Mining Periodic Patterns in Sequence Data

Kuo-Yu Huang and Chia-Hui Chang

Department of Computer Science and Information Engineering,
National Central University, Chung-Li, Taiwan 320
want@db. csie.ncu.edu.tw, chia@csie.ncu.edu.tw

Abstract. Periodic pattern mining is the problem that regards tempo-
ral regularity. There are many emerging applications in periodic pattern
mining, including web usage recommendation, weather prediction, com-
puter networks and biological data. In this paper, we propose a Pro-
gressive Timelist-Based Verification (PTV) method to the mining of pe-
riodic patterns from a sequence of event sets. The parameter min_rep,
is employed to specify the minimum number of repetitions required for
a valid segment of non-disrupted pattern occurrences. We also describe
a partitioning approach to handle extra large/long data sequence. The
experiments demonstrate good performance and scalability with large
frequent patterns.

1 Introduction

Pattern mining plays an important role in data mining tasks, e.g. association
mining, inter-transaction rule [6] sequential pattern and episode mining [4], etc.
However, temporal regularity also plays an important roleln association mining,
we may specify a frequent pattern called the “Beer and Diaper” with support
level of 10% and confidence level of 70%. If we consider the influence of time, we
may find that the pattern, “Beer and Diaper”, occurs at every Friday night for 20
weeks in a row. This cyclic association rule is a kind of periodic pattern which
can be applied in period predictions. Besides, periodic patterns in biological
data is also an important issues [3]. Periodic patterns in biological data may be a
mechanism that provides regular arrays of spatial and function groups, useful for
structural packing or for one to one interactions with target molecules. Periodic
conservation of amino acids may be useful in structural packing of two or more
polypeptide chains of the same or different proteins. Periodically placed amino
acid side chains can also facilitate one to one interactions with target atoms
showing similar periodicity” [3].

There have been a number of recent studies in periodic pattern mining. For
example, cyclic association rules proposed by Ozden, et al. [5], partial periodic
patterns by Han, et al. [1], and asynchronous periodic patterns by Yang, et al.
[7,2]. The so called full periodicity specifies the behavior of the time series at
all points in period, while partial periodicity specifies the behavior at some
but not all points in time. Ozden, et al. define the problem of discovering cyclic
association rules that display regular cyclic variation over time [5]. This mo-
tivation is based on the observation that an association rule may not have the

user-specified minimum confidence or support over the entire time spectrum, but
its confidence and support may be above the minimum threshold within certain
time intervals. Note that what Ozden, et al. considered are partial periodic pat-
terns with perfect periodicity in the sense that the pattern reoccurs in every
cycle, with 100% confidence. By studying the interaction between association
rules and time, they applied three heuristics: cycle pruning, cycle skipping and
cycle elimination to find cyclic association rules in temporal data.

Since real life patterns are usually imperfect, Han et al. [1] presented sev-
eral algorithms to efficiently mine partial and imperfect periodic patterns, by
exploring some interesting properties related to partial periodicity, such as the
Apriori property and the max-subpattern hit set property, and by shared mining
of multiple periods. In order to tame the restriction of cyclic association rule,
Han, et al. used confidence to measure how significant a periodic pattern is.
The confidence of a pattern was defined as the occurrence count of the pattern
over the maximum number of periods of the pattern length in the sequence. For
example, (a,*,b) is a partial pattern of period 3 (The character “*” is a “don’t
care” character, which can match any single set of events); its occurrence count
in the event series ”a{b,c}baebaced” is 2; and its confidence is 2/3, where 3 is
the maximum number of periods of length 3. Nevertheless, the proposed mining
model works only for synchronous periodic pattern mining.

Therefore, Yang et al. [7] proposed to mine for asynchronous periodic patterns
that are significant using a subsequence of symbols. Two parameters, min_rep
and max_dis, are employed to qualify valid patterns. The intuition is that a
pattern needs to repeat itself at least a certain number (min_rep) of times to
demonstrate its significance and periodicy. On the other hand, the disturbance
between two valid segments has to be within some reasonable bound (maz_dis).
A two-step algorithm is devised to first generate potential periods by distance-
based pruning, followed by an iterative procedure to derive and validate candi-
date patterns and locate the longest valid subsequence for 1-pattern (called LSI).
The second step then applies a level-wise search to generate the subsequences
of i-patterns based on valid subsequences of all (i — 1)-patterns with the same
period length. Note that in order to discover the longest subsequence, a longer
segment can be broken into small segments when two segments overlap. For some
applications, such as biological data sequence, users might be more interested
in the maximum segments that a periodic pattern can extend. In additions, the
level-wise search for (i — 1)-patterns might degrade for data sequences of event
sets.

To address these problems, Huang and Chang in [2] propose a general model
for mining asynchronous periodic patterns, where each valid segment is required
to be of maximum and at least min_rep contiguous matches of the pattern.
They decompose the problem into two subproblems, valid segment discovery
and asynchronous subsequence composition. Valid segments include single-event
1-patterns, multi-event 1-patterns, and complex i-patterns (¢ > 1). Three al-
gorithms SPMiner, MPMiner, and CPMiner are devised respectively. Finally,
all valid segments with respect to a pattern can be combined to form an asyn-

chronous sequence by APMiner. Just like association rule mining, the computa-
tion load occurs at valid segment discovery. In this paper, we focus on the mining
of valid segments and devise a progressive timelist-based verification algorithm
(called PTV), which improve the performance of SPMiner and MPMiner. Ex-
perimental results show that this method offers better performance than the
previous research when there are many periodic events.

The remaining parts of the paper are organized as follows. In Section 2,
we define the problem of periodic pattern mining for sequence of event set.
Section 3 presents our algorithm for mining periodic patterns from sequence
data. Experiments and performances of the algorithm study are reported in
Section 5. Complexity analysis and comparison to previous work are discussed
4. Our conclusion are presented in Section 6.

2 Problem Definition

In this section, we define the problem of periodic periodic mining. The problem
definition is similar to [2]. Let E be a set of all events. An event set is a non-
empty subset of E. A eventset sequence S is a set of time records where each
time record is a tuple (tid, X) for time instant tid and event set X. A eventset
sequence stored in form of (tid, X) is called horizontal format (see Fig. 1). We
say that an event set Y is supported by a time record (tid, X) if and only if
Y C X. An event set with & events is called a k-event set.

Definition 1. A pattern with periodl is a nonempty sequence P = (p1,pa,...,D1)
where p1 is an event set and others are either an event set or * ie. p; €

(2F —Q)u{x} for2<j <l

Since a pattern can start anywhere in a sequence, we only need to consider
patterns that start with a non-“*” symbol. A pattern P is called an i-pattern if
exactly ¢ positions in P contain event sets.

Definition 2. Given a pattern P = (p1,pa,...,p1) with period | and a sequence
of | event sets D' = (dy,da, ..., d;), we say that P matches D' (or D’ supports
P) if and only if, for each position j (1 < j <1), either p; = * or p; C d; is
true. D’ is also called a match of P.

1 213 |4 |5 |6 |78 9 (101 [12[13]14]15]16 |17 |18
A A A AlA|A|A AlA[A|IA|IA]A|A
B |B B B B B
C o] o] o] c|cC c|c|c c c

D|D D|D D D|D|D DD D

(D (2, (D XD X B) (D)
CDEDCRCD D

Fig. 1. The matches of (AC,*,*) in eventset sequence S.

In general, given a sequence of event sets and a pattern P, multiple matches
of P may exist. In Fig. 1, Dy, Do, ..., D11 are 11 matches of (AC, x, *).

Definition 3. Given a pattern P with period | and a sequence of event sets D,
a list of k (k > 0) disjoint matches of P in D is called a segment with respect to
P if and only if it forms a contiguous subsequence of D. Here, k is referred to as
the number of repetitions of this segment. A segment is maximum if there are
no other contiguous matches at either end. For convenience, we use a 4-tuple
(P, 1, rep, pos) to denote a segment of pattern P with period | starting from
position pos for rep times.

In Fig. 1, D1, ..., D5 are continuous and disjoint matches. Therefore, we can
use S1 = {(AC, *,%),2,5,1} to indicate a segment with period 2 starting from
position 1 for 5 times. Note that Dy, Do, D3 and D, also form a segment but it
is not maximum.

Definition 4. A mazimum segment S with respect to a periodic pattern P is a
valid segment if and only if the number of repetitions of S (with respect to P)
is at least the required minimum repetitions (i.e., min_rep).

For Fig. 1, if we set min_rep = 3 and consider only pattern AC with pe-
riod 2, there will be two valid segments Sy (D1, D2, D3, Dy and Ds) and So
(D¢, D7, Dy, D19 and D11) returned. The problem is formulated as follows: given
a eventset sequence and the parameters min_rep, the problem is to find all valid
segment of periodic pattern with significant periods between L., and Lyqq
specified by the user.

3 Progressive Timelist-Based Verification

In this section, we explore a 2-phase algorithm, Progressive Timelist-Based Ver-
ification (PTV), for mining periodic patterns in eventset sequence. In the first
phase, we modify the data structure of the SPMiner in [2] to discover single-
event l-patterns. In the second phase, we devise a timelist-based verification
mechanism to combine all probable segments of multi-event 1-patterns.

The inputs to PTV include a vertical format database V D and the interesting
period interval specified by L.,in and Ly,q,. The timelist in VD is maintained
for each event. Essentially, PTV checks the time lists of each eventset for each
possible period p (Lyin < p < Lmaz) by a procedure called PeriodicyCheck. It
starts by checking possible valid segments from the timelists for each single events
(Phase I). If there exists a valid segment for an event, such events are enumerated
in depth first order to form event sets. Duplicate enumerates are avoided by
forcing an alphabetic order on the events. For each combined event set, the
timelist is obtained by timelist intersection from the constituent events (Phase
IT). Again, the PeriodicyCheck procedure is applied to see if valid segments
exist for the event set. Enumeration stops whenever no valid segment exists for
an event set.

Given a timelist and period p, the task of PeriodicyCheck is to output valid
segments with period p. This is implemented by keeping tracks of p independent
segments in a data structure called C'Seg, where each C'Seg records the start

Procedure of PTV (VD, Lymin,Lmaz)
. /* Phase I */
. for p=Lnin to Lnmes do FList,= NULL;
. for each event F; € VD do
if (|E;.TimeList| < min_rep) then continue;
for p=_Lmin t0 Limaes do
if (PeriodicyCheck(F;, E;.TimeList, p))==true) then
. Append E; to FListy;
. /* Phase II */

I R L

9. for p=Lmin to Liynme, do

10. if (|FListy| > 1) then

11. for each event E; € FList, do

12. Node.Head = E;; Node.Tail = all event E; € FList, (j > 1);
13. Node.TimeList = E;.TimeList; DFS(Node, p);

Procedure of PeriodicyCheck (EvtSet, TimeList, p)
1. Allocate data structure C'seg[p];

2. /* Initialization */

3. for i=1 to p do

4. CSegli].LP = —Max; CSeg[i].SP = —Max;

5. /* Validation */

6. Valid = false;

7. for each time instant T; € TimeList do

8. pos = T;%p;

9. if (T; — CSeg[pos].LP) == p) then CSeg[pos].LP = T;; continue;

10. if (CSeglpos].LP — CSeglpos].SP > (min_rep — 1) * p) then

11. Output (EvtSet, (CSeg[pos].LP — CSeg[pos].SP)/p+ 1, CSeg[pos].SP);
12. Valid= true;

13. CSeglpos].SP = T;; Cseg|pos].LP = Tj;

14. /* Rechecking */

15. for i =1 to p do

16. if (CSeglpos].LP — CSeg[pos].SP > (min_rep — 1) * p) then

17. Output (EvtSet, (CSeg[pos].LP — CSeg[pos].SP)/p+ 1, CSeg[pos].SP);
18. Valid = true;

19. return Valid;

Procedure of DFS(Node, p)
1. for each E; € Node.Tail

2. newC.Head = Node.Head U Ej;

3. newC.Tail = Tail(Node.Tail);

4. newC.TimeList = Intersection(Node.TimeList, E;. TimeList);

5 if (PeriodicyCheck(newC.Head, newC.TimeList, p)== true) then
6 DFS(newC, p);

Fig.2. PTV: Progressive Timelist-Based Verification algorithm

Initial state Time Instant 2 Time Instant 3 Time Instant &
ndex| SP | LP | ndex] SP | LP | |Index| SP | LP | Jndex| SP | LP
0 [Max[-Max| | 0 [Max|-Max|| 0 3 3 0 3 6
1 [FMax|-Max 1 [FMax|-Max 1 |[FMax|-Max 1 |-Max|-Max
2 FMax|[-Max 2 2 2 2 2 2 2 2 2

Time Instant 7 Time Instant S Time Instant 11 Time Instant 12

ndex| SP | LP | ndex] SP | LP | Index| SP | LP | Index| 5P | LP
] 3 [0 3 9 a 3 9 0 3 |12
1 7 7 1 T 7 1 7 T 1 7 7
2 2 2 2 2 2 FIEEEREE FIEEREE

Time Instant 13 Time Instant 15 Time Instant 16 Time Instant 18

ndex| 3P | LP ndex] SP | LP ndex| SP | LP | ndex| 5P | LP
0 3 |12 Q 3 |15 0 3 | 15 [1] 3 |18
1 13 [13 1 13 |13 1 13 | 16 1 13 | 16
2 111 n 2 11 [11 2 |11 N 2 11| n

Fig. 3. Execution process for event D with period 3

position (SP) and last position (LP) for current segment. For each time instant
T; in the timelist, we compute the offset position pos = T;%p and compare T; to
CSeglpos|.LP. If T; — C'Sseg[pos].LP is exactly p, it implies that this event set
has occurred at (T; — p)-th time instant. In this case, we update C'seg[pos].LP
by T;. If otherwise, T; — C'Sseg[pos].LP is not p, it implies the last segment has
been interrupted. In this case, output this segment if length of current segment
(CSeg[pos].LP — CSeg[pos].SP) is greater than (min_rep — 1) * p and reset
CSeglpos|.SP and CSeg[pos].LP to T; (Step 6~13 in the PeriodicyCheck in
Fig. 2). Step 3~4 of PeriodicyCheck initialize the allocated data structure. In
order to check the unfinished segments, we recheck C'Seg again and output valid
segments (Step 15~18 in the PeriodicyCheck).

Let us use an example to illustrate this algorithm. Given the eventset se-
quence in Fig. 1, with parameters min_rep = 4. The singular periodic pattern
can be mined by the following steps.

— Phase I: For each period p, from L, t0 Lyyge, use PeriodicyCheck pro-
cedure to check whether an event contains valid segments. Take period
3 and event D for example, three C'Seg are created and initialized with
SP = —Mazx and LP = —Maz. For each time instant T; in D.TimelList,
the offset is computed by pos = T;%3. As shown in Fig. 3, time instant 3 has
an offset at position 0, therefore C'Seg[0] is set with SP = 3 and LP = 3.
Since time instant 6, 9, 12, 15 and 18 all have an offset 0, C'Seg[0].LP is
updated five times. For time instant 2 and 11, both of them have an offset
at position 2. However, time instant 11 — C'Seg[2].LP does not equal 3, in-
dicating an interrupt of the previous segment. Finally, segment (D, 3,6, 3)
is output as valid. Since event D contains valid segment, it will be inserted
into F'Lists.

— Phase II: For each period p, from L, t0 Linas, enumerate possible event
sets from FList, in depth-first order by a recursive procedure DFS. The
input to DFS is a Node data structure which contains head event set, tail

event list, and the timelist for head event set. Take period 2 for example.
F Listy contains three events { A, C, D}. Assume an alphabetic order, {A, C'}
is first enumerated by combining Node.head = {A} with the first element
from Node.tail = {C,D}. The timelist for Node.head is the intersection
of A.TimeList and C.TimeList. With the timelist information, Periodi-
cyCheck procedure is then called to check if valid segments exist for this
event set {A, C'}. Since valid segments exist for this event set, DF'S is called
recursively with new node ({4, C},{D},{A, C}.TimeList).

4 Discussion and Algorithm Comparison

In this section, we analysis the algorithms time/space complexity and discuss
the solution when the sequence data is too long/large to fit in memory space.

4.1 Comparison

In this paper, PTV(I) is devised to discover all valid segments for each single
event. Therefore, we compare the mining procedure of our proposed algorithm,
PTV(I), with the LST algorithm proposed in [7].

The overall time for processing PTV(I) for a given event e is n., where n, is
the number of occurrences of event e. For a given period length , the time to find
the singular periodic pattern for all events is hence)", n. which is equivalent
to one database scans. Let D denotes the number of time instants and T be
the average number of events in each time instant. The database size can be
represented by D x T. Consequently, the time complexity to discover all valid
segments of 1-pattern for all periods is O(S * T * Ly,q,) while Ly, = 1. The
data structured used for PTV(I) when processing an event is C'Seg. The size
of the data structure is a multiple of L,,4:, which can be reused for all events.
Therefore, the space complexity is O(Laz)-

The discovery process of LSI’s first step moves among three phases for seg-
ment validation (phase A), segment growth (phase B) and sequence extension
(phase C). Therefore, LSI(A+B) is equivalent to PTV(I). We analyze the time
complexity and space complexity of the PTV(I) below. The time complexity of
LSI to discover the “longest” single event subsequence from a event sequence
is kx M x Lyqz, Wwhere Ly,q, is the maximum period length, M is the event
sequence size and k is abbreviated for min_rep + max_dis + Lpq, [7]. For a
eventset sequence, the size of the database can be represented by D T for D
time instants, each with an average of T events (M = D % T)).

The space complexity of LSI is (max-dis + Limaz) * N * Lyae + min(N *
Loz, minrep x L2 ..+ N) as analyzed in [7]. To discover valid segments as
defined in this paper, the space of LSI can be approximated by O(L2,,, * N).

PeriodicyCheck in PTV is similar to the hash based validation (HBV) in
SPMiner. In SPMiner, the access to C'Seg is two reads and write for Last and Rep
updating; but the access to C'Seg needs only last position updating (Step 9 in the
PeriodicyCheck). The MPMiner use a segment-based combination to generate

all multi-event 1-pattern. However, segment-based combination technology is not
a robust method while the number of the valid segments are large. PTV(II) use
a timelist-based validation method, but the time complexity is hard to analysis.
Therefore, we compare PTV(IT) and MPMiner by experiment result later.

4.2 Extra long/large sequence

Sometimes, the sequence data is too long/large to fit in memory space. In
this case, we mine the periodic patterns by a partition-and-validation strat-
egy. Firstly, the algorithm subdivides the extra-large sequence data into n non-
overlapping partitions. Each partition can be handled in memory by PTV. Fur-
ther, each partition is transformed into vertical format. For the fist partition, the
valid segment can be mined by Initialization and Validation step in procedure
PeriodicyCheck. For the succeeding partitions, the initial start (last) position is
inherited from the last partition and valid segment pattern is explored by val-
idation phase. In the final partition, valid segment is discovered by Validation
and Rechecking step.

5 Experimental Results

To assess the performance of algorithm PTV, we conduct several experiments
on a computer with a CPU clock rate of 1.13GHz and 256MB of main memory,
the program is written by visual C++ in windows XP platform.

5.1 Biological data

We first apply PTV to discover periodic conservation of the protein sequences,
which is an important problem in bioinformatics. We used data in the PROSITE
database of the ExPASy Molecular Biology Server (http://www.expasy.org/).
We selected a protein sequence P17437 (Skin secretory protein XP2) with a
known periodic pattern {A,P,A P A **E**} which reported in [3]. As ex-
pected, several periodic patterns which are related to the known periodic conser-
vation are discovered. It is indicated that our algorithm can be used in protein
sequence. It is worth to note that we also discover an interesting and longest
pattern {A,P,A,P.AE,G,E,A,P} occurring 11 times (approximately 46%) in the
known periodic pattern. It may be a core pattern, since the partial slots of the
pattern allow some mutations.

5.2 Synthetic data

For the purpose of performance evaluation, we use the same synthetic data as
[2]. The default parameters of synthetic generator are data size D = 50K, event
N = 1000, Avg. event in a time slot T = 10, potential pattern C = 3, pattern
length L = 4, frequent event in a time slot I = 4, number of segment for each
pattern S = 10. In order to make PTV more efficiency, we also use the PCD

pruning strategy to reduce unnecessary period checking [2]. We have run a series
of experiments using PTV. The general performance, the effect of parameters,
and the scalability of our methods are considered here. We start by looking
at the performance of the PTV with parameter min_rep = 25, L, = 1 and
Lpaz = 20.

5.3 Valid segments for single event 1-patterns

In this section, we compare the scalability of the three segment validation algo-
rithms, including PTV(I), SPMiner and LSI. The scalability of PTV(I) is shown
in Fig. 4(a). The total running time for PTV(I) increase smoothly, as analyzed
in Section 4.1; whereas the running time for LSI increases dramatically since the
distance-based pruning technique has comparatively less to prune. The scalabil-
ity for PTV(I) was also better than SPMiner. In Fig. 4(b) the total running time
for PTV(I) is linear to T, whereas the running time for LSI increases dramati-
cally. It is also evident that the number of pruned patterns is rapidly decreasing
when the T increasing.

5.4 Valid segments for multi-event 1-patterns

Since LSI is devised for event sequence. Therefore, we demonstrate the efficiency
of PTV(II) by comparing PTV(II) with MPMiner for multi-event 1-patterns.
Fig. 4(c)(d) shows the execution time of these two methods. As we can see,
MPMiner outperforms PTV(II) while S is small (S less than 15). However,
when S is large, the execution time of PTV(II) increases smoothly. But the
running time of MPMiner increases sharply. This is because the time complexity
of MPMiner has an exponential relation to the number of segments in the worst
case. In contrast, PTV(II) is comparably stable with respect to the number of
segments. Fig. 4(d) shows the overall execution time of PTV(II) and MPMiner to
find all valid segments for eventset. The x-axis shows the value of average event
in the pattern, whereas the y-axis shows the overall execution time of PTV(II)
and MPMiner. The execution time of PTV(II) increases more smoothly than
MPMiner in Fig. 4(d).

6 Conclusion

In this paper, an efficient method for periodic pattern mining is defined. An
algorithm progressive timelist-based validation (PTV) algorithm is devised to
discover all valid segments in data sequence. The PTV algorithm the vertical
database once and keeps only those timelists for events with valid segments. The
experiments show that our algorithm outperform previous research. Periodic pat-
tern mining can be used for data characteristics summarization and periodicity
predication.

10000 1000
- LSKA+B) 63 < LSKA+B)
1000 » SPMiner 1986 - + SPMiner 0
& —~PIVD 2100 ——PIV()
E 2 =71
E 100 = .99 +38 <42
g g
k=l =
g 210 241
10 2 M/
1 1 ‘ ‘ ‘ ‘)
50 100 150 200 250 10 12 14 16 18
Data Size, D(*1000) Average events in a time instant, T
(a) (b)
100
50 &~ MPMiner a5] _ 294
i i & MPMiner
51 —=PTV{I) 280
3 40 (23 ——PTV(D)
P o
£ E060
s = -
5 . .540
£2 . 18 £
3 3
410 M A2
O O 1 *4 1 1 1 0
5 10 20 25 1 2 3 4 5 6 7
of segment of potential pattern, S Average events in the pattern, I
(c) (d)
Fig. 4. Performance comparison
Acknowledgements

This work is sponsored by Ministry of Economic Affairs, Taiwan under grant 93-EC-
17-A-02-S1-029.

References

1. J. Han, G. Dong, and Y. Yin. Efficient mining paritial periodic patterns in time series
database. In Proceedings of the 15th International Conference on Data Engineering,
(ICDE’99), pages 106-115, 1999.

2. K.Y. Huang and C.H. Chang. Asynchronous periodic patterns mining in temporal
databases. In Proceedings of the IASTED International Conference on Databases
and Applications (DBA’04), pages 43—48, 2004.

3. M. V. Katti, R. Sami-Subbu, P. K. Ranjekar, and V. S. Gupta. Amino acid repeat
patterns in protein sequences: Their diversity and structural-function implications.
Protein Science, 9:1203-1209, 2000.

4. H. Mannila, H. Toivonen, and A. I. Verkamo. Discovering frequent episodes in
sequences. In Proceedings of the First International Conference on Knowledge Dis-
covery and Data Mining (KDD’95), pages 210-215, 1995.

5. B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic association rules. In Proceed-
ings of the 14th International Conference on Data Engineering, (ICDE’98), pages
412421, 1998.

6. A. K. H. Tung, J. Han H. Lu, and L. Feng. Efficient mining of intertransaction asso-
ciation rules. IEEFE Transactions on Knowledge and Data Engineering, 15(1):43-56,
2003.

7. J. Yang, W. Wang, and P.S. Yu. Mining asynchronous periodic patterns in time
series data. IEEE Transaction on Knowledge and Data Engineering, 15(3):613-628,
2003.

