
Multi-level Alignment for Attribute Extraction in IEPAD

Chia-Hui Chang and Shao-Chen Lui

Dept. of Computer Science and Information Engineering

National Central University, Chung-Li 320, Taiwan

chia@csie.ncu.edu.tw, anyway@db.csie.ncu.edu.tw

Abstract

The problem of information extraction (IE) regards automatic generation of extraction pro-

grams (also called wrappers). Similar to compiler generator, the core problem is to generate

extraction rules. In this paper, we introduce IEPAD (an acronym for Information Extraction

based on PAttern Discovery), a system that generalizes extraction patterns from Web pages

without user-labeled examples. The system includes a rule generator, which applies sequence

mining techniques to discover possible patterns, a rule viewer, which provides an interface for

users to see what each pattern can extract, and an extractor, which extracts information from

Web pages based on designated extraction rules. To allow �ner extraction, multi-level analysis

as well as the alignment of multiple records are adopted for attribute extraction. This new

track to IE involves no human e�ort (to label examples) and content-dependent heuristics. Ex-

periments show that it can achieve 96% retrieval rate with only one training example over 14

popular Web search sites. Among them, ten are able to achieve 100% extraction with less than

�ve training pages.

1 Introduction

The best thing about the WWW is that it provides an easy way to publish and get information

on the Internet. In the past few years, the increasing number of data sources that can be queried

across the WWW has made it a medium for information exchange and integration. Therefore, it

promises better Web services to be created from the existing ones. For example, Web informa-

tion integration systems like meta-search engines [Selberg and Etzioni, 1995] or shopping agents

[Doorenbos et al., 1997], are such examples that provide distilled information for users. We can

expect that more and more Web services will be created through data integration on the Web.

However, current Web accessible data sources are not designed for application programs, which

expect structured data. Typically, the information to be relevant is embedded in a format to be

displayed for users. Hence, there presents a special need for wrappers to extract the desired in-

formation from the machine-generated Web pages. Contrast to traditional information extraction

which roots from linguistic analysis [Soderland, 1997], the wrapper generation �eld relies on struc-

ture identi�cation marked by HTML tags (see [Kushmerick, 1999, Muslea, 1999] for a survey). The

1

markups in Web pages together with the multiple tuples contained in one document contribute the

so called semi-structured documents.

The major challenge of IE is the problem of scalability since the extraction rules must be tai-

lored for each particular data source. The key component of wrappers is the extraction rules that is

used to extract information relevant to a particular extraction task. As writing extraction rule is a

diÆcult, time-consuming task, several research e�orts have focused on learning the extraction rules

from training examples provided by the user. For example, Kushmerick et. al. identi�ed a family

of wrapper classes including LR, HLRT, OCLR, etc. [Kushmerick et al., 1997]. More expressive

wrapper structure are introduced by Hsu and Dung who use a �nite-state transducer as the archi-

tecture for the extractor [Hsu and Dung, 1998]. Meanwhile, Muslea et al. proposed \STALKER"

that generates single-slot extraction rules and performs hierarchical information extraction with

extra scans over the documents [Muslea et al., 1999].

Basically, these researches exploited machine learning techniques to the limits and create tools

with very expressive power. However, acquiring these training examples requires labeling which

is still time-consuming. Hence, another track of research tries to explore new approaches to fully

automate extraction rule generation. For example, Embley et. al. describe a heuristic approach

to discover record boundaries in Web documents by identifying candidate separator tags using �ve

independent heuristics and choosing a consensus separator tag based on a heuristic combination

[Embley et al., 1999].

On the other hand, Chang et. al. took a totally di�erent approach which is based on repeti-

tive pattern discovery [Chang et al., 2001]. Contrary to the idea of the above systems which use

markups and system-de�ned tokens as landmarks or delimiters to recognize boundaries of a record

or attribute, this approach relies on the discovery of the display pattern from the abstracted input.

Most of all, this pattern discovery based approach involves no human e�ort and content-dependent

heuristics making it superior to other approaches.

However, the work in [Chang et al., 2001] only shows the extraction of the record boundary.

In this paper, we further extend the work and describe the extraction of attribute values within

each record. In section 2, we brie
y describe Chang's work based on pattern mining. Next, the

architecture of this wrapper generation system, IEPAD, is described to show how extraction rules

can be speci�ed to extract attribute values in each record. Section 4 shows the experimental results

and section 5 concludes the paper.

2

2 Rule Generator for Record Boundary

The approach in Chang's paper [Chang et al., 2001] di�ers from that of other wrapper induction

systems in the very �rst place where the extraction rules are context-based instead of delimiter-

based. The reason we use context-based rule instead of delimiter-based rule is that the data to be

extracted are often generated based on some prede�ned HTML templates (e.g. job postings,
ight

schedules, query results from search engines, etc.). This naturally inspires the idea to discover such

templates (or patterns) since we do observe that most information we desire is aligned regularly and

contiguously. Such characteristics enable the application of repetitive pattern mining to automate

the generation of extraction patterns which correspond to the display templates. In other words,

the task of extraction rule discovery can be solved by repetitive pattern mining without user-labeled

training examples that are required for prior wrapper induction systems.

In [Chang et al., 2001], a data structure called a PAT tree [Gonnet et al., 1992] is utilized for

repeat discovery. Once all repetitive patterns are found, we can then check if the pattern occurs

regularly and contiguously. Finally, the �ltered repeats are examined to compose extraction patterns

by advanced technique called multiple string alignment.

2.1 Maximal Repeats Discovery

By repetitive pattern, we generally mean any substring that occurs at least twice in a string. To

better capture the idea of repeats and also reduce the number of patterns discovered, the concept

of maximal repeats is used to refer to the longest repetitive patterns. The idea is to extend a repeat

in both directions to its longest. We call a repeat left maximal (right maximal) if the repeat can

not be extended on the left (right) direction (See [Chang et al., 2001]). We say a repeat is maximal

if it is both left maximal and right maximal. However, repetitive patterns are not easily seen in the

plain Web page. To reveal such repetitive patterns in an input Web page, an encoding scheme is

used to translate the Web page into a token string of abstract representation. Since HTML tags are

the basic components for document presentation and the tags themselves carry a certain structure

information, it is intuitive to examine the tag token string formed by HTML tags and ignore text

content between two tags to see the display template. Hence, the simplest abstraction is as follows:

1. Each tag is encoded as a tag token <tag name>

2. Any text between two tags are regarded as a special token called <STRING>

3

Of course, there are various ways to encode a Web document. With di�erent abstraction

mechanisms, di�erent patterns can be produced. For example, HTML tags, according to their

functions, can be divided into two distinct groups: block-level tags and text-level tags. The former

de�nes the structure of a document, and the latter de�nes the characteristics (format and style,

etc.) of the text contents. The user can choose an encoding scheme depending on the desired level

of information to be extracted. For example, block-level encoding scheme, which is the highest

level encoding scheme used in [Chang et al., 2001], has a little modi�cation to rule 1 where only

block-level tags are encoded as tag tokens and other text-level tags are simply ignored.

PAT Tree

To automatically discover repetitive patterns, a data structure called PAT trees is used to index

all suÆxes in the encoded token strings. A PAT tree is a Patricia tree (Practical Algorithm to

Retrieve Information Coded in Alphanumeric [Morrison, 1968]) constructed over all the possible

suÆx strings. A Patricia tree is a particular implementation of a compressed binary (0,1) digital

tree such that each internal node in the tree shows the di�erent bit between suÆx strings in the

subtree. To build the encoded token string into a PAT tree, each tag token is denoted by a �xed

length binary representation. Like a suÆx tree [Gus�eld, 1997], the Patricia tree stores all its suÆx

strings at the external nodes. For a token string with n indexing point (or n suÆxes), there will

be n external nodes in the PAT tree and n� 1 internal nodes. This makes the tree O(n) in size.

The essence of a PAT tree is a binary suÆx tree, which has also been applied in several re-

search �eld for pattern discovery. For example, Kurtz and Schleiermacher have used suÆx trees in

bioinformatics for �nding tandem repeats in genomes [Kurtz and Schleiermacher, 1999]. It has also

been used in Chinese keyword extraction [Chien, 1997] for its simpler implementation than suÆx

trees and its great power for pattern discovery.

PAT trees organize input in such a way that all suÆxes with the same pre�x are put stored the

same subtree. Therefore, it has very good characteristics for pattern discovery:

� First, all suÆxes in a subtree share a common pre�x, which is the path label that leads from

the tree root to the subtree root.

� Second, the number of leaves in the subtree is exactly the number of occurrence of the path

label.

� Third, each path label represents a right maximal repeat in the input.

4

Therefore, maximal repeat discovery can be achieved by simply traversing the PAT tree to

enumerate all path labels to discover all right maximal repeats. As to verify whether a path label

is left maximal, we can check the left tokens of the positions where the repeat occurs. If all left

tokens are the same, then this repeat can be extended and is not left maximal.

2.2 Pattern Validation Criteria

As described above, most information we want is generated based on some prede�ned templates and

is commonly aligned regularly and contiguously. To discover these display patterns, two measures,

called \variance" and \density", are de�ned to evaluate whether a maximal repeat is a promising

extraction pattern. Let the occurrences of a maximal repeat � are ordered by its position such that

p1 < p2 < p3 : : : < pk, where pi denotes the position in the encoded token string.

Variance of a pattern is computed by the coeÆcient of variance of the interval between two

adjacent occurrences (pi+1 � pi). That is, the quotient of the standard deviation of the

interval to the mean length of the interval.

Density is de�ned as the percentage of repeats in the interval between the �rst and the last

occurrences of the repeat. That is,
(k�1)�j�j
pk�p1

, where j�j is the length of � in number of tokens.

Generally speaking, machine-generated Web pages often embed relevant information in tem-

plates which has small variance and large density. To �lter potentially good patterns, a simple

approach will be to use a threshold for each of these measures. Only patterns with variance less

than the variance threshold and density greater than the density threshold are considered validated

patterns.

The above approach is easy to implement. However, it can miss some display templates if the

variance threshold is not set properly. The reason is that regular patterns can sometimes have

large variance coeÆcient. For example, advertisement banners inserted among the search results

can divide the occurrences into several parts like \Lycos" does. These exceptions result in maximal

repeats with large variance.

Occurrence Clustering

To handle patterns with variance greater than the speci�ed threshold, the occurrences of a pattern

are carefully clustered to see if any partition of the pattern's occurrences can form an independent

and regular block. The idea here is to cluster the occurrences into partitions so that we can examine

5

each partition respectively to see if it is regular enough. For this 1-dimension clustering, a simple

loop can accomplish the job. Let Ci;j denotes the list of occurrences pi; pi+1; :::; pj in increasing

order. Initialize i and j to 1. For instance pj+1, if the variance coeÆcient of Ci;j+1 is less than

then pj+1 is included as part of the current partition; otherwise, Ci;j is exported as a partition and

a new partition is created by assigning j + 1 to i.

Once the occurrences are partitioned, we can then compute the variance for each individual

partition. If a partition includes more than the minimum occurrence count and has variance less

than threshold ��, the pattern as well as the occurrences in this partition are exported. Note that

the threshold �� is set to a small value close to zero to control the number of generated partitions.

2.3 Composing Extraction Patterns

In addition to the large variance, patterns with density less than 1 are another problem we need to

deal with. Since PAT trees compute only \exact match" patterns, templates with exception (e.g.

emphasizing on keywords) can not be discovered through PAT trees. To allow inexact or approxi-

mate matching, the technique for multiple string alignment is used to �nd a good presentation of

the critical common features of multiple strings.

Suppose a validated partition has k occurrence, p1, p2, ..., pk in the encoded token string. Let

string Pi denote the string starting at pi and ending at pi+1�1. The problem is to �nd the multiple

alignment of the k� 1 strings S = fP1; P2; :::; Pk�1g so that the generalized pattern can be used to

extract all records we need. For example, suppose \adc" is the discovered pattern for token string

\adcbdadcxbadcxbdadc". Suppose we have the following multiple alignment for strings \adcbd",

\adcxb" and \adcxbd":
a d c � b d

a d c x b �

a d c x b d

The extraction pattern can be generalized as \adc[xj�]b[dj�]" to cover these three instances.

Multiple string alignment is a generalization of alignment for two strings which can be solved

in O(n �m) by dynamic programming to obtain optimal edit distance, where n and m are string

lengths. Extending dynamic programming to multiple string alignment yields a O(nk) algorithm.

Alternatively, an approximation algorithm is available such that the score of the multiple alignment

is no greater than twice the score of optimal multiple alignment [Gus�eld, 1997]. The approximation

algorithm starts by computing the center string Sc in k strings S that minimizes consensus error.

Once the center string is found, each string is then iteratively aligned to the center string to

6

construct multiple alignment, which is in turn used to construct the extraction pattern.

For each pattern with density less than 1, the center star approximation algorithm for multiple

string alignment is applied to generalize the extraction pattern. Note that the success of this

technique lies in the assumption that extraction patterns often occur contiguously together. If the

multiple alignment results in extraction rules with alternatives at more than k positions, such a

pattern is very unlikely to be an extraction rule. Therefore, we set an upper bound that there can

be at most k mismatches.

Pattern Rotation

Suppose a generalized pattern is expressed as \c1c2c3:::cn", where each ci is either a symbol or a

subset of � [f�g containing symbols that can appear at position i. Since c1 might not be the

start of a record, we use a (right) rotating procedure to compare the pattern with the left string

of the �rst occurrence p1 from right to left. The purpose is to �nd the correct starting position

and generate pattern to \cjcj+1:::cnc1:::cj�1". If the last token cn is a token with no option, and

the left character of the �rst occurrence is the same as cn, we rotate the pattern to \cnc1c2:::cn�1".

The process continued until the last token has alternative options or the left character of the �rst

occurrence is not the same as the last token; and when the rotation stops, the �nal pattern is

output. Similarly, we use a (left) rotating procedure to compare the pattern with the right string of

the last occurrence pk from left to right. If the �rst token is a token with no option, and the right

character of the last occurrence is the same as the �rst token, we rotate the pattern to \c2c3:::cnc1".

The process continued until the �rst token has alternative options or the right character of the last

occurrence is not the same as the �rst token; and when the rotation stops, the �nal pattern is

output. With this pattern rotation, the correct record boundary can be identi�ed.

This technique of pattern rotation is di�erent from that used in [Chang et al., 2001], where

a heuristic is used to \guess" possible beginning tags1. In summary, we can eÆciently discover

all maximal repeats (with pattern length and occurrence count greater than default thresholds)

in the encoded token string through the constructed PAT tree T . Second, validation criteria by

variance coeÆcient and density control allows �ltering of promising patterns. For patterns with

large variance, occurrence partition can cluster a pattern into information blocks of interest. As

for low density pattern, multiple string alignment is applied to produce more complete extraction

pattern based on the assumption of contiguous occurrence.

1Record patterns often start with < DL >, < DT >, < TR >, < P >, < LI >, etc.

7

3 System Architecture

The IEPAD system includes three components: the rule generator, the extractor, and the rule

viewer. The core technique is the rule generator described in last section which outputs the extrac-

tion patterns constructed. The rule viewer provides an interface for the user to view what each

pattern can extract and assign one as the record extraction rule. As for the extractor, it accepts the

Web document as input and extract relevant information based on the designated extraction rule.

The extractor is actually a string matching algorithm that match all occurrences of the record ex-

traction rule in the encoded token string of the Web document. The extractor can be implemented

in various languages so that it can be incorporated in di�erent platform.

3.1 Rule Viewer

The purpose of the rule viewer is to provides a graphic user interface so that the user can view the

extracted content of each constructed pattern. Since the record extraction patterns are discovered

automatically without any prior knowledge from the user and there might be more than one in-

formation blocks, an interface is necessary for the user to choose a proper record extraction rule.

Note that this selection is di�erent from labeling task of machine learning based research, since the

users are not to give labeled example for pattern discovery but to select the pattern discovered.

In addition, the user can also adjust the parameters including the encoding schema, the minimum

pattern length, the minimum occurrence count, the variance and density thresholds.

Figure 1 shows a snapshot of the rule viewer. The upper-left window shows the patterns

discovered and the lower window shows the corresponding information when a pattern is selected.

For example, in Figure 1(a), the user chooses the �fth pattern and the corresponding information

are shown in the lower window. Note that all the records extracted are further divided into blocks

(or slots) and aligned for selection through the upper-left window, where the users can key in the

attribute names and select the desired information blocks by clicking the check boxes above each

block.

Let us explain how the data are aligned like this. Recall that patterns are composed of tag tokens

and text tokens; and only text tokens and some special tag tokens (which contain hyperlinks such as

<A> and tags) might contain useful information. Therefore, whenever there is a text token

or special tag tokens in the pattern, the corresponding information should be presented. Since we

have recorded the starting position of each token in the Web page during the translation phase, we

can always trace the corresponding information of any tokens. Therefore, for each token substring

8

(a)

(b)

Figure 1: The extraction rules and the user interface (a) training page: infoseek3.html (b)testing

page: infoseek4.html

9

Block division(�, R) f

for each ri in R do

r0i= Align(�, ri);

m= 0;

for j=1 to j�j do

if �[j]=<STRING> or <A> or then

m= m + 1;

if ri[j]6='-' then block[i][m]= r0i[j];

else block[i][m]= null;

endif

endif

endfor

endfor

return block;

g

Figure 2: Block division procedure

matched by the record extraction rule, the contents that are encoded as text tokens and the

hyperlinks that are embedded in <A> or tags can be extracted accordingly. The procedure

to divide the set of all records that pattern � can match is outlined in Figure 2. In summary,

if there are m text tokens and special tag tokens in a record extraction pattern, all the records

can be divided into m blocks. For example, as shown in Figure 1(a), there are four text tokens in

the �fth pattern, \<P><STRING>
[<STRING>]
<STRING>
<STRING>"; hence,

each extracted record is divided into four blocks.

From the rule viewer, users can also key in the attribute names and select the desired information

blocks by clicking the check boxes above each block. For example, in the upper-right corner of

Figure 1(a), we have chosen block 1, 2, 3 for \title", \description" and \score", respectively. The

saved extraction rule can then be used to extract other Web pages fetched from the same Web site.

As shown in Figure 1(b), the testing page is uploaded and the extraction results are shown in the

lower window.

Multi-Level Alignment

Although the text tokens can divide the record information into several blocks, this may not be

enough. When higher level abstraction, say block-level encoding is used for record pattern discovery,

the content in a block may contain not only text but also text-level tags. If we would like to extract

\�ner" information, the content in each block has to be further processed. Of course, lower-level

10

MultiLevel alignment(block, Encoding scheme)f

for j=1 to m do

for i=1 to k do

ri = Encoding scheme(block[i][j]);

endfor

R= fr1, r2, . . . , rkg;

�j= MultipleAlignment(R);

Aj= Block division(�j, R);

endfor

A= A1 + A2 + . . .+ Am;

return A;

g

Figure 3: Multi-level alignment

encoding scheme can be employed to save further process. However, it becomes much diÆcult

to discover and compose the extraction rule for record boundary since the success of the pattern

discovery approach lies in good abstraction of the Web pages.

To extract �ner contents, a compromised method is to employ multi-level alignment and ap-

ply block division again. Let's call the encoding for record boundary as the �rst-level encod-

ing. We will apply a second-level encoding to the text contents in each block and align these

encoded token strings for further block division as shown in Figure 3. For example, the text

contents that belong to the third block in Figure 4 can be further aligned to a generalized rule

\<STRING><STRING><STRING>". With three text tokens inside,

it will in turn divide the contents into three sub-blocks, where the �rst text token corresponds to

\score" and the second text token corresponds to \date". The same step can be applied until the

desired information can be successfully separated from others. As we shall see in next section,

two-level's encoding can extract the target information quite well in our experiments.

3.2 The Extractor

Search engine-like data sources are easier to wrap compared to hand-crafted static pages since these

Web pages are produced by programs. For these data sources, we can select one page as input to

our system and choose the proper pattern as the extraction rule. Figure 5 shows an example of the

extraction rule for the above example. Line one shows the encoding scheme used and the designated

record pattern. For each text token in the record extraction rule, the second-level encoding scheme

and the aligned regular expression are shown from line two to line four. Following are the attribute

11

Figure 4: Two level attribute value extraction

names and the information slots speci�ed by the user. For example, the �rst attribute, \title"

contains all text contents in block one. While the third attribute, \score", refers to contents in

sub-block one of block three.

With the extraction rule, we can then test it on other Web pages to extract relevant information.

According to the extraction rule, the extractor �rst translate the Web pages into the token string

based on the �rst-level encoding scheme and then match all occurrences of the record extraction

pattern in the encoded token string (see Figure 6). Then, the contents corresponding to each text

token in the record rule are further translated into token string based on the second-level encoding

schemes. The encoded token string is then aligned to the second-level extraction rule. For multi-

level extraction, this process may be continued to divide block information into sub-blocks. Finally,

the attribute values for each attribute can be extracted according to the block number speci�ed.

The record extraction here is actually a pattern matching algorithm. Typical pattern matching

algorithms, like the Knuth-Morris-Pratt's algorithm or Boyer-Moore's algorithm [Gus�eld, 1997],

both can do the work. Note that each extraction rule composed by multiple string alignment actu-

ally represents several patterns. The patterns are expressed in regular expression with alternatives.

In other words, there are alternatives routes. Therefore, several patterns can apply when matching

12

Block-level: <P><STRING>
[<STRING>]
<STRING>
<STRING>

Text-level: <STRING>[][<STRING>]

Text-level: <STRING>[][<STRING>][][<STRING>]

Text-level: <STRING<STRING><STRING>

Title: 1; all

Description: 2; all

Score: 3; 1

Date: 3; 2

Figure 5: Extraction rule example

Extractor(page, rule)f

S= call Encoding 1(page) to translate page into token string;

R= call Boyer Moore(S, �) to �nd all occurrence of pattern �;

block1= Block division(�, R);

for j=2 to l do

A= MultiLevel alignment(blockj�1, Encoding j);

blockj= A;

endfor

Extract designated information slots for each attribute;

g

Figure 6: Extractor procedure

the rule against the translated token sequence. In such cases, the longest match is considered.

4 Experimental Results

The experiments here use two test data sets. The �rst one contains ten state-of-the-art search

engines used in [Chang et al., 2001]. However, each data source has much more test pages (200)

than used in the previous work. The second data set are Okra, IAF, BigBook, and QuoteServer

taken from Kushmerick's thesis. These four sources have also been used in Hsu, et al. and Muslea's

paper for purposes of comparison. Table 1 shows the basic description of each data source, including

the number of records in each page, the number of attributes in each record, the existence of missing

attribute in a record or multiple values for one attribute, and the number of test pages.

The average document size is 28K bytes and 11K bytes for the above two data sets, respectively.

The search results of the �rst data set typically contain at least 10 matches and more advertisements,

13

Table 1: Data description

Data source # of records # of attributes Missing Unordered

AltaVista 10 4 Yes No

DirectHit 10 4 Yes No

Excite 10 4 Yes No

Hotbot 10.2 4 Yes No

Infoseek 15 3 Yes No

MSN 10 3 No No

NorthernLight 10 3 Yes Yes

Sprinks 20 4 Yes No

Webcrawler 25 3 No No

Yahoo 20 4 Yes No

Okra 18.5 4 Yes No

Bigbook 14.2 6 No No

IAF 3.7 6 Yes Yes

QuoteServer 5.9 18 No No

Table 2: Data size with di�erent encoding schemes

Data Set Search Engines Okra, etc.

(Doc size=28K) Doc size=11K)

Encoding # of tokens Percentage # of tokens Percentage

All-tag 1023 4.0% 584 5.0%

NoPhysical 839 3.0% 473 4.0%

NoSpecial 835 3.0% 447 3.9%

Block-level 639 2.0% 333 3.0%

while test pages for the second data set contain less matches and advertisements. The size of the

encoded token string is much smaller than the document size. It's about 5% the page size for the

lowest level encoding when all tags are considered (see Table 2). Therefore, the e�ort to build PAT

trees and the tree size can be kept small.

Parameters Setup

The input parameters are set according to the experiments in [Chang et al., 2001]. The principle

is to control the number of validated maximal repeats to a level of about 10 patterns so that it

is easy to choose from. The parameters include encoding scheme, the minimum pattern length,

the minimum occurrence count, the threshold for variance coeÆcient and density. We have chosen

block-level encoding scheme to discover record pattern since it is the highest level abstraction

14

Table 3: Number of attributes extracted
Data source default Level 1 Level 2

AltaVista 4 4 4

Direct Hit 4 3 4

Excite 4 4 4

Hotbot 4 4 4

Infoseek 3 3 3

MSN 3 3 3

NorthernLight 3 3 4

Sprinks 4 3 4

Webcrawler 3 3 3

Yahoo 4 4 4

Okra 4 4 4

Bigbook 6 5 6

IAF 6 1 3

QuoteServer 18 3 18

and was shown to perform best in previous work. The default value for the minimum length of

maximal repeats and the minimum occurrence count are set to 3 and 5, respectively. As for variance

coeÆcient and density, the threshold 0.5 and 0.25 are found to �lter as many good maximal repeats

that can be used to compose record patterns. To give an overview, the number of maximal repeats

discovered in a page can be over 100. With the control of variance coeÆcient and density, the

number of maximal repeats remained can be reduced to about 10. However, the number of record

patterns can increase due to pattern rotation procedure of the aligned pattern.

Generalizing over Unseen Pages

Although the process for the pattern discovery is not like typical machine learning process, the

goal is the same to generalize the extraction over unseen pages. Therefore, we have designed the

experiments in a way similar to that used in machine learning. For each Web site, we randomly

select 30 pages as the training pages and use remaining as validation set. The rule selected from

the training set will be used to extract information from the validation set. The performance is

evaluated by two measures: retrieval rate and accuracy rate. Retrieval rate is de�ned as the ratio

of the number of desired data records correctly extracted to the number of desired data records

contained in the input text. Likewise, accuracy rate is de�ned as the ratio of the number of desired

data records correctly extracted to the number of records extracted by the rule. Similar to the idea

of recall and precision, it is often a tradeo� between retrieval rate and accuracy rate.

15

/HDUQLQJ &XUYH RQ 5HWULHYDO 5DWH

�����

�����

�����

�����

�����

�����

�����

�����

�����

� � � � � � � � � � ��

� RI /HDUQLQJ SDJHV

5
H
WU
LH
Y
D
O
5
D
WH

7UDLQLQJ 6HW

9DOLGDWLRQ 6HW

Figure 7: Learning curve on training set and validation set

In the training phase, one page from the training set is fed to the system for the discovery of

extraction pattern. The user then choose one (that extracts only correct records) as the record

extraction rule and specify the information block for attribute value extraction. This strategy of

choosing patterns make sure that accuracy rate is 100%. The extraction rule will then be applied

to other training pages to check the performance. If the rule can not extract all the records for

a page, the page will then be fed to the system for the discovery of proper extraction rules. Old

extraction rule will then be joined with the extraction rule for the second page to form the new

extraction rule and applied to extract other pages in the training set. The process goes on to

extract as many records as possible. Figure 7 shows the retrieval rate of the extraction patterns

joined by several training pages. The number of training pages is 3 in average and 10 at most. The

retrieval rate can achieve 96% using the �rst rule (discovered from one training page). At the use

of the second rule (discovered from the mis-extracted page), the retrieval rate has achieved 99%.

When �ve training pages are used, twelve of them are able to achieve 100% extraction except for

HotBot and NorthernLight.

Note that the extraction rule we used here is not only able to extract record boundary as in

[Chang et al., 2001], but also able to extract attribute values through multi-level expansion. As

shown in Table 3, two-level extraction, where the second-level uses All-tag encoding scheme, has

16

successfully extract all attributes we desired except for IAF. This is because IAF uses <pre> tag

to display the detailed information. The second-level extraction here using All-tag encoding can

only divide the record into three slots, which needs text-level encoding for further extraction.

Next, in the validation phase, the extraction rule is applied to validation set for testing. En-

couragingly, the retrieval rate is still as high as in the training set, which shows that thirty training

pages have exhibited enough variety in the display format for the system to generalize. As we can

see in Figure 7, the retrieval rate is still very high: 96.35% for 1 training page and 98.65% for 2

training pages. Of the 14 Web sites, 10 of them are able to achieve 100% extraction with less than

�ve training pages in the validation phase.

The learning curves are di�erent from most machine learning-based approach since there are

little noise in the training data. We do encounter errors in the data, say, breaking tags, etc. But

the percentage is low. In addition to the accuracy strategy, we can also draw learning curves with

higher retrieval rate if di�erent pattern selection strategy is used. For example, with the retrieval

rate strategy, the retrieval rate can also be tuned to nearly 100% with the accuracy rate measured

around 96%. This can be achieved if we choose an aligned pattern that comprehend more variety in

the records. Of course, such patterns may sometimes extract extra information because the patterns

generalized from multiple string alignment may comprehends more patterns than the input. This

is a tradeo�. If retrieval rate is more important, accuracy rate can only be sacri�ced.

5 Conclusion

With the growth of the amount of online information, the availability of robust,
exible IE systems

will become a stringent necessity. The key component of IE systems is the set of extraction patterns

that is used to extract from each document the information. The application of pattern discovery

based approach to IE can save a lot of e�orts since no labeling is required. By taking the advantages

of HTML tags, we can observe regular and contiguous display pattern in machine-generated pages.

This is the basis of this pattern discovery based approach and is shown to be successful in recovering

the patterns for record display.

In this paper, we also show how multi-level analysis can be applied to extract �ner information

by dividing a record into multiple slots. It is with this analysis that the wrapper is complete

(not only in record boundary extraction but also in attribute extraction). The key features of this

approach are as follows. First, there is no need for user-labeled examples. Second, it is able to

generalize over multiple (and only multiple) examples in a page at a time. Third, the extraction

17

rule is context-based instead of delimiter-based. Finally, it can handle exceptions such as missing

attributes, multiple attribute values (which is considered as missing attributes), etc.

In addition to the rule generator, we also implement the extractor and an interface to complete

the IEPAD system. Since there is no need for user-labeled examples, the interface of IEPAD

is designed for viewing patterns and designating desired information slots rather than for labeling

examples. The result of experiments shows that the accuracy-�rst pattern can achieve 96% retrieval

rate with one training page. Of the 14 Web sites, twelve (ten) of them can achieve 100% retrieval

rate with less than �ve training pages in the training set (validation set).

In the future, we plan to implement text-level encoding to extract more delicate information,

even though most information is tag-separable. Also, a better presentation is helpful when the

number of patterns discovered is too large. In addition, PAC analysis might give a more rigid

bound on the number of training examples needed for learning the extraction rules.

References

[Anish and Knoblock, 1998] nish, N. and Knoblock, C. 1998. Wrapper generation for semi-

structured internet sources. In Proceedings of the Workshop on Management of Semi-structured

Data.

[Chang et al., 2001] Chang, C.H., Lui, S.C. and Wu, Y.C. 2001. Applying pattern mining to Web

information extraction, In Proceedings of the 5th Paci�c-Asia Conference on Knowledge Dis-

covery and Data Mining. pp. 4-15.

[Chien, 1997] Chien, L.F. 1997. PAT-tree-based keyword extraction for Chinese information re-

trieval. In Proceedings of the 20th annual international ACM SIGIR conference on Research

and development in information retrieval. pp.50{58. 1997.

[Doorenbos et al., 1997] Doorenbos, R.B., Etzioni, O. andWeld, D. S. 1997. A scalable comparison-

shopping agent for the World-Wide Web. In Proceedings of the 1st International Conference

on Autonomous Agents. pp. 39{48, NewYork, ACM Press.

[Embley et al., 1999] Embley, D.; Jiang, Y.; and Ng. Y.-K. 1999. Record-boundary discovery in

Web documents. In Proceedings of the 1999 ACM SIGMOD International Conference on Man-

agement of Data (SIGMOD'99). pp. 467{478, Philadelphia, Pennsylvania.

18

[Gonnet et al., 1992] Gonnet, G.H.; Baeza-yates, R.A.; and Snider, T. 1992. New Indices for Text:

Pat Trees and Pat Arrays. Information Retrieval: Data Structures and Algorithms, Prentice

Hall.

[Gus�eld, 1997] Gus�eld, D. 1997. Algorithms on strings, trees, and sequences, Cambridge.

[Hsu and Dung, 1998] Hsu, C.-N. and Dung, M.-T. 1998. Generating �nite-state transducers for

semi-structured data extraction from the Web. Information Systems. 23(8):521{538.

[Kurtz and Schleiermacher, 1999] Kurtz, S. and Schleiermacher, C. REPuter: fast computation of

maximal repeats in complete genomes. Bioinformatics 15(5):426{427.

[Kushmerick et al., 1997] Kushmerick, N.; Weld, D.; and Doorenbos, R. 1997. Wrapper induction

for information extraction. In Proceedings of the 15th International Joint Conference on Arti-

�cial Intelligence.

[Kushmerick, 1999] Kushmerick, N. 1999. Glearing the Web. IEEE Intelligent Systems, pp. 20{22.

[Morrison, 1968] Morrison, D.R. 1968. PATRICIA{Practical algorithm to retrieve information

coded in alphanumeric. Journal of ACM, 15(4):514{534.

[Muslea et al., 1999] Muslea, I.; Minton, S.; and Knoblock, C. 1999. A hierarchical approach to

wrapper induction. In Proceedings of the 3rd International Conference on Autonomous Agents,

Seattle, WA.

[Muslea, 1999] Muslea, I. 1999. Extraction patterns for information extraction tasks: a survey. In

Proceedings of AAAI'99: Workshop on Machine Learning for Information Extraction.

[Selberg and Etzioni, 1995] Selberg, E. and Etzioni, O. 1995. Multi-engine search and comparison

using the MetaCrawler, In Proc. of the Fourth Intl. WWW Conference, Boston, USA.

[Soderland, 1997] Learning to extract text-based information from the world wide web. In Proceed-

ings of the 3rd International Conference on Knowledge Discovery and Data Mining (KDD-97).

19

