
Efficient Mining Strategy for Frequent Serial

Episodes in Temporal Database†

Kuo-Yu Huang and Chia-Hui Chang

Department of Computer Science and Information Engineering,
National Central University, Chung-Li, Taiwan 320

want@db.csie.ncu.edu.tw, chia@csie.ncu.edu.tw

Abstract. Discovering patterns with great significance is an important
problem in data mining discipline. A serial episode is defined to be a
partially ordered set of events for consecutive and fixed-time intervals
in a sequence. Previous studies on serial episodes consider only frequent
serial episodes in a sequence of events (called simple sequence). In real
world, we may find a set of events at each time slot in terms of various
intervals (called complex sequence). Mining frequent serial episodes in
complex sequences has more extensive applications than that in simple
sequences. In this paper, we discuss the problem on mining frequent
serial episodes in a complex sequence. We extend previous algorithm
MINEPI to MINEPI+ for serial episode mining from complex sequences.
Furthermore, a memory-anchored algorithm called EMMA is introduced
for the mining task.
†This work was sponsored by Ministry of Economic Affairs,

Taiwan under grant 94-EC-17-A-02-S1-029.

1 Introduction

Mining significant patterns in sequence(s) is an important and fundamental issue
in knowledge discovery, including sequential patterns, frequent episodes, frequent
continuities and periodic patterns [1]. In these studies, discovering frequent serial

episodes is a basic problem in sequence analyzing[4]. The goal of episode mining
is to find relationships between events. Such relationships can then be used in
an on-line analysis to better explain the problems that cause a particular event
or predict future result. Serial episode mining has been of great interest in many
applications, including internet anomaly intrusion detection [2], biomedical data
analysis and web log analysis.

The task of mining frequent episodes was originally defined on “a sequence
of events” where the events are sampled regularly as proposed by Mannila et al.
[4]. Informally, an episode is a partially ordered collection of events occurring
together. The user defines how close is close enough by giving the width of
the time window win. Mannila et al. introduced three classes of episodes. Serial

episodes consider patterns of a total order in the sequence, while parallel episodes

have no constraints on the relative order of event sets. The third class contains
composite episodes like serial combination of parallel episodes.

Mannila et al. presented a framework for discovering frequent episodes through
a level-wise algorithm, WINEPI [4], for finding parallel and serial episodes that
are frequent enough. The algorithm was an Apriori-like algorithm with the “anti-
monotone” property of episodes’ support. The support of an episode is defined
as the number of sliding windows, a block of win continuous records, in the
sequence. Take the sequence S = A3A4B5B6 as an example, there are 6-3+3=6
sliding windows in S given win = 3, e.g. W1 = A3, W2 = A3A4, W3 = A3A4B5,
W4 = A4B5B6, W5 = B5B6 and W6 = B6. Unfortunately, this support count
has a defect in confidence calculation of an episode rule. For example, the serial
episode rule “When event A occurs, then event B occurs within 3 time units”
should have probability or confidence 2/2 in the sequence S since every occur-
rence of A is followed by B within 3 time units. However, since episode < A >

is supported by four sliding windows, while serial episode < A,B > is matched
by two sliding windows (W3 and W4), the above rule will have confidence 2/4.

Instead of counting the number of sliding windows that support an episode,
Mannila et al. consider the number of minimal occurrences of an episode from
another perspective. They presented MINEPI [3], an alternative approach to
the discovery of frequent episodes from minimal occurrences (mo) of episodes. A
minimal occurrence of an episode α is an interval such that no proper subwindow
contains the episode α. For example, episode < A > has mo support 2 (interval
[3,3] and [4,4]), while episode < A,B > has only mo support 1 from interval
[4,5]. Thus, the above rule will have confidence 1/2. However, both measures
are not natural for the calculating of an episode rule’s confidence. Therefore, we
need a measure that facilitates the calculation of such episode rules to replace
the number of sliding windows or minimal occurrences.

In addition, we sometimes find several events occurring at one time slot
in terms of various intervals, called complex sequences. Note that a temporal
database is also a kind of complex sequence with temporal attributes. Mining
frequent serial episodes in a complex sequence has more extensive applications
than that in a simple sequence. Therefore, we discuss the problem on mining fre-
quent serial episodes over a complex sequence in this paper, where the support
of an episode is modified carefully to count the exact occurrences of episodes.
We propose two algorithms in mining frequent episodes in complex sequences,
including MINEPI+ and EMMA. MINEPI+ is modified from previous vertical-
based MINEPI [3] for mining episodes in a complex sequence. MINEPI+ employs
depth first enumeration to generate the frequent episodes by equalJoin and tem-

poralJoin. To further reduce the search space in pattern generation, we propose a
brand new algorithm, EMMA (Episodes Mining using Memory Anchor), which
utilizes memory anchors to accelerate the mining task. Experimental evaluation
shows that EMMA is more efficient than MINEPI+.

Time 1 2 3 4 5 6 8 9 10 11 12 13 14 15 16
A C B A D B A B E A B D A C B

Events C D C E D C D C D E C E D
(a) A temporal database TDB

Time 1 2 3 4 5 6 8 9 10 11 12 13 14 15 16
#1 #3 #2 #1 #4 #2 #1 #2 #1 #2 #4 #1 #3 #2

ID #3 #4 #3 #4 #3 #4 #3 #4 #3 #4
#5 #6 #5 #6 #5 #6 #5 #6 #5 #6

(c) Encoded horizontal database for TDB

ID Item Timelist

#1 A 1, 4, 8, 11, 14
#2 B 3, 6, 9, 12, 16
#3 C 1, 2, 4, 8, 11, 14, 15
#4 D 3, 5, 6, 9, 12, 13, 16
#5 A, C 1, 4, 8, 11, 14
#6 B, D 3, 6, 9, 12, 16
(b) Frequent itemsets for TDB

Fig. 1. Phase I and II for EMMA

2 Mining Serial Episodes

2.1 MINEPI+

MINEPI is an iteration-based algorithm which adopts breadth-first manner to
enumerate longer serial episodes from shorter ones. However, instead of scanning
the temporal database for support counting, MINEPI computes the minimal
occurrences mo of each candidate episode from the mo of its subepisode by
temporal joins. For example, we want to find all frequent serial episodes from a
simple sequence S = A1A2B3A4B5 with maxwin = 4 and minsup = 2. MINEPI
first finds frequent 1-episode and records the respective minimal occurrence, i.e.
mo(A) = {[1, 1], [2, 2], [4, 4]}, mo(B) = {[3, 3], [5, 5]}. Using temporal join which
connects events from different time intervals (less than maxwin), we get intervals
[1,3], [2,3], [2,5] and [4,5] for candidate 2-tuple episode <A,B>. Since [1, 3] and
[2, 5] are not minimal, the minimal occurrences of <A,B> will be {[2, 3], [4, 5]}.
If we want to count the number of sliding windows that match serial episode
<A,B>, interval [1, 3] should be retained since the first subwindow contains A.
Therefore, we have support count 3 for serial episode <A,B> since [2,3] and
[2,5] denote the same sliding window. To extend MINEPI for our problem, we
also need equal join which connects events at the same interval for dealing with
complex sequences. We will use these intervals to compute the right support
count for the problem.

Given the maximum window bound maxwin, the bound list of a serial
episode P= < p1, . . . , pk >, is the set of intervals [tsi, tei] (tei − tsi < maxwin)
such that p1 ⊂ Xtsi

, pk ⊂ Xtei
and [Xtsi+1, Xtsi+2, . . . , Xtei−1] is a super-

sequence of < p2, . . . , pk−1 >. Each interval [tsi, tei] is called a matching bound
of P . By definition, the bound list of an event Y is the set of intervals [ti, ti]
such that Xti

supports Y . Given a serial episode P =< p1, . . . , pk > and
a frequent 1-pattern f and their matching bound lists, e.g., P.boundlist =
{[ts1, te1], . . . , [tsn, ten]} and f.boundlist = {[ts′1, ts

′
1], . . . , [ts

′
m, ts′m]}. The op-

eration equal join of P and f which computes the bound list for a new serial
episode P1 =< p1, . . . , pk

⋃
f > (denoted by P �f) is defined as the set of inter-

vals [tsi, tei] such that tei = ts′j for some j (1 ≤ j ≤ m). Similar to equal join, the
operation temporal join (concatenation) of P and f (denoted by P · f) which
computes the bound list for new serial episode P2 =< p1, . . . , pk, f > is defined

as the set of intervals [tsi, te
′
j] such that te′j − tsi < maxwin, and te′j > tei for

some j (1 ≤ j ≤ m).
Different from MINEPI, we apply depth-first enumeration to pattern gener-

ation for memory saving. This is because breadth first enumeration must keep
track of records for all episodes in two consecutive levels, while depth-first enu-
meration needs only to keep intermediate records for episodes generated along a
single path. Note that MINEPI+ does’t search the minimum occurrence in the
temporal database, we call our algorithm as MINEPI+ since the vertical-based
operation in MINEPI+ is similar to MINEPI. Though the extension of MINEPI
discover all frequent serial episodes, MINEPI+ has the following drawbacks: 1. A

huge amount of combinations: Let |I| be the number of frequent 1-episodes,

WINEPI+ needs |I|2 and |I|2−|I|
2 checking for temporal joins and equal joins,

respectively. 2. Unnecessary joins: For example, while the number of the ex-
tendable matching bounds for a serial episode is less than minsup ∗ |TDB|, we
can skip all temporal joins for this prefix. 3. Duplicate joins: For example, to
find serial episode <ABC, ABC>, MINEPI+ needs four of equal joins (twice
(<A>,) and (<AB>,<C>)) and one temporal joins ((<ABC>, <A>)).
However, if we maintain the bound list for < ABC >, we only needs one tem-
poral joins.

2.2 EMMA

In this section, we propose an algorithm, EMMA (Episode Mining using Memory
Anchor), that overcomes the drawbacks of the MINEPI+ algorithm. To reduce
duplicate checking, EMMA is divided into three phases, including (I) Mining fre-
quent itemset in the complex sequence. (II) Encode each frequent itemset with a
unique ID and construct them into a encoded horizontal database. (III) Mining
frequent serial episodes in the encoded database. The EMMA algorithm adopts
DFS to enumerate local frequent patterns by memory anchors to accelerate the
mining task, which is more like a pattern growth method since it searches the
local frequent sub-pattern to form the long pattern. Thus, instead of frequent
items, we have a larger set of all frequent itemsets as frequent 1-tuple episodes.
Again, we will use the boundlists for each frequent 1-tuple episode to enumer-
ate longer frequent episodes. However, we only combine existing episodes with
a “local” frequent 1-tuple episode to overcome the huge amount of candidate
generation.

Now, in order to discover local frequent 1-tuple episode efficiently, we con-
struct an encoded database EDB indexed by time (Phase II) and utilize the
boundlists as a memory anchor to access the horizontal-based information. Note
that the timelists of the frequent itemsets are equivalent to the boundlists for fre-
quent 1-tuple episodes. As an example, Figure 1 shows an illustrative transaction
database, the frequent itemsets with min sup = 5, and the encoded database.
Finally, we use depth first enumeration to enumerate frequent serial episodes
and carefully avoid unnecessary joins in Phase III.

Similar to MINEPI+, it adopts depth first enumeration to generate longer
serial episodes. However, EMMA generates only frequent serial episodes by join-

ing an existing serial episode with local frequent IDs. This is accomplished by
examining those transactions following the matching bounds of current serial
episodes. For example, if we want to extend an episode #3={C} with boundlist
{[1,1], [2,2], [4,4], [8,8], [11,11], [14,14], [15,15]}, we need to count the occurrences
of IDs in the following intervals within maxwin = 4 bound, i.e. [2,4], [3,5], [5,7],
[9,11], [12,14], [15,16] and [16,16]. We call these intervals the projected bound-
list of a serial episode <#3>. Formally, the projected bound list of a boundlist
for an episode is defined as follows. Given the bound list of a serial episode P ,
P.boundlist = {[ts1, te1], . . . , [tsn, ten], } in the encoded database ED, the pro-

jected boundlist (PBL) of P is defined as P.PBL = {[ts′1, te
′
1], . . . , [ts

′
n, te′n], }

where ts′i=min(tsi + 1, |TDB|) and te′i = min(tsi + maxwin − 1, |TDB|).

When examining the IDs in the projected boundlist, we also record the
boundlists of IDs. For example, #4 is a local frequent ID in #3.PBL and has
boundlist {[3,3], [5,5], [6,6], [9,9], [12,12], [13,13], [16,16]}. Thus, when new se-
rial episodes <C,D> are generated by temporal join <#3,#4>, we know their
boundlists immediately, i.e. {[1,3], [2,3] [4,5], [8,9], [11,12], [14,16], [15,16]}. To
extend this episode, the procedure emmajoin is called recursively until no more
new serial episodes can be extended, i.e. when the number of extendable bounds
for a serial episode is less than minsup ∗ |TDB|. For example, suppose the
boundlist of of some serial episode is {[1,3], [3,5], [8,11], [11,14], [14,15]}, with
maxwin = 4 the extendable bounds include {[1,3], [3,5], [14,15]} since [8,11]
and [11,14] already reach the maximum window bound. With minsup = 5, we
do not need to extend serial episode . This strategy can avoid unnecessary
checking spent in MINEPI+.

� � � �
� � � �

� � �� � �� � �
� � � �

� � �

��
��

� �

� � �

� � � �

� � � � �

� �� �� �� �	 �

�� � � � � ���

� ��
�� ��
�� �
���
�� !

"�# $&%(')# *
%("�",+ -

.
///

00000 1 2 1 - 1
3 2 3 4 - 3 2 - 0 / 3 2 - 4 5

0 5 2 6 1 7

3

/

-

1

0 30 6/ 3/ 6. 3 8�9 : ; < = > ?�@

A B
CDE
FG BH
IJ EB
CBK
LM
ANO

3
6

0 3
0 6

/ 3
/ 6

P DQ
BR
J SD
T BS
MU V
WWW
O

X(Y�Y,Z
Y�[\&X(]([^
_�` a a b c d < c : e c = 9 ; ` f c ;

(a) Running Time v.s. minsup (b) Memory Usage v.s. minsup

g

h hji k l i h g
i g k h

l m l i

m n o
k

g l
o k

i p m

m

i

i m

i m m

i m m m

i m m m m

k q p o g r
sut v w,x y

z {|
|} |~
�} �
���
�� ��

��� �&� �)� �
�(�u�,�

����� � �� � �
������

� � � � �

� � � �� � � � �� � � � �

� � � � �

� � � � �
�

�

�

�

������ �u� � �,� �

�
¡¢£
¤¥ ¦
§¨ £
¡ ©
ª«
�¬

�
�
�
�
�
� �

® ¢¯
 °
¨ ±¢
² ±
«³ ´
µµµ

¶(·�·,¸
·�¹ º&¶(»(¹ ¼
½�¾ ¿ ¿ À Á Â Ã Á � Ä Á Å � Æ ¾ Ç Á Æ

(c) Running Time v.s. maxwin (d) Memory Usage v.s. maxwin

Fig. 2. Performance comparison in real data

3 Experiments

We apply MINEPI+ and EMMA to a data set composed of 10 stocks in the
Taiwan Stock Exchange Daily Official list for 2618 trading days from Septem-
ber 5, 1994 to June 21, 2004. We discretize the stock price of go-up/go-down
into five levels. Figure 2(a) shows the running time with an increasing support
threshold, minsup, from 10% to 30%. Figure 2(c) shows the same measures
with varying maxwin. As the maxwin/minsup threshold increases/decreases,
the gap between MINEPI+ and EMMA in the running time becomes more sub-
stantial. Figures 2(b) and (d) show the memory requirements and the number of
frequent episodes with varying minsup and maxwin. As the maxwin threshold
increases or minsup threshold decreases, the number of frequent episodes also
increases. The memory requirement in MINEPI+ is steady. However, EMMA
needs to maintain more frequent itemsets as the minsup decreases; whereas the
memory requirement with varying maxwin in EMMA is changed slightly. Over-
all, MINEPI+ is better than EMMA in memory saving (by a magnitude of 4 for
minsup = 10%).

4 Conclusion and Future Work

In this paper, we discuss the problem of mining frequent serial episodes in a com-
plex sequence and propose two algorithms to solve this problem. First, we modify
previous vertical-based MINEPI to MINEPI+ as the baseline for mining episodes
in a complex sequence. To avoid the huge amount of combinations/computations
and unnecessary/duplicate checking, we utilize memory to propose a brand-new
memory-anchored algorithm, EMMA. The experiments show that EMMA is
more efficient than MINEPI+. So far we have only discussed serial episodes. Par-
allel episodes, which have no constraint on event orders, and composite episodes,
e.g. serial combination of parallel episodes, remain to be solved. Thus, further
researches are required.

References

1. K. Y. Huang and C. H. Chang. Smca: A general model for mining synchronous
periodic pattern in temporal database. IEEE Transaction on Knowledge and Data
Engineering (TKDE), 17(6):776–785, 2005.

2. Jianxiong Luo and Susan M. Bridges. Mining fuzzy association rules and fuzzy
frequency episodes for intrusion detection. International Journal of Intelligent Sys-
tems, 15(8), 2000.

3. H. Mannila and H. Toivonen. Discovering generalized episodes using minimal oc-
currences. In Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining (KDD’96), pages 146–151, 1996.

4. H. Mannila, H. Toivonen, and A. I. Verkamo. Discovering frequent episodes in
sequences. In Proceedings of the First International Conference on Knowledge Dis-
covery and Data Mining (KDD’95), pages 210–215, 1995.

