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Abstract. Mining association rule in event sequences is an important
data mining problem with many applications. Most of previous studies on
association rules are on mining intra-transaction association, which con-
sider only relationship among the item in the same transaction. However,
intra-transaction association rules are not a suitable for trend prediction.
Therefore, inter-transaction association is introduced, which consider
the relationship among itemset of multiple time instants. In this paper,
we present PROWL, an efficient algorithm for mining inter-transaction
rules. By using projected window method and depth first enumeration
approach, we can discover all frequent patterns quickly. Finally, an exten-
sive experimental evaluation on a number of real and synthetic database
shows that PROWL significantly outperforms previous method.

1 Introduction

Mining frequent patterns in event sequences is a fundamental problem in data
mining areas. There are many emerging applications in pattern mining, includ-
ing stock market price movement, telecommunication network fault analysis and
web usage recommendation. Therefore, there are various directions in pattern
mining, such as frequent itemset, sequential pattern, frequent episode [2], peri-
odic pattern [1] etc. Some of them are on mining intra-transaction association
rules like “The price of 3Com(COMS) and Cisco(CSCO) always go up together
on the same day with 70% confidence”. Such information can be used for sale
purposes such as decision making because the co-occurrence patterns of records
can be used to infer another record. Despite the above rule reflects some relation-
ship among the prices, it is not a suitable and definite rule for trend prediction.
The investors may be more interested in a rule like “When the price of COMS
goes up, the price of CSCO will go up with 60% probability three days later.”
Therefore, we need a pattern that shows the relationships between items in dif-
ferent transaction records. In order to classify these two rules explicitly, we call
the former rule as intra-transaction associations, the latter rule as inter-

transaction associations.
In addition to inter-transaction association rules, there are two other kinds

of association mining from different transaction records, frequent episodes and
periodic patterns. An episode is defined to be a collection of events in a specific



Fig. 1. Event Sequence S.

window interval that occur relatively close to each other in a given partial order
[2]. Take Figure 1 as an example, there are six matches of episode {A, B}, from E1

to E6, in event sequence S. Mannila et al. proposed an algorithm, WINEPI [2],
for finding all episodes that are frequent enough. This algorithm was an Apriori-
like algorithm based on the “anti-monotone” property of episodes. They also
presented MINEPI, an alternative approach, to the discovery of frequent episodes
based on minimal occurrences of episodes. Note that an episode considers only
the partial order relation, instead of the actual positions, of events in a window.

Unlike episodes, a periodic pattern [1] considered not only the order of events
but also the exact positions of events. To form periodicity, a list of k disjoint
matches is required to form a contiguous subsequence with k satisfying some
predefined min rep threshold. As illustrated in Figure 1, pattern {A, ∗, B} is a
periodic pattern that matches D1, D2, and D3, three continuous while disjoint
matches, where A (resp. B) occurs at the first (resp. third) position of each
match. The symbol “*” (the “don’t care” position in a pattern) is introduced to
allow partial periodicity. Sometimes, we use a 4-tuple (P , l, rep, start) to denote
a segment of pattern P with period l starting from position start for rep times.
In this case, the segment can be represented by ({A, ∗, B}, 3, 3, 1).

The concept and definition of inter-transaction association rules are first in-
troduced in [4] by Tung et al. A frequent pattern in inter-transaction association
rule is similar to a periodic pattern, but without the constraint on the contiguous
and disjoint matches. To distinguish the frequent patterns in inter-transaction as-
sociation rules from the frequent patterns in intra-transaction association rules,
we use the term “frequent continuities” for the frequent patterns in inter-
transaction association rules. Let us return to our previous example in Figure 1.
{A, ∗, B} is a continuity with four matches D1, D2, D3, and D4.

Inter-transaction association rules can be mined by the FITI algorithm pro-
posed in [3]. FITI consists of two phases: intra-transaction and inter-transaction
itemsets mining. Similar to Apriori-like algorithms, FITI could generate a huge
number of candidates and require several scans over the whole data sequence
to check which candidates are frequent. To illustrate, if there are I frequent
1-patterns, the FITI algorithm will generate approximately IW 2-pattern can-
didates for window size W . Experimentally, the bottleneck of the FITI method
comes from its step-wise candidate pattern generation and test. Therefore, it
is desirable to develop an algorithm which avoid candidate generation and re-
duce the search space. With this motivation, we devised a two-phase algorithm,
PROWL, for mining frequent continuities from event sequences. We introduce a



projected window mechanism and employ depth first enumeration approach to
discover all frequent continuities.

The remaining parts of the paper are organized as follows. We define the
problem of frequent continuity mining from event sequence in Section 2. Sec-
tion 3 presents our algorithm for mining frequent continuity in event sequence.
Experiments on both synthetic and real world data are reported in Section 4.
Finally, conclusion is made in Section 5.

2 Problem Definition

In this section, we define the problem of frequent continuity mining. The problem
definition is similar to [3] but is restricted to a sequence of events. Let E =
(e1, e2, . . . , en) be a set of literals, called events. A event sequence S is a set of
time records where each time record is a tuple (tid, xi) for time instant tid and
event xi (xi ∈ E). A sequence stored in form of (tid, xi) is called horizontal
format (e.g. Figure 1).

Definition 1. A continuity pattern (or a continuity in short) with window W

is a nonempty sequence P = (p1, p2, . . . , pW ) where p1 is an event and others
are either an event or *, i.e. pj ∈ E or {*} for 2 ≤ j ≤ W .

The symbol “*” is introduced to allow mismatching (the “don’t care” position
in a pattern). Since a continuity pattern can start anywhere in a sequence, we
only need to consider patterns that start with a non-“*” symbol. A continuity
P is called an i-continuity or has length i if exactly i positions in P contain
event. For example, {A, ∗, ∗} is a 1-continuity; {A, ∗, C} is a 2-continuity which
has length 2.

Definition 2. Given a continuity pattern P = (p1, p2, . . . , pW ) and a subse-
quence of W slots D = (d1, d2, . . . , dW ) in S, we say that P matches D (or D

supports P ) if and only if, for each position j (1 ≤ j ≤ l), either pj = * or pj

= dj is true. D is also called a match of P .

In general, given a sequence of events and a pattern P , multiple matches of
P may exist. In Figure 1, D1, D2, . . . , D4 are four matches of pattern {A, ∗, B}.

Definition 3. An inter-transaction association rule is an implication of
the form X ⇒ Y , where

1. X, Y are continuity patterns with window w1 and w2, respectively.
2. The concatenation X · Y 1 is a continuity pattern with window w1 + w2.

Similar to the studies in mining intra-transaction rules, we also introduce
two measures of inter-transaction association rules: support and confidence.

1 The concatenation of two continuity patterns P = (p1, . . . , pw1
) and Q =

(q1, . . . , qw2
) is defined as P · Q = (p1, . . . , pw1

, q1, . . . , qw2
).



Definition 4. Let |S| be the number of transactions in the event sequence S.
Let Sup(X · Y ) be the number of matches with respect to continuity X · Y and
Sup(X) be the number of matches with respect to continuity X. Then, the support
and confidence of an inter-transaction association rule X ⇒ Y are defined as

support =
Sup(X · Y )

|S|
, confidence =

Sup(X · Y )

Sup(X)
. (1)

The problem is formulated as follows: given a minimum support level minsup

and a minimum confidence level minconf , our task is to mine the complete set of
inter-transaction association rules from an event sequence with support greater
than minsup and confidence greater than minconf . We illustrate the concepts
with an example. Let minsup and minconf be 25% and 60% respectively. An
example of an inter-transaction association rule from the event sequence in Fig-
ure 1 will be: {A, ∗} ⇒ {B}. This rule (Event B occurs two slots later after
event A.) holds in the sequence S with support 25% and confidence 67%.

3 The PROWL Algorithm

In this section, we explore methods for mining frequent continuities in an event
sequence. Our algorithm, PROWL (PROjected Window Lists), uses a recursive
depth first enumeration strategy to discover all frequent continuities from an
event sequence. To avoid candidate generation, we use a vertical data format
together with a horizontal format for efficient continuity generation. Table 1
shows the vertical format for the event sequence S in Figure 1, where a time list
is maintained for each event. A time list of an event records the time slots where
the event occurs in the sequence.

Definition 5. Given a sequence of events S and a continuity P with window W ,
let Ii denotes a subsequence of W time slots Ii = (S[si], S[si+1], . . . , S[si+W−1]
in S that supports P . Suppose there are k matches of P in S. The time list of
P is defined as P.list = {s1 + W − 1, s2 + W − 1, . . . , sk + W − 1}.

By definition, each event is itself a continuity with window 1. The time list
for a 1-continuity pattern is consistent with the time list for an event. Now, we
define the projected window list of a continuity from its time list as follows.

Definition 6. Projected Window List (PWL): Given a time list of a continuity
P , P.list = {o1, o2, . . . , ok} in the event sequence S, the projected window list of
P is defined as P.PWL = {w1, w2, . . . , wk} , wi = oi + 1 for 1 ≤ i ≤ k. Note
that a time slot wi is removed from the projected list if wi is greater than |S|,
i.e. wi ≤ |S| for all i. If an event X is frequent in the projected window list of
pattern P , we refer to the concatenation P · X as an extension of P .

The PROWL algorithm mines frequent continuities by the following phases.

– Initial phase: The sequence S is first read into memory and scanned once.
For each event, a time list is maintained to record its occurring time slot.
The number of occurrences is also accumulated for frequent event filtering.



Event Time List Projected Window List

A 1, 4, 7, 8, 11, 14 2, 5, 8, 9, 12, 15

B 3, 6, 9, 12, 16 4, 7, 10, 13

C 2, 10, 15 3, 11, 16

D 5, 13 6, 14
Table 1. Vertical format of the event sequence S in Figure 1

– Recursive phase: For each frequent 1-continuity, we calculate a projected
window list (PWL) from the pattern’s time list and find frequent events in
its PWL. We then output the frequent continuity formed by current pattern
and the frequent events in the PWL. For each extension pattern, the process
is applied recursively to find all frequent continuities until the projected
window list becomes empty or the window of a continuity is greater than
the maximum window.

3.1 An Example

The PROWL algorithm can be best understood by an illustrative example de-
scribed below and its corresponding flowchart is depicted in Figure 2.

Example 1. Given Sup = 3 and maxwin = 4, the frequent events for Table 1
include A, B and C. For frequent 1-continuity {A}, the projected window list
is PA.PWL = {2, 5, 8, 9, 12, 15}. Note that PA.PWL is also the time list of
continuity {A, ∗}. By examining the time slots of PA.PWL in Figure 1, all the
continuities with window 2 having prefix {A} can be generated by concatenating
{A} with a frequent event in PA.PWL or the don’t care symbol. For instance,
the corresponding events for the time slots in PA.PWL are C, D, A, B, B, C,
respectively. For each event Ei, a time list is constructed accordingly. Since D

is not frequent in S, it is simply ignored. Furthermore, as there are no frequent
events in PA.PWL, the only frequent continuity generated from {A} is {A, ∗}
(with 6 matches).

Recursively, we apply the above process to continuity {A, ∗}. The projected
window list of {A, ∗} is P{A,∗}.PWL = {3, 6, 9, 10, 13, 16}. In this layer, we
find a frequent event B in time records of P{A,∗}.PWL. Thus, two continuities:
{A, ∗, B} and {A, ∗, ∗} are generated with time list P{A,∗,B}.list = {3, 6, 9, 16}
and P{A,∗,∗}.list = {3, 6, 9, 10, 13, 16}, respectively. The extensions of the con-
tinuities can be mined by applying the above process respectively to each con-
tinuity as shown in Figure 2. Note that the projected window list of {A, ∗, B}
is {4, 7, 10}, because time record 17(16+1) is greater than sequence length 16.
Similarly, we can find all frequent continuities having prefix {B}, respectively,
by constructing PB .PWL and mining them respectively. The set of frequent
continuities is the collection of patterns found in the above recursive mining
process.



Fig. 2. The overall process of PROWL for Figure 1.

3.2 The PROWL algorithm

The main idea of PROWL is to utilize the memory for both the event sequence
and the indices in the mining process. The event sequence S is read once from
disk and each event is associated with a time list containing indices to the time
slots where it occurs. Based on the concepts of projected window list and “anti-
monotone” property, we can generate all frequent continuities by depth-first
enumeration. PROWL discovers all frequent continuities recursively by searching
the time slots in the projected window lists immediately. Figure 3 outlines the
proposed PROWL algorithm.

In the first phase, we scan event sequence S once and transform S into vertical
format (Step 1∼2 in the Prowl). To reduce the number of events for enumera-
tion, the number of occurrences for each event is accumulated during sequence
reading and non-frequent events are masked (Step 3∼5 of Prowl). Therefore,
non-frequent events will not be enumerated in the recursive phase. In the second
phase, the procedure Project is applied recursively to enumerate all continuities
with known frequent continuities as their prefixes. For each frequent continuity
P , we transform its time list into a projected window list and examing the time
slots of it’s projected window in S (Step 4∼8 in the Project). Note that the
horizontal format of sequence S is maintained in main memory for fast access to
the event at each time slot oi ∈ P.PWL. The function TempEvent(e).insert(oi)
insert time slot oi into the time list of event e. If an event Ei is frequent, the
continuity P · Ei is output (Step 10∼13 of Project). The recursive call stops
when the layer is greater than maxwin (Step 1 of Project).



Given event sequence S, Sup, maxwin;

Procedure of Prowl()
1. for i = 1 to |S| do
2. EventSet[S[i]].insert(i);
3. for each event Ei ∈ EventSet do
4. if (EventSet[Ei].size < Sup) then
5. for each time instant oi ∈ EventSet[Ei] do
6. S[oi] = ∗;
7. for each event Ei ∈ EventSet do
8. if (EventSet[Ei].size >= Sup) then
9. Pattern[0] = Ei;
10. for j = 1 to maxwin − 1 do
11. Pattern[j] = *;
12. Project(EventSet[Ei], Pattern, 1);
13. end

Subprocedure of Project(T imeList, Pattern, Layer)
1. begin if (Layer <= maxwin) then
2. PWL = NULL;
3. TempEvent = NULL;
4. for each time instant Ti ∈ T imeList do
5. if (Ti < |S|) then
6. PWL.insert(Ti + 1);
7. for each time instant oi ∈ PWL do
8. if S[oi] 6= ∗ then
9. TempEvent[S[oi]].insert(oi);
10. begin for each event Ei ∈ TempEvent do
11. if (TempEvent[Ei].size >= Sup) then
12. Pattern[Layer] = Ei;
13. Project(TempEvent[Ei], Pattern,Layer + 1);
14. Output Pattern;
15. Pattern[Layer] = *;
16. Project(TempEvent[Ei], Pattern,Layer + 1);
17. end
18. end

Fig. 3. PROWL: Frequent Continuity mining algorithm



In contrast with Apriori-like algorithms, we only generate longer pattern by
shorter ones. It does not generate any candidate patterns for checking. Besides,
the projected window lists are actually smaller than the original ones. The sit-
uation will be illustrated in the scale-up experiments discussed later.

4 Experimental Result

In this section, we report a performance study of the algorithm proposed in
this paper and applications of frequent continuity in real world data. We first
investigate the performance of PROWL and compare the result with the FITI
algorithm proposed in [3] using synthetic data. The PROWL algorithm is then
applied to real world data for frequent continuity mining.

4.1 Synthetic data

To obtain reliable experimental results, the method to generate synthetic data
we employed in this study is similar to the ones used in prior works [1]. We use a
synthetically generated event sequence consisting of |N | distinct symbols and |S|
events. A set of candidate continuities C is generated as follows. First, we decide
the window length of a continuity from a geometrical distribution with mean W .
Then L (1 < L < W ) positions are chosen randomly for non-empty events. The
number of occurrences of a continuity follows a normal distribution with mean
Avg Sup. The continuity is then inserted into the sequence Avg Sup times with
gap between W to 2W . A total of |C| complex patterns are generated. After all
candidate patterns are generated, events are picked at random from the symbol
set N for empty time slots. The default parameter is S20K-N1K-C10-L4-W10-
Avg Sup=0.5. The experiments are conducted on a computer with a CPU clock
rate of 1G MHz and 1.5G MB of main memory, the program is written by visual
C++ in windows 2000 platform.

4.2 Comparison of PROWL with FITI

We reported experimental results on the default data set. For comparison with
PROWL, we implement FITI algorithm which is proposed in [3]. Both PROWL
and FITI algorithms show linear scalability with the size of a sequence from
10K to 80K as shown in Figure 4(a). However, PROWL is much more scalable
than FITI. As the size of a sequence grows up, the difference between the two
methods becomes larger and larger.

Figure 4(b) shows that the running time of PROWL and FITI with vari-
able number of candidates. It shows that the running time of PROWL increases
smoothly while FITI increases exponentially as the number of candidates in-
creases. To test the scalability with the pattern length, we also execute an ex-
periment with varying pattern length. The results are presented in Figure 4(c).
Overall, PROWL is about an order of magnitude faster than FITI. This is be-
cause the large number of candidates that need to be generated and tested in



FITI as the pattern length grows. Figure 4(d) shows the scalability of the algo-
rithm over the varying window size. Note that the parameter maxwin is set to
the window size W of dataset. As the window size becomes larger, more candi-
dates need to be generated in FITI. On the contrary, PROWL doesn’t generate
any candidate for checking. Thus, for a fixed pattern length, the running time
of PROWL is smooth with the varying window size.
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Fig. 4. Scale-up performances with (a) sequence size (b) number of candidates (c)
pattern length (d) window size.

4.3 Real World Data

We also run PROWL on a variety of different real world data sets to get a better
view of the usefulness of frequent continuities in event sequences. The data sets
are taken from the UNIX user usage logs in UCI Machine Learning Database
Repository. The UNIX user usage logs contains 9 subsets of sanitized user data
drawn from the command histories of 8 UNIX computer users at Purdue over
the course of up to 2 years. We show only the data of User0, User1 and User2
due to space limitation. The description of the data used, the parameters, and
the number of frequent continuities discovered are presented in Table 2.

Finally, we apply PROWL to protein sequences to discover tandem repeats,
which is an important problem in bioinformatics. We used data in the PROSITE
database of the ExPASy Molecular Biology Server (http://www.expasy.org/).
We selected a protein sequence P13813 (110K PLAKN) with a known tandem
repeats “{E,E,T,Q,K,T,V,E,P,E,Q,T}”. As expected, several continuities which
are related to the known tandem repeat are discovered. It is indicated that our
algorithm can be used in protein sequence mining.



Data Set Events Event Types Support Maximum Window # of continuity

UNIX User0 8974 197 100 10 341
UNIX User1 19881 288 200 10 711
UNIX User2 18738 310 200 10 2183

Protein Sequence 296 22 10 12 10165
Table 2. Dataset Characteristics

5 Conclusion

In this paper, we proposed an algorithm, PROWL, for mining frequent continu-
ities in event sequence. The idea is to utilize memory for storing event sequence
in both horizontal and vertical data format. PROWL generates frequent con-
tinuities by applying a projected window method recursively. The experiments
show that the method is efficient and flexible. We compared PROWL with pre-
vious research, and the result reported that Prowl outperformed than FITI. We
have applied the method in the analysis of the UNIX user usage log and min-
ing tandem repeats in protein sequences. There are several directions for future
work. The first direction is to develop techniques for mining inter-transaction
association rules from a sequence of eventsets, or a transaction database. The
second direction is to develop techniques for managing the large number of fre-
quent continuities discovered, by introducing the concept of maximal or closed
continuities. More research will be reported in the near future.
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