
2 1094-7167/03/$17.00 © 2003 IEEE IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

I n f o r m a t i o n I n t e g r a t i o n

Reconfigurable Web
Wrapper Agents
Chia-Hui Chang, National Central University, Taiwan

Jen-Jie Chiou, Deepspot Intelligent Systems, Taiwan

Harianto Siek, Jiann-Jyh Lu, and Chun-Nan Hsu, Institute of Information Science, Taiwan

W eb information integration differs from database information integration

because of the Web’s nature, where data is in interlinked, heterogeneous Web

pages rather than tables or objects with a clearly defined schema. Building wrappers for

relational databases is relatively easy because the defined structure lets other programs

directly access the data. Web wrappers, however,
must automate Web browsing sessions to extract data
from the target Web pages so other applications can
process that data. Each Web site has its own set of
links, layout templates, and syntax. You could, in a
brute-force solution, program a wrapper for each
browsing session. However, such wrappers are sen-
sitive to Web site changes and become difficult to
scale and maintain.

We have developed a solution called the DeepSpot
Agent Toolbox for rapidly generating intelligent
agents that serve as Web wrappers for Web informa-
tion integration. With this solution, Web wrapper
agents can be easily maintained without skillful pro-
grammers. We’ve built various applications that
demonstrate our approach’s feasibility. Here, we
describe a bioinformatics application and a large-
scale e-government information integration task.

Development fundamentals
When developing the DeepSpot Agent Toolbox,

we designed an XML-based script language called
the Web Navigation Description Language. A
WNDL executor interprets and executes scripts writ-
ten in WNDL. The executor

• Represents complex navigation and data gather-
ing behavior of a user session

• Expresses output in XML format that eases infor-
mation interchange between applications

• Accumulates and integrate data extracted from
Web pages along the navigation

• Handles dynamically generated hyperlinks and
CGI query HTML forms

• Tolerates malformed HTML documents

We equipped an early prototype of our system with
a wrapper induction system called Softmealy1,2 to
generate data extractors. Recently, we’ve developed
another algorithm called IEPAD (information extrac-
tion based on pattern discovery).3,4 Unlike other
work in wrapper induction,5,6 IEPAD applies sequen-
tial-pattern mining techniques to discover a docu-
ment’s data extraction patterns. The pattern discov-
erer applies the Patricia tree-based sequence mining
technique7 to discover possible patterns and a mul-
tilevel analyzer, which conducts several multiple
string alignments for attribute extraction. IEPAD dis-
covers a set of candidate patterns for the users to
select and then generates labeled training examples
for Softmealy. (We’ve also implemented and inte-
grated a IEPAD user interface with the DeepSpot
Agent Toolbox for users to generate extraction rules
of Web pages.) This removes the need to manually
label training examples and thus minimizes human
intervention. Some heuristic-based products on the
market claim to extract data from the Web automat-
ically. However, these are limited to a narrow class
of Web pages that match their heuristics. In contrast,
IEPAD does not depend on heuristics. A complete
Web wrapper agent includes a WNDL script and
IEPAD data extractors.

The DeepSpot Agent Toolbox is a program-
ming-by-example authoring tool that lets users gen-

Web wrapper agents

exploit online

Web data sources,

facilitating

information

integration and reuse.

With the DeepSpot

Agent Toolbox, users

can automate virtually

all types of Web

browsing sessions

simply by browsing

the target Web sites.

erate a Web wrapper agent by browsing tar-
get Web sites for their particular information-
gathering task. We can reconfigure the gen-
erated Web wrapper agent with the same
authoring tool to maximize a Web informa-
tion integration system’s maintainability and
scalability. (Due to space limitations, we’ll
now focus on WNDL.)

Web Navigation Description
Language

The WNDL is an XML application for
describing a Web-browsing session. Although
the terminology we use here is primarily
based on the working draft Web Characteri-
zation Terminology & Definitions Sheet,8

from the World Wide Web Consortium, we
reuse some of these terms and endow them
with slightly different meanings. We define
their specific meanings used here as follows:

Definition 1. Logical Web Site:A cluster of
Web pages that are related to each other, each
page containing a certain amount of data. You
can integrate the data distributed among these
pages and have a logical meaning.

Definition 2. Web Page Class:A set of Web
pages to which you can apply a given data
extractor to parse and extract their contents.

Although the definition depends on the
given data extractor’s expressive power, a Web
page class usually refers to a set of related Web
pages generated by a single CGI program or
Web pages with an identical layout template.
For example, the output pages from PubMed’s
(a well-known repository of biological
research papers) keyword search service com-
prise a Web page class (see Figure 1).

As with all XML applications, a WNDL
script consists of a set of elements. Each ele-
ment can have a set of attributes and subele-
ments. In WNDL, we can describe a user
session with a data Web map, which is con-
ceptually a directed graph with nodes and
edges. The DWM is the primary data con-
tainer in a WNDL script. The information
stored in a DWM describes how to reach tar-
geted Web pages and how to extract the con-
tents from those pages. The DWM subele-
ment definitions are in an element Map.
Subelements of Map include Entrance and one or
more Node elements, and the element Entrance
contains a subelement Edge. The edge in the
element Entrance represents how to access a
logical Web site outside the defined DWM’s
scope without further interaction with the

Web server. Typically, this leads to a Web
data source’s front page. For example, the
entrance to retrieve biological papers in
PubMed is via its front page (www.ncbi.
nlm.nih.gov/PubMed).

To demonstrate this process, we’ll go
through a complete example for modeling
paper retrieval in a PubMed browsing ses-
sion. We can view the PubMed browsing ses-
sion conceptually as a graph with two nodes
and three edges (see Figure 1).

DWM edge
An edge in a DWM represents a way to

obtain a page that belongs to a Web page
class denoted by this edge’s destination node.
A DWM edge serves as the container for the
necessary information from the actual HTTP
requests for both statically and dynamically
generated HTML documents. The informa-
tion for the requests consists of a set of para-
meters. We can either specify these parame-
ters’values in the WNDL script or bind them
during runtime.

Figure 1’s example model has three edges.
Edge 1 simulates submitting a new query. Edge
2 simulates browsing search results page by
page, numbered from one to 10—each page
contains 20 search results. Edge 3 simulates

jumping to the eleventh page. For most Web
sites, usually a next-page button leads to the
following search results (say 21 to 40). How-
ever, PubMed’s next-page button “>>” led to
search results 201 to 220. Reaching the next
20 search results required following the 10
image links (numbered one to 10) one by one
and then following the button “>>” for the
next 200 results if any. Unlike URL hyper-
links that we can usually see on a Web page,
the image links for the next pages were IMAGE
INPUT {“page 1” to “page 10”} of the form named
frmQueryBox.

We encoded (see Figure 2) the edges
involved in these browsing steps in WNDL.
Edge 1 is this map’s entrance edge that sends
the query to get the resulting Web page—that
is, Node 1 in this case. The URL attribute can
be a constant or a variable. In WNDL, HTML
forms are treated as parameterized URLs.
Their parameters are specified in element
QueryParam, and its value can be a constant or
a variable.

Once the first connection is successful, it
leads us to destination Node 1. From Node 1, we
can continue the next connection to Node 2 via
Edge 2. As we described earlier, Edge 2 simu-
lates browsing search results page by page.
The HTTP connection information is embed-

SEPTEMBER/OCTOBER 2003 computer.org/intelligent 3

Node 2

Node 1

Edge 3

Edge 2

Edge 1

Figure 1. Conceptual illustration of the data Web map for PubMed.

ded in the Web pages and can be extracted to
bind the parameter values of Edge 2. In this
case, because the values underlying the page
numbers’ images are not URL links but
image submission INPUT, we must specify the
form that specifies the action CGI. We can
extract the image submissions and the query
form and denote them with two variables,
&form1 and &imglink. We can specify the con-
nection by elements QueryForm and QueryParam.
(We describe how to extract the values of
these variables for Node 1 in a later section.)

Edge 3 is an edge that has an identical source
and destination node, as Figure 1 depicts.
Therefore, it is a self-looping edge. Like Edge
2, Edge 3’s query type is an HTML form, where
QueryForm is specified by variable &form2 and
QueryParam refers to variable &nextTen. During
runtime, Node 1 will form a self-loop. As we
described earlier, we can express virtually any
logical browsing session in WNDL.

Element Timeout is also a supplement of
Edge. Timeout contains the control information
of the event handling for time-outs. In
WNDL, we can specify the number of retry
attempts and the time interval between each
attempt. The specified time interval equals a
time-out event’s time bound. If all attempts
fail, the WNDL executor will throw an
exception signal to its invocator.

Data Web map node
A DWM node represents one Web page

class in a target logical Web site. A Web page
class usually represents the pages that a CGI
program generates. The CGI program can
generate innumerable Web pages.

In WNDL, each node is a container of data
in the pages of a Web page class. The con-
tents extracted from a node’s Web page class
will be encoded by the data extractor as a
database table, whose attributes we must
define in a schema in advance. For example,
for Node 2’s Web page class in Figure 1, we
want to export the retrieved papers’ infor-
mation into a table with these attributes:
authors, title, source (where the paper was
published), and PubMed ID (PMID). Figure
3 shows how we define them in WNDL (see
the definition for Node 2). Because each Web
page contains 20 search results, the correct
output for this node should be a table of 20
records with these four attributes.

For each attribute in a table, we can spec-
ify our option for HTML tag filtering (KeepAll,
KeepLink, and NoTag). This determines the
behavior of a built-in HTML tag filter in the
WNDL executor. WNDL also lets us describe

4 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

I n f o r m a t i o n I n t e g r a t i o n o n t h e W e b

Figure 3. Nodes in the WNDL script for PubMed.

<node name=’Node1’>
<schema>

<Attr Name=“form1” type=’edge’ subtype=’form’ TagFilter=“KeepAll”/>
<ExtractRule File=’node1/rule1/rule.txt’/>

</schema>

<schema>
<Attr Name=“form2” type=’edge’ subtype=’form’ TagFilter=“KeepAll”/>
<ExtractRule File=’node1/rule2/rule.txt’/>

</schema>

<schema>
<Attr Name=“imglink” type=’edge’ subtype=’image’ TagFilter=“KeepAll”/>
<ExtractRule File=’node1/rule3/rule.txt’/>

</schema>

<schema>
<Attr Name=“nextTen” type=’edge’ subtype=’submit’ TagFilter=“KeepAll”/>
<ExtractRule File=’node1/rule4/rule.txt’/>

</schema>
</node>

<node name=Node2>
<schema>

<Attr Name=“Authors” type=’Data’ TagFilter=“NoTag”/>
<Attr Name=“Title” type=’Data’ TagFilter=“NoTag”/>
<Attr Name=“Source” type=’Data’ TagFilter=“NoTag”/>
<Attr Name=“PMID” type=’Data’ TagFilter=“NoTag”/>
<ExtractRule File=’node2/rule1/rule.txt’/>

</schema>
</node>

Figure 2. Edges in the Web Navigation Description Language script for PubMed.

<!— This is the entrance edge to Node1. —>
<edge ID=‘1’ dest=’Node1’ method=’post’

url=’http://www.ncbi.nlm.nih.gov/genome/guide/gquery.cgi’>
<QueryParam FormInput=’db’ value=’0’/>
<QueryParam FormInput=’term’ value=’AIDS’/>

</edge>

<!— This is an edge to Node2 —>
<edge ID=’2’ src=’Node1’ dest=’Node2’ method=’form’>

<QueryForm=’&form1’/>
<QueryParam FormInput=’&imglink’/>

</edge>

<!— This is an edge within Node1 —>
<edge ID=’3’ src=’Node1’ dest=’Node1’ method=’form’

timeouts=’20’ retry=’3’ loops=’100’>
<QueryForm=’&form2’/>
<QueryParam FormInput=’&nextTen’/>

</edge>

how to join two tables extracted from adja-
cent nodes for the output. That way, we can
aggregate data extracted during the brows-
ing session in a user-defined manner.

The data extractor for a DWM node is
specified as the value of element ExtractRule.
The data extractor must be declarative in the
sense that its extraction rules must be
allowed to replace Web page classes without
changing the program codes. In our imple-
mentation, we apply Softmealy and IEPAD
as the data extractors. We can also use other
declarative data extractors. ExtractRule’s
value can be the raw text of a set of extrac-
tion rules or an external file, specified as the
value of attribute File of this element.

In our PubMed example, there are two
nodes in the map, as Figure 1 shows. Node 1
represents the result of the entrance connec-
tion and will be used to extract the paths to
the next pages. Node 2 represents query result
pages returned from the search form of
PubMed.

In Node 1, the information we are interested
in is the <Form> HTML tag block in this page.
Some Web sites use a user session ID mech-
anism to recognize HTTP requests from
identical users to keep track of a user ses-
sion. This helps Web servers determine the
Web page content to return for different
users. In some Web sites, HTTP clients (or
browsers) need this ID to continue naviga-
tion, whereas some Web sites use this ID
optionally. Because PubMed doesn’t use a
session ID, we can extract the HTML query
form and use it directly. If a site uses a ses-
sion ID, we must start from a static link to
extract the query form and the dynamically
generated session ID for the following steps.

Node 1 has four sets of extraction rules. The
first and second sets extract the query form
that contains the CGI program to the next
page of the query results. Element Schema
specifies that the extracted data will be
bound to variables &form1 and &form2. The
extraction rules’ third and the fourth sets
extract the INPUTs as the query parameters,
which are bound to variables &imglink and
&nextTen. Node 2 represents the query results
returned from PubMed’s search engine. The
information we are interested in is the attrib-
utes of retrieved papers, including authors,
title, source, and PMID. (See Figure 4 for the
complete WNDL script for PubMed.)

We specify the schema of the output data
in the extraction rules. The schema dictates
which attributes defined in element Schema of
the nodes will eventually appear in the out-

put data table. In this example, the output
data consists of a table with the four attributes
defined in Node 2.

WNDL executor architecture and
implementation

The WNDL executor consists of an execu-
tor kernel, page fetcher, and data extractor.

Figure 5 shows the relationship between
them and the order of execution steps. We
can consider a WNDL script the configura-
tion file of a Web wrapper agent that wraps
a logical Web site. The configuration file
defines the Web wrapper agent’s behavior.
During the execution, the executor kernel
invokes the page fetcher and the data extrac-

SEPTEMBER/OCTOBER 2003 computer.org/intelligent 5

Figure 4. The WNDL script for PubMed.

<map>
<header inputValuesPath=’./inputValues.txt>’
<edge name=’edge1’ dest=’Node1’ method=’post’

url=’http://www.ncbi.nlm.nih.gov/genome/guide/gquery.cgi’>
<QueryParam FormInput=’db value=0’/>
<QueryParam FormInput=’term value=AIDS’/>

</edge>
<node name=’Node1’>

<schema>
<Attr Name=“form1” type=’edge’ subtype=’form’ TagFilter=”KeepAll”/>
<ExtractRule File=’node1/rule1/rule.txt’/>

</schema>
<schema>

<Attr Name=“form2” type=’edge’ subtype=form TagFilter=“KeepAll”/>
<ExtractRule File=’node1/rule2/rule.txt’/>

</schema>
<schema>

<Attr Name=“imglink” type=’edge’ subtype=’image’ TagFilter=“KeepAll”/>
<ExtractRule File=’node1/rule3/rule.txt’/>

</schema>
<schema>

<Attr Name=“nextTen” type=’edge’ subtype=’submit’ TagFilter=“KeepAll”/>
<ExtractRule File=’node1/rule4/rule.txt’/>

</schema>
</node>
<edge name=’edge2’ src=’Node1’ dest=’Node2’ method=’form’>

<QueryForm=’&form1’/>
<QueryParam FormInput=’&imglink’/>

</edge>
<edge name=’edge3’ src=’Node1’ dest=’Node1’ method=’form’

timeouts=’20’ retry=’3’ loops=’100’>
<QueryForm=’&form2’/>
<QueryParam FormInput=’&nextTen’/>

</edge>
<node name=’Node2’>

<schema>
<Attr Name=“Authors” type=’Data’ TagFilter=“NoTag”/>
<Attr Name=“Title” type=’Data’ TagFilter=“NoTag”/>
<Attr Name=“Source” type=’Data’ TagFilter=“NoTag”/>
<Attr Name=“PMID” type=’Data’ TagFilter=“NoTag”/>

<schema>
<ExtractRule File=’node2/rule1/rule.txt’/>

</node>
</map>

tor according to the order the DWM map
specifies, and the kernel handles static infor-
mation and variable binding information to
complete a Web-browsing session. The
executor kernel maintains a pointer of the
current state to traverse the DWM map. Basi-
cally, when the pointer points to an edge, the
kernel invokes the page fetcher to obtain the
next page and moves the pointer to the next
node; when the pointer points to a node, the
kernel invokes the data extractor and moves
the pointer to the next edge.

The page fetcher abstracts HTTP connec-
tions to higher-level interfaces for the execu-
tor. HTML and HTTP features that the page
fetcher can handle include form element
parsing, GET and POST HTTP methods, cook-

ies, time-out, user authentication, and mal-
formed URL handling. The page fetcher
transforms the parameters received from the
executor into low-level, executable HTTP
requests. After actually obtaining a Web page
from a Web server, the page fetcher sends this
page back to the executor kernel directly. The
executor kernel then feeds this page and the
corresponding extraction rules to the data
extractor. Then, the data extractor will return
the extracted data to the executor for further
processing.A page might go through this
process multiple times if it requires more
than one set of the extraction rules.

OceanSpray
The DeepSpot Agent Toolbox, alos known

as OceanSpray, is an authoring tool that can
generate the script automatically. (For a trial
version of OceanSpray, visit www.deepspot.
com or contact the authors.) OceanSpray lets
a user generate a WNDL script in a program-
ming-by-example manner—that is, the user
browses the Web to show the authoring tool
an example user session, and the authoring
tool generalizes the example into a WNDL
script that describes this user session. Figure
6 shows a snapshot of OceanSpray interface
after generating the complete WNDL script
for PubMed. OceanSpray is equipped with
IEPAD and Softmealy to generate extraction
rules for the data extractors. With OceanSpray,
it takes four steps to generate a WNDL script:

1. Open the target Web site’s front page by
specifying its URL in a Web browser.

2. Create nodes by clicking the “Add
Nodes” button when browsing a new
Web page class.

3. Invoke IEPAD to generate extraction
rules for each node.

4. If you need more than one node, go
back to step 2.

As Figure 6’s left frame shows, the example
script contains two nodes with five sets of
extraction rules.

Creating the edges involves several steps.
The first edge is created to reach Node 1. The
user can accomplish this by clicking the sub-
mit button with parameters term and db set to
value “aids” and “PubMed.” The system
monitors this query and compares it to all
forms contained in the PubMed front page.
OceanSpray will record the submitted para-
meters in QueryParam, which can be a constant
value specified in the script or a variable
bound to other user-specified query terms
during execution. For Node 1, the user also
need to generate four extraction rules and its
schema. Each attribute in the schema is either
of type Edge or Data. A Data attribute will appear
in the final output, while an Edge attribute can
be either a static link, form, submit button,
or image button. The user can create an edge
through a static link or a form with a submit
image INPUT type. For each Edge attribute,
the user must specify the destination node.
Node 2 is created similarly.

Once specifying all nodes and edges, the
user can obtain the complete WNDL script
by clicking the “Make Agent” button.
OceanSpray also provides a “Launch Agent”
button for invoking the executor to test the
generated WNDL script.

6 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

I n f o r m a t i o n I n t e g r a t i o n o n t h e W e b

3. HTTP requests
4. Web pages

Database
Prior- and

postprocessor

WNDL
executor
kernal

Data
extractor

Page
fetcher

Web Navigator
Description
Language
document

World Wide Web

7.
 Data

6.
 W

eb
 pa

ge
s &

 ru
les

2. HTTP parameters

5. Web pages

1.

Figure 5. Architecture of the WNDL wrapper executor.

Figure 6. Snapshot of OceanSpray.

Applications
We have successfully applied our tool in

several real-world projects, including a bioin-
formatics application, which demonstrates
how an agent can automate a complex brows-
ing session, and a large-scale e-government
information integration task that involves
thousands of Web wrapper agents.

Searching SNPs in ESTs
Many genomic and proteomic sequence

databases in overwhelming volumes are avail-
able for public access on the Web. How to
query and integrate these public domain data-
bases has become an indispensable biological
experimental technique and is one of the most
critical issues in bioinformatics, where Web
wrapper agents can play an important role.
Our example application aims to search sin-
gle nucleotide polymorphisms in expressed
sequence tags by browsing the Web automat-
ically. ESTs are short nucleotide sequences
considered a shortcut to the alternative spliced
and expressed forms of the genes. ESTs pro-
vide invaluable hints for interpreting genome
sequences. dbEST, one of many Genebank
databases hosted by NCBI, contained 17 mil-
lion EST entries as of 11 July 2003 and is one
of the largest and fastest growing sequence
databases. An SNP marker, which received
intense research attention lately, is the variant
in DNA sequences that causes or contributes
to the risk of developing a particular genetic
disorder. Because identifying ESTs that con-
tain a given SNP might shed new light on pos-
sible treatments of many genetic disorders,
enormous efforts have been devoted to asso-
ciating SNPs with ESTs.

Our example application regards an agent
that automates the search of a set of known
ESTs that contain a given SNP in the data-
bases at NCBI. More precisely, given the ref-
erence cluster ID (or reference SNP number)
of an SNP (such as rs1614984), the agent
should return all ESTs in dbEST that contain
this SNP. A user can browse the Web to
obtain the search results. The browsing ses-
sion requires the following steps:

1. From the dbSNP homepage (www.
ncbi.nlm.nih.gov/SNP), enter the RS
number to search the SNP data.

2. From the output Web page, extract the
gene names and hyperlinks in the
LocusLink section.

3. Follow each hyperlink and get the Uni-
Gene name and hyperlink in the Addi-
tional Links section.

4. Follow the hyperlink and get the
Genebank access number and hyperlink
of ESTs in the EST Sequences section.

5. Get the hyperlink to the dbEST entry in
Sequence Information section.

6. Extract the sequence in the dbEST
entry page.

Except for the first step, which starts from a
static URL, all other steps involve dynamic
URLs that a user must obtain from each pre-
vious step’s search results. So, each search
result requires a data extractor to extract
specified data for use in the next step. Addi-
tionally, a user must repeat steps 3 to 6 for
every gene name obtained in step 2. There-
fore, it might take hundreds of interactions

for a user to collect all known ESTs that con-
tain a given SNP. For SNP rs1614984, the
output includes 289 EST entries, which could
take several working days to complete by
browsing the Web by hand.

To automate this process, we can generate
a WNDL agent for this task with our author-
ing tool by showing the tool how to obtain
one of the EST entries given a SNP. One
browsing path suffices for our tool to gener-
ate a WNDL script that generalizes to collect
all intended EST entries and necessary data
extractors. The WNDL executor will formu-
late the output into structured XML data
records ready for postprocessing.

A common approach to such a task is to
mirror dbEST and dbSNP (only flat files
available) via FTP in advance and perform
the search locally. That approach requires
substantial programming skills and comput-
ing resources—a large disk space (about 100
Gbytes to store 17 million EST entries),
parser to parse flat files, data normalizer to
decompose parsed data into data tables that

conform to the relational data model’s
requirement, and algorithms to identify ESTs
that contain an SNP. In contrast, applying
agent technologies requires much less pro-
gramming skills and computing resources.
Also, we can leverage available data links
established by NCBI between databases.
Moreover, each agent execution collects the
most recent results in dbEST submitted from
all over the world. This is critical for genet-
ics databases that grow at a breakneck pace.
With a timer and a redundant data filter, we
can extend the agent to alert its users of inter-
esting updates and new data entries in
dbEST.

SARS information portal
Our second application is one of our

largest, in which we built an integrated
repository of seven categories of government
public information available on the Web
sites of 1,642 government agencies in Tai-
wan. The seven categories include, for
example, government announcements and
press releases, calendars of events, policy
implementation plans, and administration
guidance. The goal is to provide a single-
query, complete-search service to the public
and promote information sharing between
government agencies.

Integrating 1,642 Web data sources is an
extremely challenging task because each
Web site has a particular structure, layout for-
mat, and backend architecture. Originally,
the Taiwanese government established a
repository of government announcements
and press releases that government employ-
ees had to manually update. Because it was
not mandatory for the government agencies
to update the repository, the repository soon
became out of date and useless.

Our team took over the project and
applied our Web wrapper agents to resolve
the problem. We had a team of 20 part-time
students use our tool to build agents during
their off hours. In four months, the team suc-
cessfully built approximately 3,000 agents
to update the repository. These agents auto-
matically browse and extract seven cate-
gories of public information from the 1,642
Web sites and convert the extracted data into
XML data with a uniform schema. We also
developed a Web-based agent manager to
manage these agents. We equipped the agent
manager with a timer to launch agents peri-
odically and a monitor to inspect the agents’
execution status and error log. With the
agent manager, the system requires only two

SEPTEMBER/OCTOBER 2003 computer.org/intelligent 7

How to query and integrate these

public domain databases has

become an indispensable

biological experimental technique

and is one of the most critical

issues in bioinformatics.

part-time personnel to maintain it—a huge
cost reduction compared to other options.

Our integrated government repository
became particularly useful during the

Severe Acute Respiratory Syndrome out-
break in Taiwan, May to June 2003, when
rumors and unverified information caused
unnecessary panic. To provide instant offi-
cial information from related government
agencies about the disease for integrated,
easy online access, our team developed an
instant official SARS information portal
(http://gina.nat.gov.tw) based on the reposi-
tory, with the agents updating the informa-
tion hourly. The development project took
only a couple of days to organize the SARS-
related information the agents collected. This
application demonstrates that applying Web
wrapper agents is an efficient and cost-effec-
tive solution for integrating numerous het-
erogeneous data sources on the Web. In the
future, we could rapidly develop similar
instant information portals for other emer-
gency situations such as a drought.

Acknowledgments
We thank the AIIA Lab alumni at the Institute

of Information Science, Academia Sinica (Hung-
Hsuan Huang, Chien-Chi Chang, and Elan Hung),
for implementing the early version of the system.
We also acknowledge the contribution of mem-
bers in the R&D department of DeepSpot—Frank
Lin, Melody Chen, Gibbs Wu, Vica Lin, Monte
Liao, and Jerome Yeh—for their effort in build-
ing the e-government information integration
application.

References

1. C.-N. Hsu and M.-T. Dung, “Generating
Finite-State Transducers for Semi-Structured
Data Extraction from the Web,” Information
Systems, vol. 23, no. 8, Dec. 1998, pp.
521–538.

2. C.-N. Hsu and C.-C. Chang, “Finite-State
Transducers for Semi-Structured Text Min-
ing,” Proc. Int’l Joint Conf. Artificial Intelli-
gence Workshop Text Mining: Foundations,
Techniques, and Applications (IJCAI 99),
IJCAI Inc., 1999, pp. 38–49.

3. C.-H. Chang, C.-N. Hsu, and S.-C. Lui,

“Automatic Information Extraction from
Semi-Structured Web Pages by Pattern Dis-
covery,” Decision Support Systems, vol. 35,
no. 1, Jan. 2003, pp. 129–147.

4. C.-H. Chang and S.-C. Lui, “IEPAD: Infor-
mation Extraction Based on Pattern Discov-
ery,” Proc. 10th Int’l Conf. World Wide Web,
WWW10 Ltd., 2001, pp. 681–688.

5. N. Kushmerick, D. Weld, and R. Doorenbos.
“Wrapper Induction for Information Extrac-
tion,” Proc. 15th Int’l Joint Conf. Artificial
Intelligence (IJCAI 97), Morgan Kaufmann,
1997, pp. 729–737.

6. I. Muslea, S. Minton, and C.A. Knoblock, “A
Hierarchical Approach to Wrapper Induc-

tion,” Proc. 3rd Int’l Conf. Autonomous
Agents, ACM Press, 1999, pp. 190–197.

7. D.R. Morrison. “Patricia—Practical Algo-
rithm to Retrieve Information Coded in
Alphanumeric,” J. ACM, vol. 15, no. 4, Jan.
1968, pp. 514–534.

8. World Wide Web Consortium, Web Charac-
terization Terminology and Definitions Sheet,
working draft, May 1999, http://www.w3.
org/1999/05/WCA-terms/.

For more information on this or any other com-
puting topic, please visit our Digital Library at
http://computer.org/publications/dlib.

8 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

I n f o r m a t i o n I n t e g r a t i o n o n t h e W e b

T h e A u t h o r s
Chia-Hui Chang is an assistant professor in the Department of Computer
Science and Information Engineering at the National Central University in
Taiwan. Her research interests include information retrieval, knowledge dis-
covery from databases, machine learning, and Web-related research. She
received her PhD in computer science and information engineering from the
National Taiwan University. Contact her at the Dept. of Computer Science and
Information Engineering, National Central Univ., ChungLi, 320, Taiwan;
chia@csie.ncu.edu.tw.

Harianto Siek is a senior research engineer at the Adaptive Intelligent Inter-
net Agent research lab of the Institute of Information Science, Academia
Sinica, Taiwan. His research interests include AI and Web-related technolo-
gies. He received his BS in computer science from National Cheng-Chi Uni-
versity, Taipei, Taiwan. Contact him at the Institute of Information Science,
Academia Sinica, Taipei, 115, Taiwan; chihai@iis.sinica.edu.tw.

Jiann-Jyh Lu is a senior research engineer at the Adaptive Intelligent Inter-
net Agent research lab of the Institute of Information Science, Academia
Sinica, Taiwan. His research interests include pattern recognition, data min-
ing, and Web-related technologies. He received his MS in computer science
and information engineering from the National Chiao Tung University, Tai-
wan. Contact him at the Institute of Information Science, Academia Sinica,
Taipei, 115, Taiwan; jjlu@iis.sinica.edu.tw.

Jen-Jie Chiou is a bioinformatics specialist at Deepspot Intelligent Systems,
Taiwan. His research interests include bioinformatics and Web-related tech-
nologies. He received his MS in occupational medicine and industrial hygiene,
College of Public Health, National Taiwan University, Taiwan. Contact him
at the Institute of Information Science, Academia Sinica, Taipei, 115, Tai-
wan; jjchiou@iis.sinica.edu.tw.

Chun-Nan Hsu is an associate research fellow at the Institute of Information
Science, Academia Sinica, Taiwan. His current research interests include
machine learning, knowledge discovery and data mining, databases, intelligent
Internet agents, and their applications in bioinformatics. He received his PhD
in computer science from the University of Southern California. He has two
US patents pending. He is a member of the IEEE,ACM,AAAI, and Taiwanese
Association for Artificial Intelligence (TAAI). Contact him at the Institute of
Information Science, Academia Sinica, Taipei, 115, Taiwan; chunnan@
iis.sinica.edu.tw.

