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Abstract

Information extraction from semi-structured

Web documents is a critical issue for software

agents on the Internet. Previous work in wrapper

induction aim to solve this problem by applying

machine learning to automatically generate extrac-

tors, but this approach still requires human inter-

vention to provide training examples. In this paper,

we present a novel approach that extracts informa-

tion blocks without training examples using a data

structure called a PAT tree. PAT trees allow the

system to eÆciently recognize repeated patterns in

a semi-structured Web page. From these repeated

patterns, information blocks can be easily located

based on some domain independent selection cri-

teria. The entire system runs automatically with-

out any human intervention. Experimental results

show that our approach performs well with a re-

call rate near 90 percent on a wide range of output

pages of popular search engines.

1 Introduction
In recent years, collation of information on the

World Wide Web has become the main issue in ap-

plications that provide value-added services. From

multi-search engines, to software agents or soft-

bots, retrieving and integrating data from various

information sources can signi�cantly increase the

utility of individual Web sites. Extracting data

from the Web requires a wrapper that \wraps"

around a Web site and extracts data from Web

pages. However, programming wrappers is often

labor-intensive and error-prone. Besides, since the

formats of Web pages are subject to change, main-

taining these wrappers can be expensive and im-

practical. To save the e�orts of hand-coding wrap-

pers, researchers are developing new approaches to

automatize wrapper construction. For example,

wrapper induction is one of such techniques that

learns extraction rules by generalizing from train-

ing examples. The key idea underlying these wrap-

�This work is partially done while the �rst author was at

the Institute of Information Science, Academia Sinica.

<HTML><TITLE>Some Country Codes</TITLE>

<BODY>

<B>Congo</B> <I>242</I><BR>

<B>Egypt</B> <I>20</I><BR>

<B>Belize</B> <I>501</I><BR>

<B>Spain</B> <I>34</I><BR>

</BODY></HTML>

Figure 1: Sample HTML page Pcc

pers is that the information to be extracted can be

located based on \landmarks". That is, the wrap-

pers extract a tuple by scanning the input Web

page, recognizing the \landmarks" that are used to

delimit information records. In [6], Kushmerick et

al. identi�ed a family of wrapper classes (including

LR, HLRT, OCLR, HOCLRT, etc.) and the cor-

responding induction algorithms which generalize

from labeled examples to extraction rules. More

expressive wrapper structure are introduced lately.

Softmealy by Hsu and Dung [4] uses a wrapper in-

duction algorithm to generate extractors that are

expressed as �nite-state transducers. Meanwhile,

Muslea et al. [7] proposed \STALKER" that gen-

erates wrappers based on a set of disjunctive land-

mark automata organized as a hierarchy.

In all these work, wrappers are induced from

training examples such that \landmarks" or \de-

limiters" can be generalized from common pre�xes

or suÆxes. However, labeling these training exam-

ples is sometimes time-consuming. Hence, it will be

interesting if we can eliminate the e�ort of labeling

and extract information block automatically. One

observation from these input pages is that the infor-

mation to be extracted is often placed in a particu-

lar order such that repetitive patterns can be found

in these Web pages when multiple records aligned

together. For instance, in the example given by

Kushmerick in [6] (presented in Figure 1), the se-

quence \<B>Alph</B> <I>Num</I><BR>" is

repeated four times, where text strings \Congo",

\Egypt", \Belize" and \Spain" are regarded as to-

ken class Alph, and \242", \20", \501" and \34"
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Figure 2: The search result of `genome" from Al-

taVista

are regarded as token class Num, following some

parsing or tokenizing convention. In many other

examples on the Web, especially search engines, the

matched results are often placed in a regular man-

ner, e.g., the output page of AltaVista (Figure 2).

From these examples, we can �nd that repeats that

occur regularly and closely in a Web page often rep-

resent a block of meaningful information that might

be interesting to users. That is, the target block

to be extracted. These insights and observations

motivate us to look for an approach to recognizing

repeated patterns that occur regularly and closely

in a given Web page.

In this paper, we utilize a data structure called a

PAT tree [2] in which repeated patterns in a given

input string can be eÆciently identi�ed. A PAT

tree is an eÆcient data structure successfully used

in the area of information retrieval for indexing a

continuous data stream Using this data structure to

index an input string, all possible character strings,

including their frequency counts and their positions

in the original input string can be easily retrieved.

In the next section, we give some backgrounds of

the PAT tree and its application in string search-

ing. Section 3 describes how to translate an input

HTML page so as to construct a PAT tree. Sec-

tion 4 discusses the pattern validation criteria for

selecting candidate repeats. Section 5 reports ex-

perimental results. The last section presents our

conclusion and the directions of future work.

2 The PAT Tree
A PAT tree is a Patricia tree (Practical Al-

gorithm to Retrieve Information Coded in Al-

phanumeric) constructed over all the possible semi-

in�nite strings (called sistrings) [2]. A Patricia tree

is a particular implementation of a binary digital

tree (or trie in short) such that the abstract data

type sistring is represented as a suÆx string that

ends with a special character not occurring any-

where in the input string. Like a suÆx tree [3], the

Patricia tree stores all its data at the external nodes

and keeps one integer, the bit-index, in each inter-

nal nodes as an indication of which bit of a query is

to be used for branching. This avoids empty sub-

trees and guarantees that every internal node will

have non-null descendants. For a set of n sistrings

to be indexed, there will be n external nodes in the

PAT tree and n� 1 internal nodes. This makes the

tree O(n) in size.

Figure 3 shows an example of a PAT tree over a

sequence of bits. External nodes are indicated by

squares that contain a reference to a sistring, and

internal nodes are indicated by a circle and contain

a displacement (or index) to the root. More specif-

ically, the Patricia tree for a string S of size n uses

an index at each internal node to indicate the bit

used for that node's branching. A \zero" bit will

cause a branch to the left subtree, and a \one" bit

will cause a branch to the right subtree. Concep-

tually, each edge between two nodes is labeled with

a nonempty substring: the left edges begin with a

zero and the right edges begin with one. Hence, the

concatenation of the edge-labels on the path from

the root to a leaf node with reference i exactly spells

out the sistring i of S. For example, sistring 3 is

the concatenation of edge-labels, \0", \110" and

\1100. . . " between nodes 1, 2, 5, and leaf 3.

Figure 3: PAT tree when the sistrings 1 through 8

have been inserted

Note that if the tree is to index a sequence of

characters, the binary codes for the characters can

be used. (For simplicity, each character is encoded



as �xed-length binary code.) In this case, only

those bit positions that are the beginning of a char-

acter needs to be indexed. For example, given a

�nite alphabet � of a �xed size, each character

x 2 � is represented by a binary code of length

l = dlog
2
j�je. For a sequence S of n characters,

the binary input B will have n� l bits, but only the

[i� l+1]th bit has to be indexed for i = 0; : : : ; n�1.

The constructed PAT tree T will have n external

nodes pointing to sistrings numbered 1; : : : ; n.

It follows from the tree construction algorithm

that every subtree of a PAT tree has all its sistrings

with a common pre�x. Hence, it allows surprisingly

eÆcient, linear-time solutions to complex string

search problems. For example, string pre�x search-

ing, proximity searching, range searching, longest

repetition searching, most frequent searching, etc

[2, 3]. In this paper, we focus especially on the

problem of �ndingmaximal repeat using a PAT tree.

De�nition Given an input string S, we de�ne

maximal repeat � as a substring of S that oc-

curs in two positions p1, p2 in S such that

p1 6= p2 and the (p1 � 1)th character in S is

di�erent from the (p2� 1)th character and the

(p1 + j�j)th is di�erent from the (p2 + j�j)th.

Since every internal node indicates a branch, it

also shows a di�erent bit following the common pre-

�x between two sistrings. Hence, the concatenation

of the edge-labels on the path from the root to an

internal node represents one repeated sequence in

the input string. That is, to �nd maximal repeats

we only need to consider path-labels that end at

internal nodes in the suÆx tree T . However, not

every path-label or repeated sequence is a maximal

repeat. Let's call character (p1 � 1) of S the left

character of sistring p1. For a path-label of a node

v to be a maximal repeat, at least two leaves in

the v's subtree should have di�erent left characters.

Let's call such a node a left diverse. Followed by

de�nition, the property of being left diverse propa-

gates upward in T . Therefore all maximal repeats

in S can be found in linear time. In summary, we

come to the following lemma with this discussion.

Lemma A string � which labels a path from the

root to a node v in T is a maximal repeat if

and only if v is a left diverse.

The de�nition of maximal repeats is necessary for

our problem since it captures all meaningful repeti-

tive structures in a clear way and avoids generating

overwhelming outputs. In addition, by recording

the frequency counts and the reference positions

in the nodes of a PAT tree, we can easily know

how many times a substring is repeated and decide

whether such a pattern corresponds to a potential

information block we want to extract.
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Figure 4: Block-level tags vs. text-level tags

3 Translating HTML Pages
To apply the PAT-tree technique to extract in-

formation from HTML pages, the input Web page

is �rst parsed into tokens. Each token is denoted

by a corresponding token class. For instance, one

common token class that one can come up with

for Web pages is the HTML tag classes, denoted

as Html(<tag name>). We call this class as \tag

class." The tags themselves can also be classi�ed

into hierarchy depending on what level of informa-

tion we want to extract. According to the HTML

structure tree, the tags in the BODY section of a

document can be grouped in two distinct groups:

block level and text level tags. The former make

up the document's structure, and the latter \dress

up" the contents of a block [8]. As shown in Fig-

ure 4, block-level tags include headings, lists, text

containers, and others such as tables, forms etc;

while text-level tags include logical markups, phys-

ical markups, and special markups that are used to

mark up text inside block-level tags. On the other

hand, tag can also be divided into start tags and

end tags. In addition to the tag class, we can also

de�ne \text token class", Text( ), which embraces

all text strings except HTML tags. Detailed clas-

si�cation like word and non-word token classes can

be found in Hsu and Dung [4].

Re-examing the Web page from AltaVista in Fig-

ure 2, part of the HTML source and the correspond-

ing translation are presented in Figure 3. This

search result for query \genome" from AltaVista

contains ten matches that can be extracted. The

translation of this HTML page forms a repeated

segment \Html(<dl>)Html(<dt>)Html(<b>)Text( ). . .

Html(</a>)Text( )Html(</dl>)" which occur contigu-

ously for ten times. This repeat can be easily rec-

ognized in PAT trees as described in Section 2. If

we apply the PAT tree construction algorithm to

the translated HTML codes, we will have a subtree

with the above pattern as a path-label between the

PAT tree root and the subtree root; and there will

be ten leaves in the subtree indicating the occurring

positions of the pattern. Thus, the problem of semi-

structured information extraction is converted into

an easier problem of repeated pattern recognition.



<html><head><title>AltaVista: Simple Query

&quot;genome&quot;</title>

<style><!{ a:color:#000099 a:vlinkcolor:#663366

a:hovercolor:#007FFF ></style></head>

<body bgcolor="#���" text="#000000"

link="#000099" vlink="#663366" alink="#�0000">

<table
.
.
.

<font size=-1>List of near matches related to <b>Genome

</b> provided by RealNames.</font> <P> </font>

<font face=Arial size=-1><dl><dt><b>1. </b><a

href="http://www.nhgri.nih.gov/"><b> National Human

Genome Research Institute (NHGRI)</b></a><dd>

NEW GOALS FOR THE U.S. HUMAN GENOME

PROJECT 1998 - 2003. | About NHGRI | The Human

Genome Project | Grant Information | | Intramural

Research | Center for.<br><b> URL:</b> <font

color=gray>www.nhgri.nih.gov/<br>

Last modi�ed 23-Oct-98 - page size 2K - in English

</font> [&nbsp; <a

href="http://jump.altavista.com/trans.go?urltext=

http://www.nhgri.nih.gov/&language=en">

Translate</a>&nbsp;]</dl>

<dl><dt><b>2. </b><a

href="http://www.ncgr.org/"><b> National Center for

Genome Resources</b></a><dd>

Start here. CENTER. DATABASES. FUNDING.

RESEARCH PROGRAMS. TOOLS. {Ad Hoc SQL Query

Tool. {BLAST. {Excerpt. {Flat�le Retrieval Tool.

{Maestro....<br><b> URL:</b> <font

color=gray>www.ncgr.org/<br>

Last modi�ed 9-Jun-99 - page size 12K - in English

</font> [&nbsp; <a

href="http://jump.altavista.com/trans.go?urltext=

http://www.genome.org/&language=en">

Translate</a>&nbsp;]</dl>

(a) The HTML source code

Html(<html>)Html(<head>)Html(<title>)Text( )

Html(</title>)Html(<style>)Html(comment)

Html(</style>)Html(</head>)Html(<body>)

Html(<table>)

.

.

.

Html(<font>)Text( )Html(<b>)Text( )Html(</b>)

Text( )Html(</font>)Html(<P>)Html(</font>)

Html(<font>)Html(<dl>)Html(<dt>)Html(<b>)

Text( )Html(</b>)Html(<a>)Html(<b>)Text( )

Html(</b>)Html(</a>)Html(<dd>)Text( )Html(<br>)

Html(<b>)Text( )Html(</b>)Html(<font>)

Text( )Html(<br>)Text( )Html(</font>)Text( )

Html(<a>)Text( )Html(</a>)Text( )Html(</dl>)

Html(<dl>)Html(<dt>)Html(<b>)Text( )Html(</b>)

Html(<a>)Html(<b>)Text( )Html(</b>)

Html(</a>)Html(<dd>)Text( )Html(<br>)Html(<b>)

Text( )Html(</b>)Html(<font>)Text( )

Html(<br>)Text( )Html(</font>)Text( )Html(<a>)

Text( )Html(</a>)Text( )Html(</dl>)

(b) The parsed token classes

Figure 5: The HTML source for Figure 2 (a) and

translated code (b).
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Figure 6: Information extraction procedure

4 Pattern Validation
In an overview point, our information extraction

procedure can be briefed by three steps: HTML

translation, PAT tree construction, and pattern

validation. The owchart is shown in Figure 6. The

necessity of \HTML translation" is to stand out

the repeat patterns, while the PAT tree is the most

appropriate data structure to facilitate the �nding

of repeat patterns. As for pattern validation, it is

to ensure accurate extraction. In the previous sec-

tions, we have discussed the �rst two steps. This

section describes the pattern validation step.

In Section 2, we de�ne maximal repeats which

capture meaningful repetitive structures while

avoid overwhelming repeats to be presented. How-

ever, not every maximal repeat corresponds to an

interesting information block to us. What we are

interested is those maximal repeats that occur regu-

larly in vicinity. An example is the maximal repeat

that occurs continuously for ten times in the exam-

ple Web page from AltaVista (Figure 3). Such a re-

peat satis�es the requirements for maximality, reg-

ularity, adjacency, etc. Nonetheless, the validation

step has to be quanti�ed since not all information

we want is placed in such a perfect order. Hence,

we also need to verify whether a maximal repeat

satis�es the following criteria during the top-down

traversing of the PAT tree T .

Regularity To validate this property, we demand

all sistrings in the subtree (of a maximal re-

peat) appear spaced at an interval of approx-

imate equal distance. Suppose the sistrings

of a maximal repeat � are sorted by its posi-

tion such that sistrings p1 < p2 < p3 : : : < pk.

We say the maximal repeat appears regularly if

the standard derivation of the interval between

two adjacent occurrences is less than a certain

amount (say �=0.5) of the interval's mean.

Localization This property is required to avoid

extracting repeats that are scattered too far

across the input. Thus, localization can be

seen as a remedy to the cases when the re-

quirement of regularity is loosen. We measure
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Figure 7: A tandem repeat of string � for ten times

the degree of localization through the compu-

tation of repeat density:

k � j�j

pk � p1 + j�j
(1)

Only maximal repeats with density greater

than a bound � are considered quali�ed to pro-

vide enough information to be extracted.

Vicinity Consider the perfect example we men-

tioned above where sequence � is repeated ten

times (Figure 7). In such cases, not only �,

but also ��, ���, etc. all qualify for maxi-

mal repeats. Hence, the property of vicinity is

required to avoid output multiple maximal re-

peats which originate from the same repeat se-

quence. To satisfy this requirement, the mean

distance between adjacent occurring positions

should be no less than the length of the max-

imal repeat. That is, overlapping of repeats

are disallowed. In practice, we require the in-

terval's mean be greater than three quarters

the length of a maximal repeat.

Heuristic Finally, the repeat patterns themselves

also manifest whether they contain potential

information to be extracted. For instance, a

repeat which consists of all tag tokens (H1) and

no text token can be excluded from consider-

ation since no text information is contained.

Besides, patterns that begin with ending tags

(H2) or text tokens (H3) can also be elimi-

nated. However, the later heuristic (H3) is not

perfect since not all information block begin

with a tag token. That is, this heuristic can

help reduce unwanted patterns as well as tar-

get patterns. The default heuristics used are

H1 and H2. The e�ect is discussed in next

section.

5 Experiments
To demonstrate the e�ect of our extraction pro-

cedure, we choose fourteen state-of-the-art search

engines. The �rst output pages of 10 test queries

are used as the test pages for each search engine.

The experiments will show that di�erent transla-

tion of the input HTML pages joined with various

degree of regularity and localization yield di�erent

degrees of extracting performance.

In each table, we show the following performance

statistics. The second column shows the number

of sistrings indexed in the PAT tree, that is also

the number of tokens counted when each HTML

tag corresponds to a token and other texts between

two tags are replaced by the Text( ) token. The

third column represents the number of maximal re-

peats computed from the PAT tree. The following

columns show the number of maximal repeats re-

mained after each validation criteria vicinity, reg-

ularity, localization and heuristic are validated in

turn.

In Table 1, we adopt two heuristics, the �rst one

removes patterns with all text tokens (H1) and the

second one removes patterns beginning with end

tag tokens (H2). Note that the order of the applica-

tion of these criteria does not a�ect the �nal result,

which is evaluated by the recall rates shown in the

last column. The recall rate is de�ned by the ratio

of the number of information records enumerated

by a maximal repeat and the number of informa-

tion records contained in the test document. An

information record is said to be enumerated by a

pattern if one third of the record's content is part

of the repeated pattern. If there are more than

one maximal repeat, the largest recall rate is used

to represent its result. For example, suppose one

target information block contains 20 matches and

a maximal repeats contains 18 matches, then the

recall is 18/20.

Opposed to recall, the other main measure that

our pattern recognition system tries to keep mini-

mum is the number of output maximal repeats. In

a sense, the inverse of this number corresponds to

the concept of precision, which indicates the correct

answer is selected from several candidate maximal

repeats. If the number of output maximal repeats

is 1, this only maximal repeat possibly represents

the target information block. In such a case, the

precision is (1 or 0), which means our system cor-

rectly �nds the information block (or not). If there

are more than one maximal repeats, the decision of

which repeat corresponds to our target information

block is left to the user.

For Table 1, with regularity threshold � set to 0.5

and localization threshold � set to 0.45, the system

identi�es on average 4.8 patterns and extracts 74

percent of target records. As shown in Table 1, we

can �nd that regularity, vicinity and localization

all play an important role in �ltering maximal re-

peats. Heuristic validation, including all string pat-

tern elimination (H1) and removing repeats start-

ing with ending tags (H2) seems the most ineÆ-

cient in reducing unsolicited patterns. But if we



Search Engine sistrings maximal regularity vicinity localization H1&H2 recall

AltaVista 1363.70 116.10 61.80 7.40 6.80 6.80 100/100

Cora 1073.80 73.70 29.70 17.30 5.60 5.10 61/100

Excite 1113.30 67.20 12.30 3.90 1.10 1.10 30/100

Galaxy 1771.10 62.60 26.50 19.50 6.90 6.90 186/196

Hotbot 727.80 38.80 25.00 7.70 6.30 6.30 100/100

Infoseek 1080.10 77.10 18.60 18.00 10.40 10.40 93/100

Lycos 900.10 49.90 6.90 1.20 1.20 1.20 100/100

Magellan 467.30 8.10 7.00 1.00 1.00 1.00 100/100

Metacrawler 1367.00 118.10 33.70 24.40 8.50 7.60 114/200

Northernlight 1180.30 54.60 17.40 5.60 3.30 3.30 72/100

Open�nd 1216.60 35.50 19.50 10.20 1.50 1.50 52/200

Savvysearch 1092.60 71.60 43.60 12.30 6.90 6.90 144/150

Stpt.com 2045.50 93.00 34.50 14.60 6.90 6.60 0/250

Webcrawler 966.10 54.70 17.20 4.00 2.50 2.50 250/250

� = 0:5 � = 0:45 4.8 0.74

Table 1: No. of maximal repeats computed for each search engine (averaged from 10 test pages). The

middle block shows the number of maximal repeats which pass the validation criteria regularity, vicinity,

localization, and heuristic in turn.

remove repeats starting with ending tags (H2) and

text token (H3) during indexing, i.e. skip sistrings

that start with ending tags or text token, a lot of

e�ort can be reduced as shown in Table 2, where

22 percent sistrings are reduced due to ending tags

and 27 percent are due to text tokens. However,

as we discussed above, target repeats can also start

with text token class hence they can be eliminated

during this phase just like some test pages from In-

foseek, Open�nd, Savvysearch and Stpt.com where

the pattern begins with a text token. Therefore,

the recall rate is reduced to 0.60. Hence, in the

following experiments H3 is not used, i.e. sistrings

that begin with text token are still indexed in the

PAT tree.

As mentioned above, the goal of the validation

criteria is to keep minimum the number of maximal

repeats so the �nal one represents our target infor-

mation block. However, the results indicate that

there is a tradeo� between recall and precision (the

inverse of the number of output maximal repeats).

While we try to increase precision, i.e. reduce the

number of output repeats, the recall is often de-

creased accordingly. For example, applying heuris-

tic H3 removes many useless repeats which begin-

ning with text tokens. However, it also decrease

recall because some target patterns are eliminated.

Similarly, when the requirement for localization is

loosen, say the localization threshold is reduced to

0.15, the number of �nal patterns almost doubles

from 4.8 to 8.4, where 85 percent target records

are captured by the additional 3.6 maximal repeats

(Table 3).

The reason behind this phenomenon is due to

the unstructured characteristic of the information

block, hence a target information block may be pre-

sented in more than one patterns. For this reason,

we have the rule that when we compute the re-

call rate for each pattern, only those records with

one third of contents spelt out by the pattern are

counted. Thus, even if all records of the target in-

formation block are contained in a maximal repeat,

the work of extending each record's (repeat's) bor-

der between two repeats still remains. Indeed, the

length of the repeat for patterns with a higher re-

call rate is often shorter than the patterns with a

lower recall rate. In other words, when validating

the localization of a repeat with a lower density

value, it becomes harder to locate the border of the

data record since the common repeated patterns

are shorter. Table 3 shows the result of the exper-

iment designed to demonstrate this point. In this

table, the last column also shows the corresponding

density of the pattern that is chosen for identifying

the target information. According to the result, the

density of the chosen pattern is greater than 0.5 for

half the examples. For those repeats with density

less than 0.5, further �ltering is needed to locate

the border of each record.

In addition to adjusting the parameters for reg-

ularity and localization, another factor that might

produce di�erent repeat patterns is how we trans-

late our original HTML pages for constructing PAT

trees. Table 1, 2, 3 present the case when all tag

classes are involved in the translation (each tag

is translated to their corresponding token class).

With di�erent translation, say ignoring text-level

tags, target blocks that cannot be recognized may

be extracted, but it may also cause other patterns

to be destroyed. For example, skipping physical

markups, including <TT>, <I>, <B>, <U>, etc.

(Fig 4), will decrease 13.2 percent tags. With the

regularity threshold � set to 0.5 and localization

threshold � set to 0.45, 96 percent targets can be

recognized. This di�erence is due to the increasing

for Excite, Open�nd, etc. comparing to the result



Search Engine sistrings H2 H3 maximal regularity vicinity localization H1 recall

AltaVista 1363.7 1006.3 612.5 91.7 60.5 4.5 4.00 4 100/100

Cora 1073.8 937.7 611.5 34.9 14.3 10.2 4.00 4 38/100

Excite 1113.3 840.7 597.8 55.8 11.8 3.4 1.00 1 30/100

Galaxy 1771.1 1333.5 774.9 59.5 25.5 18.5 7.00 7 186/196

Hotbot 727.8 561.6 365.4 32.4 24.3 6.7 6.00 6 100/100

Infoseek 1080.1 804.3 560 57.1 10.9 10.9 5.00 5 39/100

Lycos 900.1 686.2 444.6 29.2 6.9 1.2 1.00 1 100/100

Magellan 467.3 353.7 257.9 7.1 7 1 1.00 1 100/100

Metacrawler 1367 1079.3 651.3 63.6 18 9.8 4.10 3.2 36/200

Northernlight 1160.7 930.4 762.9 53.5 16.5 4.4 3.30 3.3 72/100

Open�nd 1216.4 994.5 512.7 16.5 5.9 5.6 1.20 1.2 40/200

Savvysearch 1092.6 837.6 579.6 30.8 26.1 3.9 1.80 1.8 49/150

Stpt.com 2045.5 1548.9 1067.1 75.3 30.4 11.5 4.80 4.5 0/250

Webcrawler 966.1 800.9 554.9 47.8 17.2 4 2.60 2.6 250/250

-22% -27% � = 0:5 � = 0:45 3.2 0.60

Table 2: Sistrings that start with ending tags (H2) or text token (H3) are ignored during PAT tree

construction phase.

Search Engine maximal regularity vicinity localization H1&H2 recall density

Altavista 91.70 60.50 4.50 4.50 4.50 100/100 0.85

Cora 73.70 29.70 17.30 12.90 12.10 86/100 0.36

Excite 67.20 66.90 12.40 4.00 1.30 30/100 0.26

Galaxy 62.60 26.50 19.50 15.80 15.80 186/196 0.68

Hotbot 38.80 26.30 7.70 7.70 7.70 100/100 1.01

Infoseek 77.10 18.60 18.00 16.40 15.50 95/100 0.51

Lycos 49.90 6.90 1.20 1.20 1.20 100/100 0.95

Magellan 8.10 7.00 1.00 1.00 1.00 100/100 1.04

Metacrawler 119.10 33.70 24.40 20.90 19.90 177/200 0.37

Northernlight 54.60 17.40 5.70 4.70 4.70 95/100 0.55

Open�nd 35.67 20.22 11.22 9.00 9.00 74/200 0.37

Savvysearch 71.50 43.90 11.80 10.50 10.50 150/150 0.41

Stpt.com 92.90 36.50 14.70 11.30 10.20 175/250 0.34

Webcrawler 51.60 16.90 4.00 4.00 4.00 250/250 0.94

� = 0:5 � = 0:15 8.4 0.85

Table 3: No. of repeats output when localization threshold is set to 0.15.

Search Engine no logical tags no special tags no physical tags

sistrings blk recall sistrings blk recall sistrings blk recall

AltaVista 1363.7 7.2 100/100 880.8 1.8 100/100 1241.3 6 100/100

Cora 1073.8 5.7 100/100 788.5 7.8 100/100 1004.0 6.2 100/100

Excite 1113.3 1.0 45/100 831.9 1.7 100/100 1040.4 1.6 100/100

Galaxy 1771.1 6.9 194/196 1294.5 6.2 191/196 1024.0 8.0 196/196

Hotbot 727.8 6.0 100/100 406.2 3.6 100/100 637.0 6.0 100/100

Infoseek 1080.1 10.4 100/100 777.2 4.5 82/100 918.9 7.3 100/100

Lycos 900.1 1.2 100/100 900.1 1.0 100/100 900.1 1.3 100/100

Magellan 467.3 1.0 100/100 331.8 1.0 100/100 374.7 1.0 100/100

Metacrawler 1367.0 7.6 177/200 831.9 6.4 120/200 1117.4 7.4 194/200

Northernlight 1180.3 3.3 95/100 950.8 3.2 72/100 1106.5 3.3 72/100

Open�nd 1214.6 1.5 50/200 1050.6 4.1 118/200 1061.2 3.6 160/200

Savvysearch 1092.6 6.9 145/150 665.3 5.5 140/150 989.2 4.1 150/150

Stpt.com 2045.5 6.6 0/250 1699.5 5.6 250/250 1893.1 6.8 250/250

Webcrawler 908.4 2.5 250/250 664.7 2.6 250/250 883.0 2.6 250/250

-0.4% 4.8 0.86 -26.2% 3.9 0.90 -13.2% 4.7 0.96

Table 4: Di�erent translation of HTML pages result in di�erent patterns.



in Table 1. Table 4 shows the e�ect of di�erent

translations. In conclusion, di�erent translations

of HTML �les may result in di�erent patterns. A

translation that enables the extraction of one page

may disables the pattern of another page.

6 Conclusion and Future Work
In this paper, we present an approach to semi-

structured information extraction based on the

recognition of repeated patterns in the translated

HTML input. The underlying technique is the

string manipulation based on the data structure

called the PAT tree. The PAT tree has been applied

in the �eld of information retrieval for indexing for

a long time [2]. It has also been used in Chinese

keyword extraction [1]. The essence of a PAT tree

is a binary suÆx tree, which has also been applied

in bioinformatics for �nding repeated substring in

genomes [5] etc. In the application of information

extraction, we are not only interested in repeats but

also repeats that represent interesting information

blocks.

To enable the extraction of repeat patterns, the

input HTML pages are translated into a simpler

form consisting of token classes and a PAT tree is

constructed based on these token classes. Next,

the validation criteria: regularity, vicinity, localiza-

tion and H2 and H3 are applied as validations of

interesting patterns, so that high recall can be ob-

tained. In our experiments, with regularity thresh-

old 0.5 and localization threshold 0.45, our extract-

ing procedure performs well on a wide range of

semi-structured Web pages.

One interesting direction that could further im-

prove the result of our extracting procedure is the

merging of the patterns in the �nal result. As we

described in the previous sections, a target infor-

mation block may reveal in several patterns. Each

stands for a fragment of the target record. Merg-

ing similar patterns may potentially help to re-

construct each record's boundary.

Compared to other information extraction re-

search [4, 6, 7], the goal of our approach is to

�nd repeats in the given HTML pages and recog-

nizes potential information blocks to be extracted.

The procedure is fully automatic, but is less pow-

erful in terms of handling di�erent permutations

of attributes in a record. Indeed, we are cur-

rently investigating how to apply such an approach

in SoftMealy wrapper induction system as a pre-

processing step to suggest potential information

blocks and record boundaries that serve as train-

ing examples. The resulting system can be applied

to equip an Internet spider that traverses and ex-

tracts interesting information on the Web without

any human intervention.
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