
COBRA: Closed Sequential Pattern Mining Using
Bi-phase Reduction Approach

Kuo-Yu Huang, Chia-Hui Chang†, Jiun-Hung Tung and Cheng-Tao Ho

Department of Computer Science and Information Engineering,
National Central University, Chung-Li, Taiwan 320

{want,ginhong,ctho}@db.csie.ncu.edu.tw, †chia@csie.ncu.edu.tw

Abstract. In this work, we study the problem of closed sequential pattern min-
ing. We propose a novel approach which extends a frequent sequence with closed
itemsets instead of single items. The motivation is that closed sequential patterns
are composed of only closed itemsets. Hence, unnecessary item extensions which
generates non-closed sequential patterns can be avoided. Experimental evaluation
shows that the proposed approach is two orders of magnitude faster than previous
works with a modest memory cost.

1 Introduction

Sequential pattern mining is a fundamental data mining task that has broad applica-
tions, including user behavior analysis, network intrusion detection and tandem repeats
in DNA sequences. Ever since Agrawal et al. [6, 7] introduced the concept of sequen-
tial pattern mining in 1995, this problem has received a great deal of attention [2, 12,
1, 5]. Mining sequential pattern is more complex than frequent itemsets, since the per-
mutations of items needs to be considered. Thus, instead of mining the complete set
of frequent sequential patterns, we have stronger motive to mine closed sequential pat-
terns, i.e. those containing no super-sequence with the same support. Mining closed
sequential patterns not only reduce the number of sequences presented to users but also
increase the mining efficiency by pruning the enumeration space.

Although mining closed subsequences shares a similar problem setting with min-
ing closed itemsets [3, 4], the techniques developed in closed itemset mining cannot
work for frequent subsequence mining directly because subsequence testing requires
ordered matching which is more difficult than simple subset testing. To the best of our
knowledge, there are only two algorithms in closed sequential pattern mining, including
CloSpan [10] and BIDE [9]. CloSpan takes the approach which generates a candidate
set for closed sequential patterns and conducts post-pruning on it. The idea is that if
a new discovered sequence s′ is a sub-sequence or super-sequence of an existing se-
quence s and the projected database of s and s′ is equal (closure checking), then we can
stop searching any descendant of s′ in the prefix search tree (thus pruning the search
space) since for all γ the support of sequence s′ �γ is equal to that of s�γ. What makes
the concept works is that the equivalence of the projected databases can be implemented
by comparing the size of the databases. Furthermore, the size of the projected databases



can be used as the hash key to improve subsequence/supersequence checking more ef-
ficiently. However, the candidate maintenance-and-test paradigm suffers the inherent
drawback in scalability.

Therefore, Wang et al. propose an alternative solution without candidate mainte-
nance. It adopts a sequence closure-checking scheme called BIDE. From definition, we
know that if a sequence S = < s1, s2, . . . , sn > is not a closed sequence, there must
exist at least an event e′ which can be used to extend sequence S to a new sequence
S′ with the same support. The sequence S can be extended from the right most di-
rection (after sn), the left most direction (before s1) or in the middle of the sequence
(between si and si+1). If no such event exists, then S must be a closed sequence. Thus,
the proposed BIDE scheme is to scan for common items from the sequence database,
which might exist between si and si+1. As for search space pruning, they propose the
BackScan pruning method to stop growing unnecessary patterns if the current prefix can
not be closed. Again, they have defined the subsequences where the common items are
searched for this BackScan closure checking. Although BIDE do not keep track of any
historical closed sequential patterns (or candidate) for a new pattern’s closure checking,
it is a computational consuming approach since it needs multiple database scans for the
bi-direction closure checking and the backscan pruning.

Both algorithms adopt the framework of PrefixSpan [5] which grows patterns by
itemset extension and sequence extension, i.e. the last transaction of the current se-
quence is extended with a frequent item in the same transaction (item extension or
I-step, denoted by �i) or different transaction (sequence extension or S-step, denoted
by �s). However this pattern-growth strategy has two drawbacks: duplicate item exten-
sions (To find the closed sequence <{A,B}, {A,B}, {A,B}>, we need three item
extensions.) and expensive matching cost. In this paper, we have come up with a novel
approach which conducts only sequence extensions by adding frequent closed itemsets
to overcome these drawbacks. Frequent closed itemsets, as proved in the next section,
are in fact the basic components of frequent closed sequences. They can be used to
remove duplicate item enumeration as well as to reduce the matching cost for finding
locally frequent items for I-extension.

The rest of this paper is organized as follows. We define the problem of closed
sequential pattern mining in Section 2. Section 3 presents our algorithm. Experiments
are reported in Section 4. Finally, conclusions are made in Section 5.

2 Problem Definition

Given a database SD of customer transactions, where each transaction consists of the
following fields: customer-id, transaction-time, and the items purchased in the transac-
tion. No customer has more than one transaction with the same transaction-time. Let
I = {i1, i2, . . . , iN} denote the set of items. A customer sequence can be represented
by an ordered lists of itemsets, i.e., S=<t1, . . . , tn>, where each itemset tj is a non-
empty subset of I , denoting the items bought in one transaction. The number of itemsets
in a sequence is called the length of the sequence and a sequence with length l is called
an l-sequence. A sequence α=<a1, . . . , am> is a sub-sequence of another sequence
β=<b1, . . . , bn>, if and only if each aj (1 ≤ j ≤ m) can be mapped by bij

(aj ⊆ bij
)



and preserve its order (1 ≤ i1 < i2 < . . . < im ≤ n). We say β is super-sequence of α

and β contains α.
A sequence database SD = {S1, . . . , S|SD|} is a set of sequences. Each sequence

is associated with a sid. |SD| represents the number of sequences in the database SD.
The absolute support of a sequence α in a sequence database SD is the number of
sequences in SD which contain α.

Given two sequences α and β. If α is a super-sequence of β and their supports are
the same, we say α absorbs β. A sequential pattern β is a closed sequential pattern
if there exists no proper sequence α that absorb β. The problem of closed sequential
pattern mining is formulated as follows: given a minimum support level minsup, our
task is to mine all closed sequential patterns in the sequence database with support
greater than minsup, i.e. the frequent sequential patterns.

Table 1. An example sequence database SDB

.
SID Sequence

1 (C)(A, B, C)(B, C)(A, B, C)

2 (B, C)(A, B, C)(C)

3 (B, C)(A)(D, F )(A, B, C)(C)

4 (C)(A)(D, E)(A, B, C)

To make connection between closed itemsets with closed sequential patterns, we
define transaction support and sequence support of an itemset as follows. The transac-
tion support of an itemset ρ is defined as the number of transactions that contain ρ while
the sequence support of ρ is the number of sequences that contain the 1-sequence ρ. As
usual, an itemset ρ is closed if there exist no superset of ρ with the same transaction
support. However, an itemset ρ is frequent in a sequence database SD if the sequence
support of ρ is greater than minsup. Thus, ρ is a frequent closed itemset if the sequence
support is greater than minsup and there exists no superset with the same transaction
support.

Example 1. Given minsup = 3, all subsets of {A,B,C} are frequent in the example
sequence database in Table 1 since each itemset has sequence support 4. However,
only {A}, {C}, {B,C}, and {A,B,C} are frequent closed itemsets. Itemset {B} is
not a closed itemset since it has the same transaction support 8 as itemset {B,C}.
Similarly, itemsets {A,B} and {A,C} are absorbed by {A,B,C} since they have the
same transaction support 5.

3 The COBRA Algorithm

In this section, we present an important observation and prove that a frequent closed
sequential pattern is composed of only frequent closed itemsets. Thus, we devise a bi-
phase reduction approach which mines frequent closed itemsets first and enumerate



frequent closed sequential patterns by conducting sequence extensions. Before intro-
ducing the pruning strategy, we first define some terms.

Definition 1. Given a sequence S = <s1, . . . , sn>, the First Matched Transaction
(FMT) of a 1-sequence <p1> is defined as the transactional ID of the first instance of
the itemset p1. Recursively, we can define the FMT of a (m+1)-sequence <p1 . . . pmpm+1>

from the FMT of the m-sequence <p1 . . . pm> as (the transaction ID of) the first ap-
pearance of itemset pm+1 which occurs after the FMT of the m-sequence <p1 . . . pm>.
Given a sequence database SD (each transaction in SD has a unique ID), the First
Matched transaction List (FML) of a prefix sequence α=<p1 . . . pn> is defined as the
list of first matched transactions of the sequences in SD w.r.t. α. Similarly, the SID List
of α is a list of sequence IDs that support α.

Given an itemset p, let c(p) denote the closed itemset which contains p and has the
same transaction support as p. If p is closed, then c(p) = p. By definition, c(p) and p

have the same transaction support and the FML are the same (denoted as p.FML =
c(p).FML).

Lemma 1. Given three sequential patterns α, β and γ, if α.FML = β.FML then
α �s γ.FML = β �s γ.FML and α �s γ.SIDList = α �s γ.SIDList (Definition 1).

Theorem 1. A closed sequential pattern is composed of only closed itemsets.

Proof. Assume α = p1 �s . . . �s pn is a closed sequential pattern, but some of the pis
are non-closed itemsets. Consider a sequential pattern β = c(p1) �s p2 �s . . . �s pn,
α.SIDList = β.SIDList since p1.FML = c(p1).FML (Lemma 1). Recursively,
we can find a sequential pattern δ = c(p1)�s . . .�s c(pn) such that α.FML = δ.FML.
Therefore, α is not a closed sequential pattern. We thus have a contradiction to the
original assumption that α is a closed sequential pattern and thus conclude that “all
closed sequential patterns α are composed of only closed itemsets.”

Theorem 1 is an important property as it provides a different view of mining closed
sequential patterns. Instead of extending a prefix by I-steps and S-steps alternatively, we
can mine closed frequent itemsets before mining closed sequential patterns and extends
a prefix sequence by only S-steps. Therefore, we have come up with a three phase algo-
rithm. In the first phase, we find all frequent closed itemsets and denote each of them by
a unique C.F.I. code. To avoid the need to match closed frequent itemsets in a sequence
in the enumeration phase, the original database is transformed into another database
where the items in each sequence are replaced by C.F.I. codes that are contained in the
transactions. Finally, the closed sequential patterns are enumerated in the third phase.

To illustrate, the example database SDB (Table 1) can be transformed into Figure 2
given the C.F.I. codes shown in Figure 1. This transformation retains the horizontal
format of the original database. Note that the transactions are renumbered to eliminate
empty transactions due to the removal of non-frequent items (e.g. D, E, F ). Figure 1
also shows the location lists of each closed frequent itemset, which represent the vertical
format of the original database.

We refer this as a bi-phase reduction approach since we mine C.F.I. for first phase
reduction then mine closed sequences for second phase reduction. This approach not



Code C.F.I. FML LocationList (SID,TID)
#1 ABC 2, 6, 10,14 (1,2), (1,4), (2,6), (3,10), (4,14)
#2 BC 2, 5, 8, 14 (1,2),(1,3), (1,4), (2,5), (2,6), (3,8), (3,10), (4,14)
#3 A 2, 6, 9, 13 (1,2), (1,4), (2,6), (3,9), (3,10), (4,13), (4,14)
#4 C 1, 5, 8, 12 (1,1), (1,2), (1,3), (1,4), (2,5), (2,6), (2,7), (3,8), (3,10), (3,11), (4,12), (4,14)

Fig. 1. Vertical-based LocationList and FML

TID 1 2 3 4 5 6 7 8 9 10 11 12 13 14
SID 1 1 1 1 2 2 2 3 3 3 3 4 4 4
Code #4 #1 #2 #1 #2 #1 #4 #2 #3 #1 #4 #4 #3 #1

#2 #4 #2 #4 #2 #4 #2 #2
#3 #3 #3 #3 #3
#4 #4 #4 #4 #4

Fig. 2. Horizontal Encoded Database EDB

only reduces the search spaces and duplicate combinations but also avoids the matching
costs in item extension process. A similar framework has also been adopted in [8] for
inter-transaction association mining. However, applying such a framework in closed
pattern mining is much more economic than regular pattern mining since the number of
frequent itemsets are larger than that of frequent closed itemsets. In the next section, we
will discuss how to further prune the search space by LayerPruning and ExtPruning.

3.1 Pruning Strategies

Although the number of closed itemsets can be larger than the number of items, which
seems to harm the mining process, lots of them can be ignored without consideration
by layer pruning. As a contrast to previous works which only prune a branch of a non-
closed pattern, layer pruning removes several non-closed branches at once and reduces
the costs in pattern checking. Before introducing the pruning strategy, we first define
the order of two first match lists.

Definition 2. (The Order of FML) Given two FMLs
S1.FML = {a1, a2, . . . , am} and S2.FML = {b1, b2, . . . , bn} (m ≥ n), we say that
S1.FML <L S2.FML if and only if there exists i1, i2, ..., in such that aij

.SID =
bj .SID and aij

< bj for all j (1 ≤ j ≤ n). The equal signs hold (S.FML =L

S′.FML) when m = n and aj = bj for all j, (1 ≤ j ≤ m).

Example 2. Consider the example database SDB again, Figure 1 shows the first matched
transaction list (FML) for the frequent closed itemsets which are also 1-sequences.
The FML for C.F.I. codes #1, #2, #3, #4 are {2,6,10,14}, {2,5,8,14}, {2,6,9,13} and
{1,5,8,12}, respectively. The orders between these FMLs are #1.FML >L #4.FML

and #3.FML >L #4.FML.

LayerPruning: For two C.F.I. p1 and p2 that can be a sequence extension of a prefix
sequence α=<s1, . . . , sn> in form of S1 = α�s p1 and S2 = α�s p2, the LayerPruning
works as follows:



1. If S1.FML <L S2.FML, then remove p2. Vice versa.
2. If S1.FML =L S2.FML, then if (a) p1 ⊆ p2, then remove p1; (b) p2 ⊆ p1, then

remove p2; (c) neither p1 ⊂ p2 nor p1 ⊃ p2, then remove both p1 and p2.

For instance in our running example, we can completely skip prefix #1 and #3
from root since #1.FML >L #4.FML and #3.FML >L #4.FML. Thus, the
LayerPruning technique removes non-closed patterns in the same layer since the prun-
ing is invoked within a local search of a prefix pattern. The correctness of the pruning
technique can be proven by the following lemma and theorems.

Theorem 2. Let two C.F.I. p1 and p2 that can be a sequence extension of a prefix
sequence α=<s1, . . . , sn> in form of S1 = α �s p1 and S2 = α �s p2. If S1.FML <L

S2.FML, then all extensions of S2 must not be closed.

Proof. By definition (Definition 1), the FML of α is smaller than that of its extensions,
therefore, α.FML <L S1.FML. Since S1.FML <L S2.FML, wherever p2 occurs,
p1 will also occur in the interval between α.FML and S2.FML. Thus, the super-
sequence S′ = α �s p1 �s p2 of S2 has the same FML as S2, and S′.SIDList =
S2.SIDLis (Lemma 1). Therefore, S2 is not a closed sequential pattern.

Theorem 3. Let two C.F.I. p1 and p2 that can be a sequence extension of a prefix
sequence α=<s1, . . . , sn> in form of S1 = α�sp1 and S2 = α�sp2, and S1.FML =L

S2.FML. (a) If p1 ⊂ p2, then all extensions of S1 must not be closed. (b) If neither
p1 ⊂ p2 nor p1 ⊃ p2, then all extensions of p1 and p2 must not be closed.

Proof. (a) First, S1 is a subsequence of S2 since p1 is a subset of p2. Second, S1 and
S2 have the same support since S1.FML =L S2.FML. Therefore, S1 is not a closed
sequential pattern.

(b) Consider the sequential pattern β = α �s p1 �i p2=<s1, . . . , sn, p1 ∪ p2>. Since
S1.FML =L S2.FML and β.FML =L S1.FML∩S2.FML, we have β.FML =L

S1.FML =L S2.FML. Therefore, for any extension S1 and S2 of α, there exists
β, such that β is a super sequence of S1 and S2, and β.SIDList = S1.SIDList =
S2.SIDList. Therefore, S1 and S2 are not the closed sequential pattern.

Although LayerPruning can prune non-closed sequences during sequence extension
step of a prefix sequence, there are still some non-closed sequential patterns that can be
generated in different layer. Therefore, we need a checking step to remove non-closed
sequential patterns, we refer to this pruning as ExtPruning.

ExtPruning: For two sequential patterns α and β, the rule of ExtPruning states that

1. If α.FML =L β.FML and α is a super sequence of β, then remove β and vice
versa.

2. If Sup(α) = Sup(β) and α is a super sequence of β, then β is not closed pattern,
vice versa.

The first rule of ExtPruning holds according to Theorem 3, while the second rule fol-
lows the definition of closed sequential patterns.



3.2 COBRA: Design and Implementation

In this section, we discuss the implementation of the COBRA algorithm. COBRA can
be outlined as three major phases: (I) Mining Closed Frequent Itemset; (II) Database
Encoding; and (III) Mining Closed Sequential Pattern. Figure 3 shows the pseudo code
of the COBRA algorithm. Line 1 calls a modified CHARM [11] to mine frequent closed
itemsets. Line 2-3 associates each C.F.I. with a unique code and constructs the encoded
database EDB using the codes of the C.F.I. Line 4-21 mines the set of all frequent
closed sequential patterns. Details are described below.

There are already many closed frequent itemset mining algorithms. We prefer using
a vertical-based mining algorithm in the first phase (e.g., CHARM[11]) since the ver-
tical format records the locations (TIDList) of C.F.I.s which can be used to construct
the transformed database in the second phase. Recall that frequent closed itemsets in
a sequence database are defined by both sequence supports and transaction support,
therefore, transaction ids are replaced by a 2-tuple (SID, TID) location to facilitate the
counting of sequence supports and transaction supports.

Procedure COBRA(sequence database SD, minsup)
1. Call mCHARM() to find the set of all C.F.I.;
2. Associate each C.F.I. with an code, and let CS denotes the set of codes.
3. Construct the encoded DB EDB using CS;
4. CS = LayerPruning(CS);
5. for each codei in CS do
6. cobraDFS(codei, code.FML);

Subprocedure cobraDFS(α, FML)
7. Compute Extended List EL of FML;
8. if ( |EL| < minsup ) then
9. ExtPruning(α); return;
10. end
11. if ( |EL| < |FML| ) then
12. if (ExtPruning(α,FML)) then return;
13. LC = Local Frequent Codes in α.PDB;
14. LC = LayerPruning(LC);
15. if ( |EL| = |FML| ) then
16. FEI = All LCis with |LCi.FML| = |FML|;
17. if ( FEI == φ ) then
18. if (ExtPruning(α,FML)) then return;
19. end
20. for each LCi in LC do
21. cobraDFS(α �s LCi, LCi.FML);

Fig. 3. COBRA Algorithm



In the second phase, we associate each C.F.I. with a unique code and construct the
encoded database in horizontal format based on the location lists of the C.F.I. Note that
C.F.I.s are sorted by their length in a decreasing order such that super-sequences are
generated earlier to reduce update cost in the third phase. Once the encoded database is
constructed, we can release the memory space of LocationList for all C.F.I.s. Further-
more, we can remove transactions without any frequent items to reduce the size of stor-
age. Then, the first match transaction list for each C.F.I. (also the frequent 1-sequences)
is constructed for the use in the third phase.

The mining process follows the idea of PrefixSpan to look for locally frequent (ex-
tendable) codes in the projected database of a prefix sequence. Starting with an empty
sequence, the extendable codes are the frequent C.F.I.s. However, before the enumer-
ation, we first apply the LayerPruning strategy to remove unnecessary enumeration
in the same layer (line 4). To reduce the cost of comparing any two FMLs (a total of
O(|C.F.I.|2) comparisons), we devise a hash structure which uses Equation (1) as its
hash function (pNo is chosen to be a prime number. HSize is the size of the hash ta-
ble.). Equation (1) has more uniformly distributed keys than simple |SIDList| can do.
Only C.F.I.s that are hashed to the same bucket are compared to each other. Extendable
C.F.I. that are not able to produce closed sequential patterns are then removed based on
Theorem 2 and 3. In the pseudo code, the procedure LayerPruning, which imple-
ments the above idea, takes {#1, #2, #3, #4} as an input and returns {#2,#4} since
#4.FML <L #1.FML and #4.FML <L #3.FML.

h(SIDList) = (|SIDList| +
∑

Sid∈SIDList

Sid ∗ pNo)modHSize (1)

In the procedure cobraDFS, with a new pattern α and its FML α.FML = {t1, . . . , tn},
we first compute the extended position list (EL) by looking at the next transaction of ti,
which has the same sequence id with ti. For example, the EL of code #2 in Figure 1
is {3, 6, 9} (transaction 15 is discarded for it does not have a sequence id as transaction
14). The number of transactions in the EL represents the largest support an extended
sequence of α can have. Thus, if |EL| is less than minsup, then we can skip all ex-
tensions of the prefix α (line 8-10); otherwise we do the extension of α (lines 11-21).
In the later case, we compute the projected database of α (line 13) and find all locally
frequent codes (denoted by LC). Again, before extension, LayerPruning is applied
to remove unnecessary codes (line 14). Formally, we define the extended list (EL) and
projected database (PDB) of a pattern as follows.

Definition 3. Given a sequence α and its FML = {t1, . . . , tn}, the Extended List
(EL) of α is defined as a list of extended position t′i where t′i = ti + 1 and t′i.SID =
ti.SID.

Definition 4. Given the extended list of a sequential pattern α, with extended list α.EL

= {t1, . . . , tn}, the Projected Database (PDB) of α is defined as α.PDB = {t′1, . . . , t
′
m}

where t′i.SID = tj .SID for some tj and tj < t′i ≤ t|SD|, where |SD| denotes the
number of transactions in the extended databases.

For example, the projected database for α = #2 (with #2.EL = {3, 6, 9}) in
Figure 2 is #2.PDB = {3, 4, 6, 7, 9, 10, 11}.



Definition 5. Given a sequence α=<s1, . . . , sn>, the Forward Extended Itemset (FEI)
of α is defined as the set of extended codes of α which have the same SIDList as α, i.e.
α.SIDList = α �s p′i.SIDList.

We output the new prefix sequence α only when it has the chance to be a closed
sequential pattern. This includes the following three cases: (1) |EL| < minsup (line 8)
(2) |EL| < |FML| (line 11-12) (3) |FEL| = φ (line 17-18). In the first case, no super-
sequence of α can be generated as frequent patterns. In the second case, the supports of
all super-sequences of α are less than α. In the third case, there are no extendable codes
with the same support as α. This is equivalent to check for common codes that can be
extended from the right direction (one of the two directions in BIDE). However, non
closed sequential patterns still can be generated. Therefore, we should make a closure
checking to verify if α is a closed sequential pattern or not. This is implemented by
ExtPruning which maintains the set of generated sequences.

Similar to LayerPruning, ExtPruning also uses Equation 1 as the hash function.
The hash table for ExtPruning is called CSTab. A sequence α is only compared to
sequences with the same SIDLists. The return value of ExtPruning indicates whether
the extension of prefix α should go on. If α is a sub-sequence of an existing pattern β

in the hash table and α.FML = β.FML, then we simply discard α and return True

to stop the extension of prefix α (line 12,18).

Theorem 4. The COBRA algorithm generates all closed sequential patterns.

Proof. First of all, the anti-monotone property “if a pattern is not frequent, all its super-
patterns must be infrequent” is sustained for closed sequential patterns. According to
Theorem 1, the search space composed by only closed frequent itemset covers all closed
sequential patterns. COBRA’s search is based on a complete set enumeration space.
The only branches that are pruned as those that do not have sufficient support. The
LayerPruing only removes unnecessary enumerations (Theorem 2 and 3). On the
other hand, ExtPruning remove only non-closed sequential patterns. Therefore, the
COBRA algorithm generates all frequent and only closed sequential patterns.

The proposed algorithm, COBRA, is basically a memory-based algorithm since the
number of closed itemsets can be larger than the number of items. If the data is too
large to fit in the memory space, the partition-and-validation strategy can be used to
handle such a case. Two alternative partition strategies are proposed here: prefix-based
partition and horizontal-based partition (see [?] for details).

4 Experimental Result

In this section, we report the performance study of the proposed algorithms on synthetic
data set. All the experiments are performed on a 3.2GHz Pentium PC with 3 Gigabytes
main memory, running Microsoft Windows XP. All the programs are written in Mi-
crosoft/Visual C++ 6.0. In the following experiments, the size of hash table is set to
100.



Scalability Test The synthetic sequence data is generated on the basis of the descrip-
tion in [6]. We start by looking at the performance of COBRA with default parameter
minsup = 0.5%. Figure 4(a) shows the scalability of the algorithms with varying data
size. COBRA is two orders of magnitude faster than BIDE for 50K sequences. The
scaling of COBRA with database size was linear. Because BIDE needs more scanning
time as the data size increases, BIDE has exponential scalability in terms of data size.
However, COBRA consumes more memory space than BIDE as shown in Figure 4(b).
The main reason is that COBRA maintain the encoded database which is composed
by C.F.I.s instead of simple items. For example, COBRA costs approximately 6.6MB
for the encoded database maintenance at |D| = 50K and FML costs approximately
10MB.

The runtime of COBRA and BIDE on the default data set with varying minimum
support threshold, minsup, from 0.2% to 0.6% is shown in Figure 4(c). COBRA is
faster (90 times) and more scalable than BIDE since the number of sequences checked
in the backward extension of BIDE grows rapidly as the minsup decreases, while CO-
BRA only compare the maintained patterns with the newly found pattern. Again, the
memory requirement for COBRA increases as minsup decreases since the number of
C.F.I.s increases as minsup decreases (see Figure 4(d)). In short, the performance study
shows that the COBRA algorithm is efficient and scalable for closed sequential pattern
mining with acceptable memory cost.

To better understand the algorithm, Figure 4(e)(f)(g)(h) demonstrates the time and
space expense in each phase. Roughly speaking, the time costs for the three phases are
40%, 10%, and 50%, respectively. As shown in the Figure 4(e)(g), Phase I (the memory-
based CHARM) consumes the most time and space since it maintains the (SID, TID)
pairs for each closed frequent itemsets. The space requirement for each phase does not
vary much since each of them includes both the horizontal encoded database EDB and
the vertical database FML. The space requirement for maintaining closed sequential
patterns CSTab (by ExtPruning) in phase III is also shown in Figure 4(f)(h) for
reference.

Partition-Based COBRA Figure 5 demonstrates the memory reduction by partition-
based COBRA. Prefix-based partition (COBRA-PP) has less memory requirement than
horizontal-based partition (COBRA-HP 5 partitions). Since COBRA-PP divides more
partitions than COBRA-HP5, COBRA-PP needs more time in pattern validation than
COBRA-HP5. However, experimental result shows that both partition-and-validation
strategies are not only more efficient than BIDE but also reduce the memory require-
ments of the COBRA. Thus, while we are trading more space for speed in time, the
basic principle is worth trying since the memory cost can be well reduced by partition-
based approaches.

5 Conclusion

In this paper, we propose a bi-phase reduction approach algorithm for closed sequen-
tial pattern mining. Different from previous studies, we first conduct item extension



237

698

1439
2780

4251

3
5

7
11 14

1

10

100

1000

10000

10 20 30 40 50
Data Size (D*1000)

R
un

ni
ng

 T
im

e 
(S

ec
.)

BIDE
COBRA

5

9

12

16

20

2 2 3
4

6

0

3

6

9

12

15

18

21

10 20 30 40 50

Data Size (D*1000)

M
em

or
y 

U
sa

ge
 (

M
B

s)

COBRA
BIDE

(a) Scaling with Date Size (Time) (b) Scaling with Date Size (Space)

195 226 280
374

743

3 3 4 4

8

1

10

100

1000

0.6 0.5 0.4 0.3 0.2
Support(%)

R
un

ni
ng

 T
im

e 
(S

ec
.)

BIDE COBRA

5.2 5.3 5.3 5.4

7.4

1.9 1.9 1.9 1.9 2.1

0

2

4

6

8

0.6 0.5 0.4 0.3 0.2

Support (%)

M
em

or
y 

U
sa

ge
 (M

B
s)

COBRA
BIDE

(c) Scaling with minsup (Time) (d) Scaling with minsup (Space)

1.1 1.8 2.5
3.7

4.61.5 0.8
1.0

1.5
1.9

0.7
2.9

3.7

5.3

7.2

0

5

10

15

10 20 30 40 50
Data Size (D*1000)

R
un

ni
ng

 T
im

e 
(S

ec
.)

COBRA-III
COBRA-II
COBRA-I

5

9

12

16

20

4

7

11

14

17

4

7

11

14

18

0.1 0.2 0.3 0.5 0.6

0

7

14

21

10 20 30 40 50
Data Size (D*1000)

M
em

or
y 

U
sa

ge
 (

M
B

s)

COBRA-I
COBRA-II
COBRA-III
CSTab

(e) Time cost in each phase of COBRA (f) Space cost in each phase of COBRA

1.0 1.3 1.1 1.1

3.4
0.4 0.3 0.4 0.4

0.5

1.5 1.4 2.0 2.6

4.6

0

3

6

9

0.6 0.5 0.4 0.3 0.2
Support(%)

R
un

ni
ng

 T
im

e 
(S

ec
.

COBRA-III
COBRA-II
COBRA-I

5 5 5 5 6

4 4 4
4

5

4 4 4

4

7

0.1 0.1 0.1 0.2 0.3

0

2

4

6

8

0.6 0.5 0.4 0.3 0.2
Support (%)

M
em

or
y 

U
sa

ge
 (

M
B

s)

COBRA-I
COBRA-II
COBRA-III
CSTab

(g) Time cost in each phase of COBRA (h) Space cost in each phase of COBRA

Fig. 4. Scalability Test

33

19

3
5

7
11

14

6

23

15

10 15

11
9

0

10

20

30

40

10 20 30 40 50
Data Size (D*1000)

R
un

ni
ng

 T
im

e 
(S

ec
.)

COBRA-PP
COBRA-HP5
COBRA

0
1

22

5

7

10

12

5

9

12

16

20

1 1
0

7

14

21

10 20 30 40 50
Memory Usage (MBs)

D
at

a 
S

iz
e 

(D
*1

00
0)

COBRA-PP
COBRA-HP5
COBRA

(a) Partitioning Performance (Time) (b) Partitioning Performance (Space)

Fig. 5. Partition-based COBRA: Synthetic Data



and then do sequence extension, which overcomes some drawbacks in typical pattern-
growth method. The mining process is divided into 3-phases: (I) Mining Closed Fre-
quent Itemset; (II) Database Encoding and (III) Mining Closed Sequential Pattern. The
proposed algorithm uses both vertical (FML) and horizontal (EDB) database formats
to reduce the searching time in the mining process. Basically, the proposed algorithm is
a memory-based algorithm, and its efficiency comes from the removal of database scans
and compressed strategy of bi-phase reduction approach. Although COBRA consumes
more memory space than BIDE, the gain in time cost shows the advantage of COBRA.
Besides, memory space cost can be further reduced by partition-and-validation strate-
gies or post (disk-based) ExtPruning.

Acknowledgement

This work was sponsored by National Science Council, Taiwan under grant NSC94-
2213-E-008-020.

References

1. M. N. Garofalakis, R. Rastogi, and K. Shim. Spirit: Sequential pattern mining with regular
expression of constraints. IEEE Transactions on Knowledge and Data Engineering (TKDE),
14(3):530–552, 2002.

2. J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M. Hsu. Freespan: Frequent pattern-
projected sequential pattern mining. In Proceedings of the 6th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’00), pages 355–359, 2000.

3. J. Han, J. Wang, Y. Lu, and P. Tzvetkov. Mining top-k frequent closed patterns without
minimum support. In Proceedings of the 2002 IEEE International Conference on Data
Mining (ICDM’02), 2002.

4. J. Pei, G. Dong, W. Zou, and Jiawei Han. On computing condensed frequent pattern bases.
In Proceedings of International Conference on Data Mining (ICDM’02), 2002.

5. J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and M. Hsu. Min-
ing sequential patterns by pattern-growth: The prefixspan approach. IEEE Transaction on
Knowledge Data Engineering, 16(11):1424–1440, 2004.

6. R. Agrawal and R. Srikant. Mining sequential patterns. In Proceedings of the 11th Interna-
tional Conference on Data Engineering (ICDE’95), pages 3–14, 1995.

7. R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and performance
improvements. In Proceedings of the 5th International Conference on Extending Database
Technology (EDBT’96), volume 1057 of Lecture Notes in Computer Science, pages 3–17.
Springer, 1996.

8. A. K.H. Tung, H. Lu, J. Han, and L. Feng. Efficient mining of intertransaction association
rules. IEEE Transactions on Knowledge and Data Engineering (TKDE), 15(1):43–56, 2003.

9. J. Wang and J. Han. Bide: Efficient mining of frequent closed sequences. In Proceedings of
the 20th International Conference on Data Engineering (ICDE’04), pages 79–90, 2004.

10. X. Yan and R. Afshar J. Han. Clospan: Mining closed sequential patterns in large datasets.
In Proceedings of the Third SIAM International Conference on Data Mining (SDM), 2003.

11. M. J. Zaki and C.J. Hsiao. Charm: An efficient algorithm for closed itemset mining. In
Proceedings of the 2nd SIAM International Conference on Data Mining (SDM’02), 2002.

12. M.J. Zaki. Spade: An efficient algorithm for mining frequent sequences. Machine Learning,
42(1/2):31–60, 2001.


