
COBRA: Closed Sequential Pattern Mining Using Bi-phase
Reduction Approach

Kuo-Yu Huang1, Chia-Hui Chang2, Jiun-Hung Tung1 and Cheng-Tao Ho1

Department of Computer Science and Information Engineering,
National Central University, Chung-Li, Taiwan 320

1{want,ginhong,ctho}@db.csie.ncu.edu.tw, 2chia@csie.ncu.edu.tw

Abstract

Sequential pattern mining aims to find frequent patterns (guarded by a minimum support) in a database
of sequences. As the support decreases the number of sequential patterns will increase rapidly. There-
fore, a new trend is to mine closed sequential patterns, i.e. patterns which have no super-patterns with
the same support in the database. Since mining closed sequential pattern has the same capability as
mining the complete set of sequential patterns while reduces redundant patterns to be generated and
stored, it is much economical and beneficial. In this paper we propose a novel approach which extends a
frequent sequence with closed itemsets instead of single items. The motivation is that closed sequential
patterns are composed of only closed itemsets. Hence, unnecessary item extensions which generates
non-closed sequential patterns can be avoided. Furthermore, we propose LayerPruning which removes
unnecessary enumeration by comparing candidate prefixes in the same layer rather than comparing one
prefix against historical ones. Experimental evaluation shows that the proposed approach is two orders
of magnitude faster than previous works with a modest memory cost.

1 Introduction

Sequential pattern mining is a fundamental data mining task that has broad applications, including

user behavior analysis, network intrusion detection and tandem repeats in DNA sequences. Ever since

Argawal et al. [13, 14] introduced the concept of sequential pattern mining in 1995, this problem has

received a great deal of attention [1, 2, 3, 4, 5, 12, 19]. Mining sequential pattern is more complex than

frequent itemsets, since the permutations of items needs to be considered. Thus, instead of mining the

complete set of frequent sequential patterns, we have stronger motive to mine closed sequential pat-

terns, i.e. those containing no super-sequence with the same support. Mining closed sequential patterns

not only reduce the number of sequences presented to users but also increase the mining efficiency by

pruning the enumeration space.

Although mining closed subsequences shares a similar problem setting with mining closed itemsets

[6, 10], the techniques developed in closed itemset mining cannot work for frequent subsequence mining

directly because subsequence testing requires ordered matching which is more difficult than simple

subset testing. To the best of our knowledge, there are only two algorithms in closed sequential pattern

mining, including CloSpan [18] and BIDE [16]. CloSpan takes the approach which generates a candidate

set for closed sequential patterns and conducts post-pruning on it. The idea is that if a new discovered

sequence s′ is a sub-sequence or super-sequence of an existing sequence s and the projected database of

s and s′ is equal (closure checking), then we can stop searching any descendant of s′ in the prefix search

tree (thus pruning the search space) since for all γ the support of sequence s′ � γ is equal to that of s � γ.

What makes the concept works is that the equivalence of the projected databases can be implemented

by comparing the size of the databases. Furthermore, the size of the projected databases can be used as

the hash key to improve subsequence/supersequence checking more efficiently. However, the candidate

maintenance-and-test paradigm suffers the inherent drawback in scalability.

Therefore, Wang et al. propose an alternative solution without candidate maintenance. It adopts a

sequence closure-checking scheme called BIDE. From definition, we know that if a sequence S = <

s1, s2, . . . , sn > is not a closed sequence, there must exist at lease an event e′ which can be used to

extend sequence S to a new sequence S ′ with the same support. The sequence S can be extended from

the right most direction (after sn), the left most direction (before s1) or in the middle of the sequence

(between si and si+1). If no such event exists, then S must be a closed sequence. Thus, the proposed

BIDE scheme is to scan for common items from the sequence database, which might exist between si

and si+1. As for search space pruning, they propose the BackScan pruning method to stop growing

unnecessary patterns if the current prefix can not be closed. Again, they have defined the subsequences

where the common items are searched for this BackScan closure checking. Although BIDE do not keep

track of any historical closed sequential patterns (or candidate) for a new pattern’s closure checking, it is

a computational consuming approach since it needs multiple database scans for the bi-direction closure

checking and the backscan pruning.

Both algorithms adopt the framework of PrefixSpan [12] which grows patterns by itemset extension

2

and sequence extension, i.e. the last transaction of the current sequence is extended with a frequent item

in the same transaction (item extension) or different transaction (sequence extension). CloSpan prunes

the search space by sub/super sequences with equivalent projected databases, while BIDE prunes the

search space if the current pattern can be enumerated by other pattern. We refer to them as a single phase

reduction. Different from previous works, in this paper we mine closed sequential pattern by a bi-phase

reduction approach, COBRA (stands for Closed sequential pattern mining using Bi-phase Reduction

Approach). First, we mine closed frequent itemsets, then encode each of them as a unique C.F.I. Code

to replace the original database. Next, we generate closed sequential patterns only by sequence extension

of C.F.I. Codes (closed itemsets). To make pruning more efficient, we propose LayerPruning which

removes unnecessary enumeration during the extensions of the same prefix pattern. Experimental eval-

uation shows that COBRA delivers order of magnitude performance improvements over the previous

method BIDE.

The rest of this paper is organized as follows. We define the problem of closed sequential pattern

mining in Section 2. Related works on sequential patterns and closed patterns are introduced in Section

3. Section 4 presents our algorithm. Experiments on both synthetic and real world data are reported in

Section 6. Finally, conclusions are made in Section 7.

2 Problem Definition

Given a database SD of customer transactions, where each transaction consists of the following fields:

customer-id, transaction-time, and the items purchased in the transaction. No customer has more than

one transaction with the same transaction-time. Let I = {i1, i2, . . . , iN} denote the set of items. A

customer sequence can be represented by an ordered lists of itemsets, i.e., S=<t1, . . . , tn>, where each

itemset tj is a non-empty subset of I , denoting the items bought in one transaction. The number of

itemsets in a sequence is called the length of the sequence and a sequence with length l is called an

l-sequence. A sequence α=<a1, . . . , am> is a sub-sequence of another sequence β=<b1, . . . , bn>, if

and only if each aj (1 ≤ j ≤ m) can be mapped by bij (aj ⊆ bij) and preserve its order (1 ≤ i1 <

i2 < . . . < im ≤ n). We say β is super-sequence of α and β contains α. For example, sequence

α=<{A,B}, {C}, {D,E}> is a super-sequence of sequence β=<{A}, {D}>, since the pattern {A}

({D}, resp.) is a subset of {A,B} ({D,E}, resp.). On the contrary, γ=<{C,D}> is not a sub-sequence

of α, since the pattern {C,D} can not be mapped to any itemset in α.

3

Table 1. An example sequence database SDB
.

SID Sequence
1 (C)(A,B,C)(B,C)(A,B,C)
2 (B,C)(A,B,C)(C)
3 (B,C)(A)(D,F)(A,B,C)(C)
4 (C)(A)(D,E)(A,B,C)

A sequence database SD = {S1, . . . , S|SD|} is a set of sequences. Each sequence is associated with

an sid. |SD| represents the number of sequences in the database SD. The absolute support of a

sequence α in a sequence database SD is the number of sequences in SD which contain α, and the

relative support is the percentage of sequences in SD that contain α. Without loss of generality, we

use the absolute support for describing the algorithm while using the relative support to present the

experimental results.

Given two sequences α and β. If α is a super-sequence of β and their supports are the same, we say α

absorbs β. A sequential pattern β is a closed sequential pattern if there exists no proper sequence α that

absorb β. The problem of closed sequential pattern mining is formulated as follows: given a minimum

support level minsup, our task is to mine all closed sequential patterns in the sequence database with

support greater than minsup, i.e. the frequent sequential patterns.

Example 2.1 Table 1 shows a sequence database SDB as our running example. Let minsup be 3.

The complete set of frequent closed sequences consists of only six sequences: {<(B,C) (A,B,C)>:3,

<(B,C)(B,C)(C)>:3, <(C)(A,B,C)(C)>:3, <(C)(A,B,C)>:4, <(C)(A)(A,B,C)>:3, <(C)(A)

(C)>:4}, while the whole set of frequent sequences consists of 55 sequences (The value after colons de-

notes the support count). Most of the frequent sequences are absorbed by the closed sequences. For

example, frequent sequence <(B)(A,B,C)>:3 is absorbed by <(B,C)(A,B,C)>:3.

To make connection between closed itemsets with closed sequential patterns, we define transaction

support and sequence support of an itemset as follows. The transaction support of an itemset ρ is defined

as the number of transactions that contain ρ while the sequence support of ρ is the number of sequences

that contain the 1-sequence ρ. As usual, an itemset ρ is closed if there exist no superset of ρ with the

same transaction support. However, an itemset ρ is frequent in a sequence database SD if the sequence

support of ρ is greater than minsup. Thus, ρ is an frequent closed itemset if the sequence support is

4

greater than minsup and there exists no superset with the same transaction support.

Example 2.2 Given minsup = 3, all subsets of {A,B,C} are frequent in the example sequence

database in Table 1 since each itemset has sequence support 4. However, only {A}, {C}, {B,C}, and

{A,B,C} are frequent closed itemsets. Itemset {B} is not a closed itemset since it has the same trans-

action support 8 as itemset {B,C}. Similarly, itemsets {A,B} and {A,C} are absorbed by {A,B,C}

since they have the same transaction support 5.

3 Related Works

The problem of mining sequential patterns was first introduced in [13] by Agrawal and Srikant, who

also proposed the famous GSP (Generalized Sequential Pattern) algorithm based on the Apriori property

[14]. The GSP algorithm applies a breadth-first enumeration to generate candidate patterns and scans

the horizontal database for verification. However, in situations with prolific frequent patterns, long

patterns, or quite low minsup thresholds, an Apriori-like algorithm may suffer from handling a huge

number of candidate sets and multiple database scans. To overcome these drawbacks, Han et al. propose

PrefixSpan [12] that adopts a depth-first enumeration and scans the projected database (also in horizontal

data format) to extend longer patterns. The general idea of this pattern growth method is to recursively

project the database into a set of smaller databases with respect to a frequent pattern and extend the

pattern by exploring only frequent items in the projected partition. Therefore, they can avoid expensive

candidate generation and repeated database scans for support counting.

In addition to algorithms based on horizontal formats, Zaki proposed a vertical-based algorithm called

SPADE [19]. SPADE utilizes combinatorial properties to decompose the original problem into smaller

sub-problems that can be independently solved in main memory using efficient lattice search techniques

and simple join operations. SPAM [1] is similar to SPADE except that it employs a vertical bitmap

representation. It is more efficient than PrefixSpan and SPADE, but it consumes more space for vertical

bitmap maintenance.

Since pattern mining may generate a huge of patterns, it reduces not only the effectiveness but also the

efficiency of mining. Therefore, Pasquier et al. [9] have proposed to mine closed patterns for frequent

itemsets. Several efficient algorithm are proposed for closed frequent itemset recently, including A-Close

[9], CLOSET [11], CHARM [20] and CLOSET+ [17]. Although, some closure checking and pruning

5

strategies in closed frequent itemset can be extended for closed sequential pattern, it only prunes non-

closed patterns at the item extension step. So far, there are only two algorithms proposed for closed

sequential pattern mining, CloSpan and BIDE.

CloSpan applies a novel concept called the equivalence of projected databases for backward sub-

pattern/superpattern checking to prune the search space. Upon the generation of a frequent sequence,

CloSpan has to maintain the frequent sequences generated so far unless they are verified to be non-

closed by subpattern/superpattern checking. Different from CloSpan, which is based on the relationships

among the newly found frequent pattern and some already mined closed patterns, BIDE proposes a bi-

directional scan to remove non-closed pattern without candidate maintenance and devises a BackScan

pruning method to stop unnecessary enumeration of prefix sequence quickly. Since the criteria for

BackScan pruning is a common item for a particular period (called semi-maximum periods) in all

sequences, the checking can terminate as early as the intersection becomes empty. Although BIDE re-

duces the memory requirement for candidate maintenance, it requires more computation and multiple

data scans in backward checking. In addition, the simple set intersection of ScanSkip is useless if the

approach is applied to complex sequences (composed by itemsets, e.g. Table 1).

Note that both CloSpan and BIDE followed the same enumeration strategy: patterns are gener-

ated based on the sequence lexicographic order by performing item extension (or I-step, denoted by

P �i item = <s1, . . . , sn ∪ item>) and then sequence extension (or S-step, denoted by P �s item =

<s1, . . . , sn, item>). However this pattern-growth strategy has two drawbacks: duplicate item exten-

sions and expensive matching cost, as described below.

1. Duplicate item extensions: Consider a database of two sequences S1=<{A1, B2}, {A3, B4, C5},

{A6, B7}> and S2=<{A8, B9, C10}, {A11, B12}, {A13, B14}>. To find the closed sequence <{A,B},

{A,B}, {A,B}>, we need three item extensions (e.g. {A} �i {B}), which are duplicate and un-

necessary since {A} itself is not closed (wherever A occurs B also occurs). If we can do sequence

extension by adding {A,B} instead of single item {A}, then such duplicate item enumeration can

be avoided.

2. Expensive Matching Cost: The matching cost refers to the process of finding the locally frequent

items in the projected database, especially for item extension. For example, the projected position

for prefix {A,B} are B2 and B9, i.e. the last transaction where the first instance of the prefix

6

Code C.F.I. FML LocationList (SID,TID)
#1 ABC 2, 6, 10,14 (1,2), (1,4), (2,6), (3,10), (4,14)
#2 BC 2, 5, 8, 14 (1,2),(1,3), (1,4), (2,5), (2,6), (3,8), (3,10), (4,14)
#3 A 2, 6, 9, 13 (1,2), (1,4), (2,6), (3,9), (3,10), (4,13), (4,14)
#4 C 1, 5, 8, 12 (1,1), (1,2), (1,3), (1,4), (2,5), (2,6), (2,7), (3,8), (3,10), (3,11), (4,12), (4,14)

Figure 1. Vertical-based LocationList and FML

occurs. Extendable items for I-steps are then searched after these positions by matching with the

prefix. Thus, we can find locally frequent items C which occurs not only in S2 at C10 but also in

S1 at C5 where the prefix {A,B} occurs in the same transaction.

In this paper, we have come up with a novel approach which conducts only sequence extensions by

adding frequent closed itemsets to overcome these drawbacks. Frequent closed itemsets, as proved in

the next section, are in fact the basic components of frequent closed sequences. They can be used to

remove duplicate item enumeration as well as to reduce the matching cost for finding locally frequent

items for I-extension.

4 Algorithm Overview

In this section, we present an important observation and prove that a frequent closed sequential pattern

is composed of only frequent closed itemsets. Thus, we devise a bi-phase reduction approach which

mines frequent closed itemsets first and enumerate frequent closed sequential patterns by conducting

sequence extensions. Before introducing the pruning strategy, we first define some terms.

Definition 4.1 Given a sequence S = <s1, . . . , sn>, the First Matched Transaction (FMT) of a 1-

sequence <p1> is defined as the transactional ID of the first instance of the itemset p1. Recursively,

we can define the FMT of a (m + 1)-sequence <p1 . . . pmpm+1> from the FMT of the m-sequence

<p1 . . . pm> as (the transaction ID of) the first appearance of itemset pm+1 which also occurs after the

FMT of the m-sequence <p1 . . . pm>. Given a sequence database SD (each transaction in SD has a

unique ID), the First Matched transaction List (FML) of a prefix sequence α=<p1 . . . pn> is defined as

the list of first matched transactions of the sequences in SD w.r.t. α. Similarly, the SID List of α is a list

of sequence IDs that support α.

For example, in the database SD of three sequences S1 = <{A,C}1, {A,B,C}3, {A,B}4>, S2 =

<{A}2, {B}8> and S3 = <{A,B}5, {A,C}6, {B,C}10>, where the subscripts denote the transaction

7

TID 1 2 3 4 5 6 7 8 9 10 11 12 13 14
SID 1 1 1 1 2 2 2 3 3 3 3 4 4 4
Code #4 #1 #2 #1 #2 #1 #4 #2 #3 #1 #4 #4 #3 #1

#2 #4 #2 #4 #2 #4 #2 #2
#3 #3 #3 #3 #3
#4 #4 #4 #4 #4

Figure 2. Horizontal Encoded Database EDB

IDs, the FMLs of the prefix sequence <{A,B}> and <{A}{B}> are {3, 5} and {3, 8, 10}, respectively,

while their SID Lists are {1, 3} and {1, 2, 3}, respectively. Note that we can look up the corresponding

sequence IDs given the transaction IDs in the FML.

Given an itemset p, let c(p) denote the closed itemset which contains p and has the same transaction

support as p. If p is closed, then c(p) = p. By definition, c(p) and p have the same transaction support

and the FML are the same (denoted as p.FML = c(p).FML).

Lemma 4.1 Given three sequential patterns α, β and γ, if α.FML = β.FML then α �s γ.FML =

β �s γ.FML and α �s γ.SIDList = α �s γ.SIDList (Definition 4.1).

Theorem 4.1 A closed sequential pattern is composed of only closed itemsets.

Proof 4.1 Assume α = p1 �s . . . �s pn is a closed sequential pattern, but some of the pis are non-closed

itemsets. Consider a sequential pattern β = c(p1) �s p2 �s . . . �s pn, α.SIDList = β.SIDList since

p1.FML = c(p1).FML (Lemma 4.1). Recursively, we can find a sequential pattern δ = c(p1) �s . . . �s

c(pn) such that α.FML = δ.FML. Therefore, α is not a closed sequential pattern. We thus have a

contradiction to the original assumption that α is a closed sequential pattern and thus conclude that

“all closed sequential patterns α are composed of only closed itemsets.”

Theorem 4.1 is an important property as it provides a different view of mining closed sequential pat-

terns. Instead of extending a prefix by I-steps and S-steps alternatively, we can mine closed frequent

itemsets before mining closed sequential patterns and extends a prefix sequence by only S-steps. There-

fore, we have come up with a three phase algorithm. In the first phase, we find all frequent closed item-

sets and denote each of them by a unique C.F.I. code. To avoid the need to match closed frequent itemsets

in a sequence in the enumeration phase, the original database is transformed into another database where

8

(a) Search space of original enumeration (b) Search space of our enumeration

Figure 3. Enumerative Trees

the items in each sequence are replaced by C.F.I. codes that are contained in the transactions. Finally,

the closed sequential patterns are enumerated in the third phase.

To illustrate, the example database SDB (Table 1) can be transformed into Figure 2 given the C.F.I.

codes shown in Figure 1. This transformation retains the horizontal format of the original database. Note

that the transactions are renumbered to eliminate empty transactions due to the removal of non-frequent

items (e.g. D, E, F). Figure 1 also shows the location lists of each closed frequent itemset, which

represent the vertical format of the original database.

We refer this as a bi-phase reduction approach since we mine C.F.I. for first phase reduction then

mine closed sequences for second phase reduction. This approach not only reduces the search spaces

and duplicate combinations but also avoids the matching costs in item extension process. As shown in

Figure 3, the search space for our enumeration tree is much smaller than that of the typical lexicographic

tree. Obviously, the longest path (the thick lines) in our enumerative strategy is shorter than that of the

typical strategy.

A similar framework has also been adopted in [15] for inter-transaction association mining. However,

applying such a framework in closed pattern mining is much more economic than regular pattern mining

since the number of frequent itemsets are larger than that of frequent closed itemsets. In the next section,

we will discuss how to further prune the search space by LayerPruning and ExtPruning.

9

4.1 Pruning Strategies

Although the number of closed itemsets can be larger than the number of items, which seems to harm

the mining process, lots of them can be ignored without consideration by layer pruning. As a contrast

to previous works which only prune a branch of a non-closed pattern, layer pruning removes several

non-closed branches at once and reduces the costs in pattern checking. Before introducing the pruning

strategy, we first define the order of two first match lists.

Definition 4.2 (The Order of FML) Given two FMLs

S1.FML = {a1, a2, . . . , am} and S2.FML = {b1, b2, . . . , bn} (m ≥ n), we say that S1.FML <L

S2.FML if and only if there exists i1, i2, ..., in such that aij .SID = bj.SID and aij < bj for all j

(1 ≤ j ≤ n). The equal signs hold (S.FML =L S ′.FML) when m = n and aj = bj for all j,

(1 ≤ j ≤ m).

Example 4.1 Consider the example database SDB again, Figure 1 shows the first matched transaction

list (FML) for the frequent closed itemsets which are also 1-sequences. The FML for C.F.I. codes #1, #2,

#3, #4 are {2,6,10,14}, {2,5,8,14}, {2,6,9,13} and {1,5,8,12}, respectively. The orders between these

FMLs are #1.FML >L #4.FML and #3.FML >L #4.FML.

LayerPruning: For two C.F.I. p1 and p2 that can be a sequence extension of a prefix sequence

α=<s1, . . . , sn> in form of S1 = α �s p1 and S2 = α �s p2, the LayerPruning works as follows:

1. If S1.FML <L S2.FML, then remove p2. Vice versa.

2. If S1.FML =L S2.FML, then if (a) p1 ⊆ p2, then remove p1; (b) p2 ⊆ p1, then remove p2; (c)

neither p1 ⊂ p2 nor p1 ⊃ p2, then remove both p1 and p2.

For instance in our running example, we can completely skip prefix #1 and #3 from root since

#1.FML >L #4.FML and #3.FML >L #4.FML. Thus, the LayerPruning technique removes

non-closed patterns in the same layer since the pruning is invoked within a local search of a prefix

pattern. The correctness of the pruning technique can be proven by the following lemma and theorems.

Theorem 4.2 Let two C.F.I. p1 and p2 that can be a sequence extension of a prefix sequence α=<s1, . . . , sn>

in form of S1 = α �s p1 and S2 = α �s p2. If S1.FML <L S2.FML, then all extensions of S2 must not

be closed.

10

Proof 4.2 By definition (Definition 4.1), the FML of α is smaller than that of its extensions, therefore,

α.FML <L S1.FML. Since S1.FML <L S2.FML, wherever p2 occurs, p1 will also occur in the

interval between α.FML and S2.FML. Thus, the super-sequence S ′ = α �s p1 �s p2 of S2 has the

same FML as S2, and S ′.SIDList = S2.SIDLis (Lemma 4.1). Therefore, S2 is not a closed sequential

pattern.

Theorem 4.3 Let two C.F.I. p1 and p2 that can be a sequence extension of a prefix sequence α=<s1, . . . , sn>

in form of S1 = α �s p1 and S2 = α �s p2, and S1.FML =L S2.FML. (a) If p1 ⊂ p2, then all extensions

of S1 must not be closed. (b) If neither p1 ⊂ p2 nor p1 ⊃ p2, then all extensions of p1 and p2 must not be

closed.

Proof 4.3 (a) First, S1 is a subsequence of S2 since p1 is a subset of p2. Second, S1 and S2 have the

same support since S1.FML =L S2.FML. Therefore, S1 is not a closed sequential pattern.

(b) Consider the sequential pattern β = α �s p1 �i p2=<s1, . . . , sn, p1 ∪ p2>. Since S1.FML =L

S2.FML and β.FML =L S1.FML ∩ S2.FML, we have β.FML =L S1.FML =L S2.FML. There-

fore, for any extension S1 and S2 of α, there exists β, such that β is a super sequence of S1 and S2, and

β.SIDList = S1.SIDList = S2.SIDList. Therefore, S1 and S2 are not the closed sequential pattern.

LayerPruning have successfully prune non-closed sequences during sequence extension step of a pre-

fix sequence. However, there are still some non-closed sequential patterns that can be generated in

different layer. Therefore, we need a checking step to remove non-closed sequential patterns, we refer

to this pruning as ExtPruning.

ExtPruning: For two sequential pattern α and β, the rule of ExtPruning states that

1. If α.FML =L β.FML and α is a super sequence of β, then remove β and vice versa.

2. If Sup(α) = Sup(β) and α is a super sequence of β, then β is not closed pattern, vice versa.

The first rule of ExtPruning holds according to Theorem 4.3, while the second rule follows the definition

of closed sequential patterns.

4.2 COBRA: Design and Implementation

In this section, we discuss the implementation of the COBRA algorithm. COBRA can be outlined

as three major phases: (I) Mining Closed Frequent Itemset; (II) Database Encoding; and (III) Mining

11

Procedure COBRA(sequence database SD, minsup)
1. Call mCHARM() to find the set of all C.F.I.;
2. Associate each C.F.I. with an code,

and let CS denotes the set of codes.
3. Construct the encoded DB EDB using CS;
4. CS = LayerPruning(CS);
5. for each codei in CS do
6. cobraDFS(codei, code.FML);

Subprocedure cobraDFS(α, FML)
7. Compute Extended List EL of FML;
8. if (|EL| < minsup) then
9. ExtPruning(α); return;
10. end
11. if (|EL| < |FML|) then
12. if (ExtPruning(α)) then return;
13. LC = Local Frequent Codes in α.PDB;
14. LC = LayerPruning(LC);
15. if (|EL| = |FML|) then
16. FEI = All LCis with |LCi.FML| = |FML|;
17. if (FEI == φ) then
18. if (ExtPruning(α)) then return;
19. end
20. for each LCi in LC do
21. cobraDFS(α �s LCi, LCi.FML);

Figure 4. COBRA Algorithm

Closed Sequential Pattern. Figure 4 shows the pseudo code of the COBRA algorithm. Line 1 calls a

modified CHARM [20] to mine frequent closed itemsets. Line 2-3 associates each C.F.I. with a unique

code and constructs the encoded database EDB using the codes of the C.F.I. Line 4-21 mines the set of

all frequent closed sequential patterns. Details are described below.

There are already many closed frequent itemset mining algorithms. We prefer using a vertical-based

mining algorithm in the first phase (e.g., CHARM[20]) since the vertical format records the locations

(TIDList) of C.F.I.s which can be used to construct the transformed database in the second phase. We

have modified CHARM as memory-based mCHARM , which validates local frequent items to reduce

12

unnecessary combinations of existing frequent itemsets with nonlocal frequent items. This is done by

maintain the horizontal-based database in memory and use the TIDLists (vertical-based) of frequent

itemsets as index to accelerate the validation of local frequent items in the projected positions of the

itemsets. Recall that frequent closed itemsets in a sequence database are defined by both sequence

supports and transaction support, therefore, transaction ids are replaced by a 2-tuple (SID, TID) location

to facilitate the counting of sequence supports and transaction supports.

In the second phase, we associate each C.F.I. with a unique code and construct the encoded database in

horizontal format based on the location lists of the C.F.I. Note that C.F.I.s are sorted by their length in a

decreasing order such that super-sequences are generated earlier to reduce update cost in the third phase.

Once the encoded database is constructed, we can release the memory space of LocationList for all

C.F.I.s. Furthermore, we can remove transactions without any frequent items to reduce the size of stor-

age. Then, the first match transaction list for each C.F.I. (also the frequent 1-sequences) is constructed

for the use in the third phase.

The mining process follows the idea of PrefixSpan to look for locally frequent (extendable) codes in

the projected database of a prefix sequence. Starting with an empty sequence, the extendable codes are

the frequent C.F.I.s. However, before the enumeration, we first apply the LayerPruning strategy to

remove unnecessary enumeration in the same layer (line 4). To reduce the cost of comparing any two

FMLs (a total of O(|C.F.I.|2) comparisons), we devise a hash structure which uses Equation (1) as its

hash function1. Equation (1) has more uniformly distributed keys than simple |SIDList| can do. Only

C.F.I.s that are hashed to the same bucket are compared to each other. Extendable C.F.I. that are not able

to produce closed sequential patterns are then removed based on Theorem 4.2 and 4.3. In the pseudo

code, the procedure LayerPruning, which implements the above idea, takes {#1, #2, #3, #4} as an

input and returns {#2, #4} since #4.FML <L #1.FML and #4.FML <L #3.FML.

(|SIDList| +
∑

Sid∈SIDList

Sid ∗ pNo)%HSize (1)

In the procedure cobraDFS, with a new pattern α and its FML α.FML = {t1, . . . , tn}, we first

compute the extended position list (EL) by looking at the next transaction of ti, which has the same

sequence id with ti. For example, the EL of code #2 in Figure 1 is {3, 6, 9} (transaction 15 is discarded

1pNo is chosen to be a prime number. HSize is the size of the hash table.

13

for it does not have a sequence id as transaction 14). The number of transactions in the EL represents

the largest support an extended sequence of α can have. Thus, if |EL| is less than minsup, then we can

skip all extensions of the prefix α (line 8-10); otherwise we do the extension of α (lines 11-21). In the

later case, we compute the projected database of α (line 13) and find all locally frequent codes (denoted

by LC). Again, before extension, LayerPruning is applied to removes unnecessary codes (line 14).

Formally, we define the extended list (EL) and projected database (PDB) of a pattern as follows.

Definition 4.3 Given a sequence α and its FML = {t1, . . . , tn}, the Extended List (EL) of α is defined

as a list of extended position t′i where t′i = t1 + 1 and t′i.SID = ti.SID.

Definition 4.4 Given the extended list of a sequential pattern α, with extended list α.EL = {t1, . . . , tn},

the Projected

Database (PDB) of α is defined as α.PDB = {t′1, . . . , t
′
n} where t′i.SID = tij .SID for some tij and

tij < t′i ≤ t|SD|, where |SD| denotes the number of transactions in the extended databases.

Definition 4.5 Given a sequence α=<s1, . . . , sn>, the Forward Extended Itemset (FEI) of α is defined

as the set of extended codes of α which have the same SIDList as α, i.e. α.SIDList = α�s p′i.SIDList.

We output the new prefix sequence α only when it has the chance to be a closed sequential pattern.

This includes the following three cases: (1) |EL| < minsup (line 8) (2) |EL| < |FML| (line 11-12) (3)

|FEL| = φ (line 17-18). In the first case, no super-sequence of α can be generated as frequent patterns.

In the second case, the supports of all super-sequences of α are less than α. In the third case, there are no

extendable codes with the same support as α. This is equivalent to check for common codes that can be

extended from the right direction (one of the two directions in BIDE). However, non closed sequential

patterns still can be generated. Therefore, we should make a closure checking to verify if α is a closed

sequential pattern or not. This is implemented by ExtPruning which maintains the set of generated

sequences.

Similar to LayerPruning, ExtPruning also uses Equation 1 as the hash function. The hash table for

ExtPruning is called CSTab. A sequence α is only compared to sequences with the same SIDLists.

To illustrate, assume HSize=3 and pNo = 13, we insert #2 into closed since |#2.FML| > |#2.EL|.

Thus, we insert #2=<{A,B}> into bucket 2 since the hash key (4 +
∑

(#2.SIDList) ∗ 13)%3 =

2. When sequence #4 �s #1 is generated, it is also hashed into bucket 2 for #4 �s #1.FML =

14

Figure 5. Horizontal-Based Partition

{2, 6, 10, 14}. Since #4 �s #1 =<{C}{A,B,C}> is a super sequence of <{A,B}> with the same

support, <{A,B}> is replaced by <{C}{A,B,C}> and ExtPruning return a value False. The

return value of ExtPruning indicates whether the extension of prefix α should go on. If α is a sub-

sequence of an existing pattern β in the hash table and α.FML = β.FML, then we simply discard α

and return True to stop the extension of prefix α (line 12,18).

Theorem 4.4 The COBRA algorithm generates all closed sequential patterns.

Proof 4.4 First of all, the anti-monotone property “if a pattern is not frequent, all its super-patterns

must be infrequent” is sustained for closed sequential patterns. According to Theorem 4.1, the search

space composed of only closed frequent itemset covers all closed sequential patterns. COBRA’s search is

based on a complete set enumeration space. The only branches that are pruned as those that do not have

sufficient support. The LayerPruing only removes unnecessary enumerations (Theorem 4.2 and 4.3).

On the other hand, ExtPruning remove only non-closed sequential patterns. Therefore, the COBRA

algorithm generates all frequent and only closed sequential patterns.

5 Discussion

The proposed algorithm, COBRA, is basically a memory-based algorithm, and its efficiency comes

from the removal of database scans that is required by BIDE. If the data is too large to fit in the memory

space, the partition-and-validation strategy can be used to handle such a case. Therefore, we propose two

alternative partition-and-validation strategies to overcome this problem. Details are described below.

• Horizontal-Based Partition (COBRA-HP): Suppose the sequence database is composed of D se-

quences, we divides the D sequences into k partitions. Each partition can be handled in memory by

our algorithms. The local minimum support count for a partition is minsup multiplied by the num-

ber of sequences in that partition. To reduce the memory cost, we can apply only LayerPruning,

15

Figure 6. Prefix-Based Partition

output local closed sequences CS of each partition in disk and use ExtPruning to verify CS

later. The local closed sequential patterns in disk are false-positive closed frequent sequences.

Therefore, an additional validation of the CS is necessary in order to determine the true-positive

closed frequent sequences. Finally, we read CS again and remove non-closed sequential patterns.

Take Figure 5 as an example, we can divides the 4 sequences into 2 partitions, partitions 1 and 2,

as shown in Figure 5. Firstly, we mine the local closed frequent sequences which satisfied the local

minimum support in each partition. Finally, we verify CS again to remove non-closed sequences

in disk.

• Prefix-Based Partition (COBRA-PP): Different from COBRA-HP, we first run the Phase I and

II in COBRA, then store each CFI’s FML and EDB in Disk. Therefore, we can load projection

database according to CFI’s FML to reduce the memory requirement. Next, COBRA Phase III

is applied in each partition. Note that we only apply LayerPruning in COBRA Phase III here

to minimize the memory cost. COBRA Phase III outputs the potential closed sequential patterns

into some disk-based hashing buckets. Finally, the true-positive closed sequences in each buckets

are verified by ExtPruning. Take Table 1 as an example, we first mine closed frequent itemsets

and transform them as EDB. Secondly, we load projection database according to CFI’s FML (see

Figure 6). Next, we mine closed sequences of each prefix partition and generate potential closed

sequential pattern in disk. Finally, ExtPruning is applied to remove non-closed sequences.

16

Sym. Definition Default
D Number of sequences 10K
C Average transactions pre sequence 10
T Average items per transaction 3
N Number of different items 10K
S Average transactions in seed sequences 6
I Average items in seed sequences 3
Ns Number of maximal potentially large Sequences 2K
NI Number of maximal potentially large Itemsets 5K

Figure 7. Parameters for Synthetic Data

6 Experimental Result

In this section, we report the performance study of the proposed algorithms on both synthetic data

and real world data. All the experiments are performed on a 3.2GHz Pentium PC with 3 Gigabytes main

memory, running Microsoft Windows XP. All the programs are written in Microsoft/Visual C++ 6.0. In

the following experiments, the size of hash table is set to 100.

6.1 Synthetic Data

6.1.1 Scalability Test

The synthetic sequence data is generated based on the description in [13]. Table 7 shows the major

parameters in this generator and their meanings. We start by looking at the performance of COBRA with

default parameter minsup = 0.5%. Figure 8(a) shows the scalability of the algorithms with varying data

size. COBRA is two orders of magnitude faster than BIDE for |D| = 50K. The scaling of COBRA

with database size was linear. Because BIDE needs more scanning time as the data size increases, BIDE

has exponential scalability in terms of data size. However, COBRA consumes more memory space than

BIDE as shown in Figure 8(b). The main reason is that COBRA maintain the encoded database which

are composed of C.F.I.s instead of simple items.

The runtime of COBRA and BIDE on the default data set with varying minimum support threshold,

minsup, from 0.2% to 0.6% is shown in Figure 8(e). COBRA is faster (90 times) and more scalable than

BIDE since the number of sequences checked in the backward extension of BIDE grows rapidly as the

minsup decreases, while COBRA only compare the maintained patterns with the newly found pattern.

Again, the memory requirement for COBRA increases as minsup decreases since the number of C.F.I.s

17

237

698

1439
2780

4251

3
5

7
10

13

1 10

100

1000

10000

10
20

30
40

50
D

ata S
ize (D

*1000)

Running Time (Sec.)

B
ID

E
C

O
B

R
A

9

18

25

37

48

2
2

3
4

6

0 20 40 60

10
20

30
40

50

D
ata S

ize (D
*1000)

Memory Usage (MBs)

C
O

B
R

A
B

ID
E

(a)Scaling
w

ith
D

ate
Size

(Tim
e)

(b)Scaling
w

ith
D

ate
Size

(Space)

1.3
2.2

3.0
4.4

5.6
0.3

0.5
0.8

1.1
1.4

1.4

2.4

3.2

4.8

6.5

0 5 10 15

10
20

30
40

50
D

ata S
ize (D

*1000)

Running Time (Sec.)

C
O

B
R

A
-III

C
O

B
R

A
-II

C
O

B
R

A
-I

7

12

17

23

29

7

14

19

27

35

9

18

25

37

48

0.1
0.2

0.3
0.5

0.6
0 10 20 30 40 50

10
20

30
40

50
D

ata S
ize (D

*1000)

Memory Usage (MBs)

C
O

B
R

A
-I

C
O

B
R

A
-II

C
O

B
R

A
-III

C
S

T
ab

(c)Tim
e

costin
each

phase
ofC

O
B

R
A

(d)Space
costin

each
phase

ofC
O

B
R

A

195
226

280
374

743

3
3

3
4

9

1 10

100

1000

0.6
0.5

0.4
0.3

0.2
S

upport(%
)

Running Time (Sec.)

B
ID

E
C

O
B

R
A

9
9

10
11

14

2
2

2
2

2

0 5 10 15 20

0.6
0.5

0.4
0.3

0.2

S
upport (%

)

Memory Usage (MBs)

C
O

B
R

A
B

ID
E

(d)Scaling
w

ith
m

in
su

p
(Tim

e)
(f)Scaling

w
ith

m
in

su
p

(Space)

1.2
1.3

1.3
1.3

3.7
0.3

0.3
0.3

0.3

0.3

1.3
1.4

1.8
2.3

4.6

0 3 6 9

0.6
0.5

0.4
0.3

0.2
S

upport(%
)

Running Time (Sec.

C
O

B
R

A
-III

C
O

B
R

A
-II

C
O

B
R

A
-I

7
7

7
7

7
7

7
7

8
8

9
9

10

11

14

0.1
0.1

0.1
0.2

0.3
0 5 10 15

0.6
0.5

0.4
0.3

0.2

S
upport (%

)

Memory Usage (MBs)

C
O

B
R

A
-I

C
O

B
R

A
-II

C
O

B
R

A
-III

C
S

T
ab

(g)Tim
e

costin
each

phase
ofC

O
B

R
A

(h)Space
costin

each
phase

ofC
O

B
R

A

Figure
8.S

calability
Test:

S
ynthetic

D
ata

18

33

19

3
5

7
10

13

6

23

15

10 15

11
9

0

10

20

30

40

10 20 30 40 50
Data Size (D*1000)

R
un

ni
ng

 T
im

e
(S

ec
.)

COBRA-PP
COBRA-HP5
COBRA

2

12
16

4

10

15

20
24

9

18

25

37

48

6
8

0

10

20

30

40

50

10 20 30 40 50
Memory Usage (MBs)

D
at

a
S

iz
e

(D
*1

00
0)

COBRA-PP
COBRA-HP5
COBRA

(a) Partitioning Performance (Time) (b) Partitioning Performance (Space)

Figure 9. Partition-based COBRA: Synthetic Data

increases as minsup decreases (see Figure 8(f)). In short, the performance study shows that the COBRA

algorithm is efficient and scalable for closed sequential pattern mining with acceptable memory cost.

6.1.2 Analysis of Time and Space Cost

To better understand the algorithm, Figure 8(c)(d)(g)(h) demonstrates the time and space requirement

in each phase. Recall that we mine closed frequent itemsets in the first phase, then output C.F.I.s and

their LocationList in disk. In the second phase, we load C.F.I. and LocationList from disk to generate

the horizontal-based encoded database EDB. Finally, we use the EDB to mine the closed sequential

pattern in the third phase. Roughly speaking, the time costs for the three phases are 40%, 10%, and

50%, respectively. As shown in the figure, Phase I (the memory-based CHARM) consumes the most

time and space since it maintains the (SID, TID) pairs for each closed frequent itemsets. Due to the

nature of phase II, the space requirement for phase II is roughly the size of the encoded database. The

space requirement for maintaining closed sequential patterns CSTab (by ExtPruning) in phase III is

showed in Figure 8(d)(h). Thus, the memory cost in mining process of the Phase III can be estimated

by subtracting that of phase III from that of phase II and CSTab. For example, the memory cost in the

mining process of the Phase III at minsup = 0.2% is 5.7MB (14MB − 8MB − 0.3MB).

6.1.3 Partition-Based COBRA

We show the performance of the partition-based COBRA in Figure 9. The experimental result demon-

strates that COBRA-PP (Prefix-Based Partition) outperforms COBRA-HP5 (5 Horizontal-Based Par-

titions) and COBRA in space cost. Since COBRA-PP divides more partitions than COBRA-HP5,

19

9.3

11.7

7.1

10.3

13.4
14.0

11.1

7.7

3.3

5.6 6.4

4.6

2.5
2.9

5.1

0

5

10

15

10 20 30 40 50
Data Size (D*1000)

R
un

ni
ng

 T
im

e
(S

ec
.)

COBRA-FI
COBRA-w/o Layer
COBRA

48.1

38.1

64.7

50.9

35.2

24.2

12.6
18.3

25.4

9.1

37.4

7.2

14.3

20.9

29.4

0

15

30

45

60

75

10 20 30 40 50

Data Size (D*1000)

M
em

or
y

U
sa

ge
 (M

B
s)

COBRA-FI

COBRA

COBRA-w/o

(a) Effectiveness Comparison in Time (b) Effectiveness Comparison in Space

1087
2329

3615

1.3
2.2 3.0

4.4 5.6

237
698

1439
2780

4251

156
544

1

10

100

1000

10000

100000

10 20 30 40 50
Data Size (D*1000)

R
un

ni
ng

 T
im

e
(S

ec
.)

BIDE
BIDE-CFI
First-Phase Reduction

1.9 2.4 3.0
4.1

5.8
7.1

12.3

17.0

23.3

29.1

6.6

2.0 2.6
4.6

3.3

0

10

20

30

10 20 30 40 50
Data Size (D*1000)

M
em

or
y

U
sa

ge
 (M

B
s)

BIDE

BIDE-CFI

First-Phase Reduction

(c) BIDE v.s. BIDE-CFI in Time (d) BIDE v.s. BIDE-CFI in Space

Figure 10. The effects of the pruning strategy: Synthetic Data

COBRA-PP needs more time in pattern validation than COBRA-HP5. However, experimental result

shows that two alternative partition-and-validation strategies, COBRA-PP and COBRA-HP5, are not

only more efficient than BIDE but also reduce the memory requirements of the COBRA.

6.1.4 Effects of the Pruning Strategy

To verify the effectiveness of the first phase reduction and the LayerPruning strategy in the third

phase, we demonstrate the experimental results between COBRA, COBRA-FI (COBRA with Frequent

Itemset in Phase I) and COBRA-w/o Layer (COBRA without LayerPruning) in Figure 10(a)(b). We

can see that COBRA is more effective than COBRA-FI for more codes are generated in the EDB

and more closure checking is done by the pruning strategies. As the data size (or minimum support)

increases (resp. decreases), the gap between COBRA and COBRA-FI in the running time and space

requirement becomes more obvious. This proves the effectiveness of the first-phase reduction. As for the

LayerPruning strategy, the effects are case by case depending on the data. Although LayerPruning

can remove some search space in the mining process, it also cost a lot of time/space in pattern checking.

Beside, we also use the first-phase reduction in BIDE. Firstly, we mine closed frequent itemsets and

20

transform them to a encoded database. Next, we use BIDE to mine the closed sequences from encoded

database, called BIDE-CFI. Figure 10(c) proves the first-phase reduction can improve the efficiency of

the mining process. Although the memory requirements of BIDE-CFI is larger than BIDE (see Fig-

ure 10(d)), as the data size increases the gap between BIDE and BIDE-CFI in the running time becomes

more substantial.

6.2 Real World Data

Next, we run the algorithm on two real world data sets to get a better view of the usefulness of closed

sequential patterns. To make the experiments fair to all the algorithms, the real data sets are similar to

that used in the performance study in previous works.

6.2.1 Web Log

The first real data set, Gazelle, comes from click-stream data from http : //gazelle.com, which

was once used in KDD-Cup 2000 competition and is now available through the web site: http :

//www.ecn.purdue.edu/KDDCUP , more detailed information about this data set can be found in

[8]. We use the combination of the productID and AssortmentID as the product code. SessionID is

considered to identify items in one transaction. For linking itemsets to create a sequence, we use the

cookieID. We remove data with unknown ’?’ productID or AssortmentID. The database contains 27,735

sequences, 33,305 transactions and 70,546 items. There are in total 1,037 distinct items (page views).

Note that BIDE only demonstrates this experiments in simple sequences (sequences of item). Similar to

CloSpan, we perform this experiments in complex sequences (sequences of itemset).

We demonstrate the time and space cost of Gazelle data set in Figure 11 by varying minimum support

count from 60 to 140. The memory usage for BIDE is fixed (4MB) while COBRA uses more memory

which increases as the support count decreases (from 10 to 17MB). However, the efficiency of COBRA

is much better than BIDE in all the cases (by a magnitude of 240). Figure 11(c)(d) also shows the

performance of COBRA-FI and COBRA-w/o Layer. The result is similar to that of synthetic data for

Gazelle can be viewed as a sparse data set. With the same reason, the first-phase reduction not only

enhances the mining speed but also reduces the space requirement. Although LayerPruning remove

some redundant search space, this pruning also cost a lot of time/space in pattern validation.

21

743 902 1096 1356 1638

7543 4

1

10

100

1000

10000

140 120 100 80 60
Support Count

R
un

ni
ng

 T
im

e
(S

ec
.)

BIDE
COBRA

� � � � �

� �
� �

� �
� �

� �

��� 	 ���
 ���
 ���
 ���

�

�

	

	

	 ��� 	
 � 	 � �
 � � ���� � ��� � ����� ��� �

� �
���
�� !
"�
#�$
 %

�

 � �

��� �

� � �

& �
' (
) � �
* + �,
-�.
/�

0�1 243
��540�687
�9� :8; <
=>� ?@��A B ��A � C A D

(a) Scalability in Web Log (Time) (b) Scalability in Web Log (Space)

3.1

3.6

4.4

5.4

6.8

2.6
3.1

3.9

4.7

6.0

3.3

3.8

4.6

5.5

1

3

5

7

140 120 100 80 60
Support Count

R
un

ni
ng

 T
im

e
(S

ec
.)

COBRA
COBRA-w/o Layer
COBRA-FI

16.8

21.0

14.3

9.7
11.2

12.8

14.9

18.6

17.0

14.0
12.2

13.0
11.6

10.3
9.2

0

6

12

18

24

140 120 100 80 60
Support Count

M
em

or
y

U
sa

ge
 (M

B
s)

COBRA
COBRA-FI
COBRA-w/o Layer

(c) Pruning Strategies in Web Log (Time) (d) Pruning Strategies in Web Log (Space)

Figure 11. Real World Data: Web Log (Gazelle)

28

123

430

1157

2662

2

8

23

55
119

5
9

14

35
77

1

10

100

1000

10000

265 260 255 250 245

Support Count

R
un

ni
ng

 T
im

e
(S

ec
.)

BIDE
COBRA
COBRA-w/o Layer

1 1 1 1 1
5 5

11

23

36

5 5

10

21

26

0

10

20

30

40

265 260 255 250 245
Support Count

M
em

or
y

U
sa

ge
 (

M
B

s)

0

1000

2000

3000

4000

5000

of

 C
lo

se
d

S
eq

ue
nc

es

BIDE
COBRA
COBRA-w/o Layer
of Sequences

(a) Scalability in Protein Sequence (Time) (b) Scalability in Protein Sequence (Space)

2.1

7.5

22.5
54.1

118.5

0.1 0.1 0.2 0.2 0.2

0.4 0.5 0.5 0.5 0.5

0

1

10

100

1000

265 260 255 250 245

Support Count

R
un

ni
ng

 T
im

e
(S

ec
.)

COBRA-III
COBRA-II
COBRA-I

4 5 5 5 53.7 4.2 4.5 4.5 4.54.5 5.2

11.5

23.0

36.2

0.1 0.3 0.9 2.1
4.4

0

10

20

30

40

265 260 255 250 245
Support Count

M
em

or
y

U
sa

ge
 (

M
B

s)

COBRA-I
COBRA-II
COBRA-III
CSTab

(c) Time cost in each phase of Protein Sequence (d) Space cost in each phase of Protein Sequence

Figure 12. Real World Data: Protein (Snake)

22

6.2.2 Protein Sequence

The second data, Snake, is collected from Snake Neurotoxin Database (http : //sdmc.i2r.a−star.edu.sg/

Templar/DB/snake neurotoxin/). It contains 272 Toxin-Snake protein sequences which amount to

22,021 items (An average of 81 items for each sequence). Snake is a dense data which contains only

20 distinct items. This data is also used in pattern discovery tasks in many studies [7, 16]. Although

BIDE[16] also perform this data in their experiment, their data contain only 175 sequences and it’s aver-

age length is 67. Note that this data set is composed of simple sequences where each transaction contains

one item. Thus, what phase I returns is the set of frequent items. In other words, there’s no reduction in

the first phase. The comparison will thus show the difference between BIDE and phase III mining.

From Figure 12, we can see that COBRA outperforms BIDE in terms of efficiency, while COBRA

consumes more memory for maintaining closed sequences for closure checking by ExtPruning. To

give a rough figure, BIDE only uses about 1.2MB memory, while COBRA uses about 36.2MB memory

to maintain EDB (4.5MB) and 4,448 closed sequences (4.4MB) at support count = 245. Generally

speaking, candidate maintenance has such disadvantages that it does not scale well and it costs time in

support counting (or database scanning). However, it might potentially prune the search space and gain

the odds in time. Thus, it is a tradeoff between time and space. If ExtPruning is implemented at the

end of the mining by output the prefix sequences to disk, we can save all the memory but spend more

time to complete the closed sequential pattern mining. Even so, the time cost for COBRA is still much

less than BIDE. Finally, for this dense data, LayerPruning only improve efficiency at high support

(support count > 260).

7 Conclusion

In this paper, we propose a bi-phase reduction approach algorithm for closed sequential pattern min-

ing. Different from previous studies, the mining process is divided into 3-phases: (I) Mining Closed

Frequent Itemset; (II) Database Encoding and (III) Mining Closed Sequential Pattern. The proposed al-

gorithm uses both vertical (FML) and horizontal (EDB) database formats to reduce the searching time

in the mining process and overcomes some drawbacks in some typical pattern-growth method. There-

fore, the proposed algorithm is a memory-based algorithm, and its efficiency comes from the removal

of database scans and compressed strategy of bi-phase reduction approach. The experimental results

23

also demonstrate this approach can be applied to BIDE to better improve the performance of BIDE.

Although COBRA consumes more memory space than BIDE, the gain in time cost shows the advantage

of COBRA. Besides, memory space cost can be further reduced by partition-and-validation strategies or

post (disk-based) ExtPruning. Although LayerPruning strategy can remove some search space, it

also spend a lot of time and space in pruning validation. Furthermore, how to use the closed sequences

in application analysis is also an interesting issue in future work.

References

[1] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu. Sequential pattern mining using a bitmap representation. In
Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining
(KDD’02), pages 429–435, 2002.

[2] D. Chiu, Y. Wu, and A. L. P. Chen. An efficient algorithm for mining frequent sequences by a new strat-
egy without support counting. In Proceedings of the 20th International Conference on Data Engineering
(ICDE’04), pages 375–386, 2004.

[3] M. N. Garofalakis, R. Rastogi, and K. Shim. Spirit: Sequential pattern mining with regular expression of
constraints. IEEE Transactions on Knowledge and Data Engineering (TKDE), 14(3):530–552, 2002.

[4] J. Han and J. Pei. Mining frequent patterns by pattern-growth: Methodology and implications. ACM
SIGKDD Explorations (Special Issue on Scalable Data Mining Algorithms), 2(2):14–20, 2000.

[5] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M. Hsu. Freespan: Frequent pattern-projected
sequential pattern mining. In Proceedings of the 6th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’00), pages 355–359, 2000.

[6] J. Han, J. Wang, Y. Lu, and P. Tzvetkov. Mining top-k frequent closed patterns without minimum support.
In Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM’02), 2002.

[7] I. Jonassen, J. Collins, and D. Higgins. Finding flexible patterns in unaligned protein sequences. Protein
Science, 4(8):1587–1595, 1995.

[8] R. Kohavi, C. Brodley, B. Frasca, L. Mason, and Z. Zheng. Kdd-cup 2000 organizers’s report: Peeling the
onion. Proceedings of the SIGKDD Explorations, 2:86–98, 2000.

[9] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for association rules.
In Proceedings of 7th International Conference on Database Theory (ICDT’99), 1999.

[10] J. Pei, G. Dong, W. Zou, and J. Han. On computing condensed frequent pattern bases. In Proceedings of
International Conference on Data Mining (ICDM’02), 2002.

[11] J. Pei, J. Han, and R. Mao. Closet: An efficient algorithm for mining frequent closed itemsets. In Proceedings
of the ACM SIGMOD Int. Workshop Data Mining and Knowledge Discovery (SIGMOD’00), 2000.

[12] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and M. Hsu. Mining sequential
patterns by pattern-growth: The prefixspan approach. IEEE Transaction on Knowledge Data Engineering,
16(11):1424–1440, 2004.

[13] R. Agrawal and R. Srikant. Mining sequential patterns. In Proceedings of the 11th International Conference
on Data Engineering (ICDE’95), pages 3–14, 1995.

[14] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and performance improvements.
In Proceedings of the 5th International Conference on Extending Database Technology (EDBT’96), volume
1057 of Lecture Notes in Computer Science, pages 3–17. Springer, 1996.

[15] A. K. Tung, H. Lu, J. Han, and L. Feng. Efficient mining of intertransaction association rules. IEEE
Transactions on Knowledge and Data Engineering (TKDE), 15(1):43–56, 2003.

24

[16] J. Wang and J. Han. Bide: Efficient mining of frequent closed sequences. In Proceedings of the 20th
International Conference on Data Engineering (ICDE’04), pages 79–90, 2004.

[17] J. Wang, J. Han, and J. Pei. Closet+: Searching for the best strategies for mining. In Proceedings of the
Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD’03),
2003.

[18] X. Yan and R. A. J. Han. Clospan: Mining closed sequential patterns in large datasets. In Proceedings of
the Third SIAM International Conference on Data Mining (SDM), 2003.

[19] M. Zaki. Spade: An efficient algorithm for mining frequent sequences. Machine Learning, 42(1/2):31–60,
2001.

[20] M. J. Zaki and C. Hsiao. Charm: An efficient algorithm for closed itemset mining. In Proceedings of the
2nd SIAM International Conference on Data Mining (SDM’02), 2002.

25

