percent of
matching percentage is actually higher in terms of the text content retrieved. For
thoseWeb sites with matching percentage greater than 85%, the text contents are
all successfully extracted. What bothers is the accuracy rate, since the extraction
pattern generalized from multiple alignment may comprehends more than the
information we need. For example, the generalized rule for Lycos will extract
information in all three blocks while only the information in one block is what
we desired, causing lower accuracy rate.

6 Summary and Future Work

Information extraction from Web pages is a core technology for comparison-
shopping agents [2], which Doorenbos et. al. regard as improvement in the axe
of tolerating unstructured information. The characteristics of regularity, unifor-
mity, and vertical separation enable the possibility of learning. In this paper,
we have presented an unsupervised approach to semi-structured information ex-
traction. We propose the application of PAT trees for pattern discovery in the
encoded token string of Web pages. Once the PAT tree is constructed, we can
easily traverse the tree to �nd all maximal repeats given the expected pattern
frequency and length. The discovered maximal repeats are further �ltered by
three measures: regularity and compactness. The �ltering criteria aim to keep
the number of patterns as small as possible while at the same time have all
interesting patterns. Furthermore, occurrence partition is applied to handle pat-
terns with regularity greater than the default threshold. Finally, multiple string
alignment is applied to patterns with density less than one to generalize extrac-
tion pattern. Thereby, the extraction module can simply adapt pattern matching
algorithm to extract all records.

The extraction rule generalized from multiple string alignment has achieved
97% retrieval rate and 91% accuracy rate. The whole process requires no human
intervention and training example. Comparing our algorithm to others, our ap-
proach is quick and expressive. It takes only three minutes to extract 140 Web

1 Other tags include <TABLE>, <TD>, , , , <DD>.

pages. The extraction rule allowing alternative tokens and missing tokens, can
tolerate exceptions and variance in the input.

We are currently applying this approach against more test data formatted in
tabular form, which perform at the level of 80% retrieval rate. As more variances
occur in input pages, it becomes even diÆcult to have good multiple string
alignment. In such cases, the scoring of edit distance between two strings and the
algorithm to construct multiple alignment become more important. In addition,
�ltering of the constructed patterns can also provide a reasonable number of
patterns for user to choose.

Acknowledgements

This work is sponsored by National Science Council, Taiwan under grant NSC89-
2213-E-008-056. Also, we would like to thank Lee-Feng Chien, Ming-Jer Lee and
Jung-Liang Chen for providing their PAT tree code for us.

References

1. Chien, L.F. 1997. PAT-tree-based keyword extraction for Chinese information re-

trieval. In Proceedings of the 20th annual international ACM SIGIR conference on

Research and development in information retrieval. pp.50{58. 1997.

2. Doorenbos, R.B., Etzioni, O. and Weld, D. S. A scalable comparison-shopping

agent for the World-Wide Web. In Proceedings of the �rst international conference

on Autonomous Agents. pp. 39{48, NewYork, NY, 1997, ACM Press.

3. Embley, D.; Jiang, Y.; and Ng. Y.-K. 1999. Record-boundary discovery in Web

documents. In Proceedings of the 1999 ACM SIGMOD International Conference

on Management of Data (SIGMOD'99). pp. 467{478, Philadelphia, Pennsylvania.

4. Gonnet, G.H.; Baeza-yates, R.A.; and Snider, T. 1992. New Indices for Text: Pat

Trees and Pat Arrays. Information Retrieval: Data Structures and Algorithms,

Prentice Hall.

5. Gus�eld, D. 1997. Algorithms on strings, trees, and sequences, Cambridge. 1997.

6. Hsu, C.-N. and Dung, M.-T. 1998. Generating �nite-state transducers for semi-

structured data extraction from the Web. Information Systems. 23(8):521{538.

7. Knoblock, A. et al., ed., 1998. Proc. 1998 Workshop on AI and Information Inte-

gration, Menlo Park, California.: AAAI Press.

8. Kurtz, S. and Schleiermacher, C. 1999. REPuter: fast computation of maximal

repeats in complete genomes. Bioinformatics 15(5):426{427.

9. Kushmerick, N.; Weld, D.; and Doorenbos, R. 1997 Wrapper induction for infor-

mation extraction. In Proceedings of the 15th International Joint Conference on

Arti�cial Intelligence (IJCAI).

10. Muslea, I.; Minton, S.; and Knoblock, C. 1999. A hierarchical approach to wrap-

per induction. In Proceedings of the 3rd International Conference on Autonomous

Agents (Agents'99), Seattle, WA.

11. Muslea, I. 1999. Extraction patterns for information extraction tasks: a survey. In

Proceedings of AAAI'99: Workshop on Machine Learning for Information Extrac-

tion

