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Abstract

Mining frequent patterns in databases is a fundamental and essential problem in data mining re-
search. A continuity is a kind of causal relationship which describes a definite temporal factor with
exact position between the records. Since continuities break the boundaries of records, the number of
potential patterns will increase drastically. An alternative approach is to mine compressed or closed
frequent continuities. Mining compressed/closed frequent patterns has the same power as mining the
complete set of frequent patterns, while substantially reducing redundant rules to be generated and in-
creasing the effectiveness of mining. In this paper, we propose a method called projected window list
(PWL) technology for the mining of frequent continuities. We present a series of frequent continuity
mining algorithms, including PROWL+, COCOA and ClosedPROWL. Experimental evaluation on both
real world and synthetic datasets shows that our algorithm is more efficient than previously proposed
algorithms.

1. Introduction

Mining frequent patterns in databases is the fundamental and essential problem for the data mining

discipline. Over the past few years, numerous studies have been made in frequent pattern mining, includ-

ing frequent itemsets [1, 2, 7, 23], sequential patterns [3, 4, 6, 19, 22], frequent episodes [15], periodic

patterns [5, 8, 9, 16, 21], frequent continuities [10, 11, 20], causal relations [12, 18], etc. Some of the

previous studies, such as those on frequent itemsets, are on mining contemporal relationships, i.e., the

associations among items within the same transaction (record) where the transaction could be considered

as the items bought by the same customer, events which happened on the same day, etc. For the sake

of applications, measures such as conditional probability (confidence) and correlation have been used to



infer rules of the form “ the existence of item A implies the existence of item B”. For instance, a typical

association rule R1 will be “if a customer buys butter, there is 80% confidence that he/she buys bread at

the same time.” The same concept can be applied to other applications as well, e.g. we can find rule R2

in the stock market, such as “the prices of TSMC and UMC go up together on the same day with 80%

probability ”. However, such rules indicate only statistical and contemporaneous relationships between

items/events.

From the investors’ point of view, a rule R3 like “When the price of stock TSMC goes up for two

consecutive days, the price of stock UMC will go up on the third day with 60% probability.” may be more

significant. This kind of causal rules between stocks with definite temporal factors can be envisioned as

a tool for describing and forecasting of the behavior of temporal databases. While a number of studies

have been proposed for temporal relations, e.g. sequential patterns and frequent episodes, they have not

considered definite temporal relationships. For instance, they can find a rule R4 like “When the price of

stock TSMC goes up, the price of stock UMC will go up afterward.” The main difference between R3

and R4 is that R3 describes the temporal factor clearly between events, whereas R4 does not specify it.

The problem of mining association rules with definite temporal factor was defined by Tung et al. [20],

using the term “inter-transaction associations” in contrast to intra-transaction associations for contem-

porary associations. The term was used because it breaks the boundaries of transactions to cross-record

temporal associations. From this definition, mining frequent episodes [13, 14] and periodic patterns

[21, 8] from sequences are kinds of inter-transaction as well, if the input sequences for the mining

tasks are regarded as transactional databases. Thus, in order to distinguish the problem of Tung’s from

episodes and periodic patterns, Huang et al. call such definite temporal associations “continuity” as-

sociations. A rule like R3 can be generated from frequent continuities, an inter-transaction association

which correlates the definite temporal relationships with each object.

Frequent continuities can be applied in several domains, including temporal and spacial databases. It

is assumed that the domain of the dimensional attribute is ordinal and can be divided into equal length

intervals, which can be represented by non-negative integers 0, 1, 2, etc. For example, temporal intervals

can be divided into days, weeks, months and seasons, etc. and spacial intervals can be divided into miles,

regions, latitudes and longitudes, etc. In temporal relationships, we can employ frequent continuities in

trend discovery. Trend discovery is applied by comparing the sequence of contiguous data and searching
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(a) Price fluctuation rate (b) Similar shape of the sub-series

Figure 1. Two stock’s price fluctuation shape

for similar shapes according to some domain-specific notion of similarity. This type of pattern discovery

is used to study problem such as the evolution of stock prices and related populations. For example,

Figure 1(a) shows two stock’s price fluctuation rates over a 16 weeks. In this case, each transaction

(record) in the database registers the weekly price fluctuation rate of two stocks. If we apply the concept

of the continuities into trend discovery, a similar shape of the sub-series can be identified explicitly (see

Figure 1(b)).

Furthermore, we can extend the concept of the continuity into 2-dimensional remote-sensed images.

Take Figure 2 as an example, the database contains 2-dimensional records which describe the locations

of buildings. There are four shaded areas indicating that four blocks each contain a bus station, a school

and a parking lot. From this pattern, we can discover a rule such as “If a parking lot is located in the

north closed area (e.g. Kilometer-Square) of the bus station, there is likely to be a school in the east

closed area of the bus station.” Thus, we can infer the unknown building at Location(1, 3) as school

area by the above rule. A direct transformation from 2-dimension data into 1-dimension data is to follow

some specific order, such as T1 = (1, 1), T2 = (1, 2), . . . T64 = (8, 8). We then apply a one dimensional

continuity mining algorithm in this transformed data. In addition to this application, there are many

emerging applications, including key phase extraction in natural language processing, missing value

assignment, outlier detection, climatical patterns analysis, telecommunication network fault detection,

repeated patterns in biological data, etc.
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Figure 2. A remote sensed image.

Tung et al. [20] proposed an algorithm, FITI (First Intra Then Inter), for the mining of frequent conti-

nuities. FITI is a three-phase algorithm uses the important property “A frequent continuity is composed

of frequent intra-transaction itemsets and the don’t-care characters.” The first phase discovers intra-

transaction itemsets. The second phase transforms the original database into another format to facilitate

the mining of inter-transaction associations. The third phase follows the Apriori principle to perform a

level-wise mining. In order to make search quickly, FITI is devised with several hashing structures for

pattern searching and generation. Similar to Apriori-like algorithms, FITI could generate a huge number

of candidates and require several scans over the whole database to check which candidates are frequent.

Therefore, Huang et al. [11] introduced a projected window list technique, PROWL, which enumerates

new frequent continuities by checking frequent items in the following time slots of an existent frequent

continuity. PROWL utilizes memory for storing both vertical and horizontal formats of the database,

therefore it discovers frequent continuities without candidate generation. However, this algorithm was

only applied to sequences of events instead of transactional databases.

Since continuities break the boundaries of records, the number of potential continuities and the num-

ber of rules will increase drastically. This reduces not only efficiency but also effectiveness since users

have to sift through a large number of mined rules to find useful ones. Therefore, Huang et al. proposed

the mining of compressed continuities [10] as an alternative idea to the discovery of frequent continuity.
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A compressed continuity is a continuity which is composed of only closed itemsets and the don’t-care

characters. In this paper, we summarize a series of algorithms using PROWL technique and advance one

step further to discover closed frequent continuities which have no proper super-continuity with the same

support in databases. Mining closed frequent continuities has the same power as mining the complete

set of frequent continuities, while substantially reducing redundant rules to be generated and increasing

the effectiveness of mining. The performance study shows that our algorithms are efficient and scalable

for continuity mining, and are about an order of magnitude faster than the previous algorithm, FITI. The

rest of this paper is organized as follows. Section 2 reviews related work in pattern mining. We define

the problem of frequent continuities mining in Section 3. Section 4 presents our algorithms, including

PROWL, COCOA and ClosedPROWL, for mining frequent continuities, compressed continuities and

closed frequent continuities respectively. Experiments on both synthetic and real world datasets are

reported in Section 5. Finally, conclusions are made in Section 6.

2. Related Works

In this section, we distinguish four pattern mining tasks including sequential patterns, frequent episodes,

periodic patterns and frequent continuities and make an overall comparison between frequent itemsets

and the four mining tasks.

The problem of mining sequential patterns was introduced in [3]. This problem is formulated as

“Given a set of sequences, where each sequence consists of a list of elements and each element consists

of a set of items, and given a user-specified minsup threshold, sequential pattern mining is to find all

of the frequent subsequences, i.e., the subsequences whose occurrence frequency in the set of sequences

is no less than minsup.” The main difference between frequent itemsets and sequential patterns is that

A sequential pattern considers the order between items, whereas frequent itemset does not specify the

order. Srikant et al. proposed an Apriori-based algorithm, GSP (Generalized Sequential Pattern) [19].

However, in situations with prolific frequent patterns, long patterns, or quite low min sup thresholds, an

Apriori-like algorithm may suffer from handling a huge number of candidate sets and multiple database

scans. To overcome these drawbacks, Han et al. extend the concept of FP-tree [7] and proposed the

PrefixSpan algorithm by prefix-projected pattern growth [17] for sequential pattern mining. In addi-

tion to algorithms based on horizontal formats, Zaki proposed a vertical-based algorithm SPADE [22].

SPADE utilizes combinatorial properties to decompose the original problem into smaller sub-problems
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Figure 3. An example of temporal database TD.

that can be independently solved in main-memory using efficient lattice search techniques and simple

join operations.

The task of mining frequent episodes was defined on a sequence of event sets where the events are

sampled regularly. An episode is defined to be a collection of events in a specific window interval

that occur relatively close to each other in a given partial order [13]. An episode rule is an expression

P [V ] ⇒ Q[W ], where P and Q are event sequences and V and W are time window bounds. Mannila et

al. defined two kind of episodes: serial and parallel [13]. Serial episodes consider patterns with a spe-

cific order, while parallel episodes have no constraints on the relative order of eventsets. Take Figure 3

for example and consider a window size of 3. There are seven matches of the serial episode <AC, BD>,

from E1 to E7, in the temporal database TD in Figure 3. Meanwhile there are 13 matches of parallel

episode {A, B, C ,D} which occurs in sliding window [1,3], [2,4], [3,5], [4,6], [5,7], [6,8], [7,9], [8,10],

[9,11], [10,12], [11,13], [12,14] and [14,16]. Mannila et al. also presented a framework for discovering

frequent episode through a level-wise algorithm, WINEPI [13], for finding all serial/parallel episodes

that are frequent enough. This algorithm was an Apriori-like algorithm based on the “anti-monotone”

property of episodes. They also presented MINEPI [14], an alternative approach for the discovery of

frequent episodes based on minimal occurrences of episodes. Instead of counting the number of win-

dows containing an episode, MINEPI looks at the exact occurrences of an episode and the relationships

between those occurrences. Note that an episode considers only the partial order relation, instead of the

actual positions, of events in a time window bound.

Unlike episodes, a periodic pattern considers not only the order of events but also the exact positions

of events [8, 9, 21]. To form periodicity, a list of k disjoint matches is required to form a contiguous

subsequence with k satisfying some predefined minimum repetition threshold. For example, in Fig-

ure 3, pattern (AC,*,BD) is a periodic pattern that matches P1, P2, and P3, three contiguous and disjoint
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Notation Order Temporal Input Constraint
Frequent Itemset {i1, . . . , in} N N a transaction DB

Sequential Pattern I1, . . . , In Y Y a sequence DB
Serial Episode < I1, . . . , In > Y Y a sequence

Parallel Episode {I1, . . . , In} N Y a sequence
Frequent Continuity [I1, . . . , In] Y Y a sequence 1

Periodic Pattern (I1, . . . , In) Y Y a sequence 12

1 Fixed interval between Ii and Ii+1. 2 Contiguous match.

Table 1. Comparison of various pattern mining.

matches, where eventset {A,C} (resp. {B,D}) occurs at the first (resp. third) position of each match.

The character “*” is a “don’t care” character, which can match any single set of events. Note that P4 is

not part of the pattern because it is not located contiguously with the previous matches. To specify the

occurrence, we use a 4-tuple (P , l, rep, pos) to denote a valid segment of pattern P with period l starting

from position pos for rep times. In this case, the segment can be represented by ((AC,*,BD), 3, 3, 1).

Algorithms for mining periodic patterns also fall into two categories, horizontal-based algorithms, LSI

[21], and vertical-based algorithms, SMCA [8, 9].

A continuity pattern is similar to a periodic pattern, but without the constraint on the contiguous and

disjoint matches. For example, pattern [AC,*,BD] is a continuity with four matches P1, P2, P3, and P4

in Figure 3. The term continuity pattern was coined by Huang et. al. in [11] to replace the general term

inter-transaction association defined by Tung, et al. in [20], since episodes and periodic patterns are

also a kind of inter-transaction associations in the conceptual level. In comparison, frequent episodes

are a loose kind of frequent continuities since they consider only the partial order between events, while

periodic patterns are a strict kind of frequent continuities with constraints on the subsequent matches.

In a word, frequent episodes are a general case of the frequent continuity, and periodic patterns are a

special case of the frequent continuity. As noted in the introduction, two algorithms have been proposed

for the task. FITI [20] is an Apriori-based algorithm which uses breadth-first enumeration for candidate

generation and scans the horizontal-layout database. The PROWL algorithm [11], on the other hand,

generates frequent continuities using depth first enumeration and relies on the use of both horizontal and

vertical-layout database.

Table 1 shows the comparison of the above mining tasks with frequent itemsets. The column “Order”

represents whether the discovered pattern contains order; the column “Temporal” indicates whether the
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task is defined for a temporal database. According to the input database, frequent itemsets and sequential

patterns are similar since they are defined on databases where the order among transactions/sequences

is not considered; whereas episodes, continuities, and periodic patterns are similar for they are defined

on sequences of events that are usually sampled regularly. Frequent itemsets and sequential patterns are

defined for a set of transactions and a set of sequences, respectively. Frequent itemsets show contemporal

relationships, i.e., the associations among items within the same transaction; whereas sequential patterns

present temporal/causal relationships among items within transactions of customer sequences. Finally,

the differences of serial episodes, parallel episodes, periodic patterns, continuities are summarized in

Table 1 as discussed above.

3. Problem Definition

In this section, we define the problem of frequent continuity mining. We start from the definition of

frequent continuity mining, then introduce the notion of compressed continuity and closed continuity, in

turn. Let E be a set of all events. An event set is a non-empty subset of E. The input sequence can be

described using a more general concept like a temporal database. A temporal database TD is a set of

time records where each time record is a tuple (tid, Xi) for time instant tid and eventset Xi (Xi ⊆ E).

Note that tid is an ordinal dimension and is divided into equal length interval. A sliding window W is a

block of W continuous intervals along the time domain. A database stored in form of (tid, Xi) is called

horizontal format (e.g. Figure 3). We say that an event set Y is supported by a time record (tid,Xi) if

and only if Y ⊆ Xi. An event set with k events is called a k-eventset.

Definition 3.1 A continuity with time window bound W is a nonempty sequence P = [p1, p2, . . . , pW ]

where p1 is an eventset and others are either an eventset or *, i.e. pj ⊆ E or {*} for 2 ≤ j ≤ W .

The symbol “*” is introduced to allow mismatching (the “don’t care” position in a pattern). Since a

continuity can start anywhere in a sequence, we only need to consider patterns that start with a non-“*”

symbol. A continuity P is called an L-continuity or has length L if exactly L positions in P contain

eventset. For example, [“AC”,*,*] is an 1-continuity; [“AC”,*,“BD”] is a 2-continuity which has length

2.
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Definition 3.2 Given a continuity P = [p1, p2, . . . , pW ] and a subsequence of W continuous slots D =

(d1, d2, . . . , dW ) in TD (also called a sliding window), we say that D supports P if and only if, for each

position j (1 ≤ j ≤ l), either pj = * or pj ⊆ dj is true. D is also called a match of P .

In general, given a temporal database and a pattern P , multiple matches of P may exist. In Figure 3,

P1, P2, . . . , P4 are four matches of the continuity pattern [AC,*,BD].

Definition 3.3 The concatenation of two continuity patterns P = [p1, . . . , pw1
] and Q = [q1, . . . , qw2

] is

defined as P · Q = [p1, . . . , pw1
, q1, . . . , qw2

]. P is called a prefix of P · Q.

Definition 3.4 An inter-transaction association rule generated from continuity patterns is an implica-

tion of the form X ⇒ Y , where

1. X,Y are continuities with window w1 and w2, respectively.

2. The concatenation X · Y is a continuity with window w1 + w2.

Similar to the studies in mining intra-transaction rules, continuity inter-transaction association rules

are governed by two interestingness measures: support and confidence.

Definition 3.5 Let |TD| be the number of transactions in the temporal database TD. Let Sup(X · Y )

be the number of matches with respect to continuity X · Y and Sup(X) be the number of matches

with respect to continuity X . Then, the support and confidence of an inter-transaction association rule

X ⇒ Y are defined as

Support =
Sup(X · Y )

|TD|
, Confidence =

Sup(X · Y )

Sup(X)
. (1)

Definition 3.6 A continuity C is a frequent continuity if and only if the number of supports of C is at

least the required user-specified minimum supports (i.e., minsup).

Example 3.1 Let user-specified threshold minimum support (minsup) and minimum confidence (minconf )

be 25 percent and 60 percent respectively. An example of an inter-transaction association rule with max-

imum time window bound (maxwin) = 3 from the database in Figure 3 will be:

[AC, ∗] ⇒ [BD].

This rule (Eventset {B,D} occurs two slots later after eventset {A,C}.) holds in the temporal database

TD with support = 25%(4/16) and confidence = 67%(4/6).
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As in classical association rule mining, if the frequent continuities and their support are known,

the inter-transaction rule generation mining is straightforward. Hence, the problem of mining inter-

transaction rules is reduced to the problem of determining frequent continuities and their support. There-

fore, the problem is formulated as follows: given a minimum support level minsup and a maximum time

window bound maxwin, our task is to mine all frequent continuities from temporal database with sup-

port greater than minsup and window bound less than maxwin.

Since frequent continuity mining often generates a very large number of frequent continuities, it hin-

ders the effectiveness of mining since users have to sift through a large number of mined rules to find

useful ones. Therefore, we proposed an alternative idea to mine “compressed” and “closed” frequent

continuities, which have the same power as mining the complete set of frequent continuities, while sub-

stantially reducing redundant pattern generation and increasing the effectiveness of the mining process.

Definition 3.7 A compressed continuity with time window bound W is a nonempty sequence CP ′ =

[cp1, cp2, . . . , cpW ] where cp1 is a closed frequent itemset and others are either closed frequent itemsets

or *.

In Figure 3, pattern [AC,*,D] is a compressed frequent continuity in Figure 3, while pattern [A,*,D],

[C,*,D] are not compressed frequent continuity patterns since event A and C are not closed frequent

itemsets.

Definition 3.8 Given two continuities P = [p1, p2, . . . , pu] and P ′ = [p′1, p
′
2, . . . , p

′
v], we say that P

is a super-continuity of P ′ (i.e., P ′ is a sub-continuity of P ) if and only if, for each non-* pattern p′
j

(1 ≤ j ≤ w), p′j ⊆ pj+o is true for some integer o. The integer o is also called the offset of P and

v + o ≤ u.

For example, continuity P = [AC,E,BD] is a super-continuity of continuity P ′ =[E, B,*], since the

pattern E (B, resp.) is a subset of E (BD, resp.) with offset 1. On the contrary, continuity P ′′ =[E,B,AC]

is not a sub-continuity of P , since P ′′ can not map to P with a fixed offset. Note that if we don’t consider

the offset in the continuity matching, the continuity P ′ will not be a sub-continuity of continuity P .

Definition 3.9 A continuity C = (c1, c2, . . . , cW ) is a closed continuity if there exists no proper super-

continuity of C that has the same support as C in database.
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With closed frequent continuities, we can directly generate a reduced set of inter-transaction rules

without having to determine all frequent continuities, thus reducing the computation cost.

4. The Algorithms

This section presents three algorithms including PROWL+, COCOA and ClosedPROWL, for mining

frequent continuities, compressed continuities and closed frequent continuities respectively.

4.1 PROWL+

In this section, we extend the PROWL [11] algorithm for frequent continuity mining in temporal

databases. Unlike Apriori-like algorithm which uses bread first enumeration for candidate pattern gen-

eration, PROWL enumerates new frequent continuities by concatenating a frequent item in the projected

window list of an existent frequent continuity using depthth first enumeration. To facilitate this enumer-

ation, PROWL utilizes memory for storing both the time slots for each event (called vertical formats,

e.g. Figure 4(a)) and the events at each time slot (called horizontal formats, e.g. Figure 3). To see

how PROWL works, we defined the so called projected window list, starting from the definition of the

timelist for a continuity. Formally, the time list of a continuity pattern P records the sliding windows

that support P , particularly, the last time slots of all matches.

Definition 4.1 Given a temporal database D and a continuity P with time window bound W , let Ii

denote a subsequence of W time slots Ii = (D[ti], D[ti + 1], . . . , D[ti + W − 1]) in D that supports P .

Assume there are k matches of P in D. The time list of P is defined as P.timelist = {t1 + W − 1, t2 +

W − 1, . . . , tk + W − 1}, i.e. the set of the last time slots of all matches.

By definition, each event is itself a continuity with window 1. The time list for an 1-continuity pattern

is consistent with the time list for an event. Now, we define the projected window list of a pattern as

follows.

Definition 4.2 Given the time list of a continuity P , P.timelist = {t1, t2, . . . , tk} in the database D, the

projected window list (PWL) of P with offset d is defined as P.PWLd = {w1, w2, . . . , wk} , wi = ti +d

for 1 ≤ i ≤ k. Note that a time slot wi is removed from the projected list if wi is greater than |D|, i.e.

wi ≤ |D| for all i.
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Event Time List
A 1, 4, 7, 8, 11, 14
B 3, 5, 6, 9, 12, 16
C 1, 4, 7, 8, 11, 14, 15
D 3, 5, 6, 9, 12, 13, 16
E 2, 5, 8, 10, 13, 15

ID F.I. Time List Note
[1] {A} 1, 4, 7, 8, 11, 14
[2] {B} 3, 5, 6, 9, 12, 16
[3] {C} 1, 4, 7, 8, 11, 14, 15 C.F.I.
[4] {D} 3, 5, 6, 9, 12, 13, 16 C.F.I.
[5] {E} 2, 5, 8, 10, 13, 15 C.F.I.
[6] {A, C} 1, 4, 7, 8, 11, 14 C.F.I.
[7] {B, D} 3, 5, 6, 9, 12, 16 C.F.I.

(a) Vertical database layout (b) Encoding table of the frequent itemsets

Figure 4. Vertical format and frequent itemsets for example database TD

If an itemset X is frequent in the projected window list of pattern P with offset 1, we refer to the

concatenation P · X as an extension of P and P · X.timelist = P.PWL1
⋂

X.timelist. We call X a

frequent follower of P . Take Figure 3 as an example. The time list of continuity [C] is {1, 4, 7, 8, 11,

14, 15}, the projected window list is P[C].PWL1 = {2, 5, 8, 9, 12, 15, 16}, which is also the time list

for continuity [C, ∗] (the don’t care character has a time list which includes all time slots). Therefore,

the projected window list of [C, ∗] is P[C,∗].PWL1 = {3, 6, 9, 10, 13, 16}. Since [D] is a frequent item

in P[C,∗].PWL1 (minsup = 25%), we can concatenate pattern [C, ∗] with pattern [D] as a frequent

continuity [C, ∗, D], which has the time list={3, 6, 9, 13, 16}. In this way, PROWL discovers frequent

continuities without candidate generation.

However, PROWL was designed only for sequences of events, not for eventset sequences where mul-

tiple events can occur at a time slot. The reason for this is that the pattern growing method considers only

one single events instead of eventsets at one time. To extend PROWL to general temporal databases, we

utilize the important property that a frequent inter-transaction continuity pattern must be made up of

frequent intra-transaction itemsets [20]. Therefore, The PROWL+ algorithm consists of three phases,

including intra-transaction itemset mining, database transformation and inter-transaction continuity min-

ing.

• The first phase of PROWL+ involves the mining of frequent intra-transaction itemsets. Since the

third phase of the algorithm requires the time lists of each intra-transaction itemset, this phase is

mined using a vertical mining algorithm, Eclat[23], for frequent itemsets mining.

• The second phase is database transformation, where it encodes each frequent itemset (abbreviated

12



Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Code [1] [5] [2] [1] [2] [2] [1] [1] [2] [5] [1] [2] [4] [1] [3] [2]

[3] [4] [3] [4] [4] [3] [3] [4] [3] [4] [5] [3] [5] [4]
[6] [7] [6] [5] [7] [6] [5] [7] [6] [7] [6] [7]

[7] [6]

Figure 5. Recovered horizontal database of TD

F.I.) with a unique ID and constructs a recovered horizontal database composed of the IDs. To

illustrate, Figure 4(b) shows the encoding table of F.I. in Figure 3. Next, based on the time lists

of the frequent itemsets together with the encoding table, we construct a recovered horizontal

database as shown in Figure 5.

• In the third phase, we discover all frequent continuities from the recovered horizontal database by

concatenating a frequent continuity with the F.I.s in its projected window lists using depth-first

enumeration. Figure 6 outlines the proposed PROWL+ algorithm. For each frequent 1-continuity

P , or equivalently frequent itemset (ID), we calculate its projected window list with offset 1 from

P.timelist and examine the time slots of P.PWL in RD (Step 3∼7 in the Project) to find all

followers, i.e. IDs. New frequent continuities are formed by concatenating P with a frequent

follower (Step 9∼10 of Project). The procedure Project is applied recursively to enumerate all

continuities with known frequent continuities as their prefixes. The recursive call stops when the

layer is greater than maxwin (Step 1 of procedure Project).

We illustrate the three phases of the PROWL+ algorithm using the following example.

Example 4.1 Given minsup = 25% (4 times) and maxwin = 3, the frequent itemsets for Figure 3

include {A}, {B}, {C}, {D}, {E}, {A,C} and {B,D}. Each frequent itemset is encoded with a

unique ID as shown in Figure 4(b). Then, we construct a recovered horizontal database composed of

the IDs by the time lists of the frequent itemsets (see Figure 5).

For ID [1], the projected window list is P[1].PWL = {2, 5, 8, 9, 12, 15}, which is also the time list

of continuity [[1], ∗]. By examining the time slots of P[1].PWL in Figure 5, the number of occurrences

for [1], [2], [3], [4], [5], [6] and [7] in P[1].PWL1 are calculated respectively as 1, 3, 2, 3, 4, 1 and

3. Since only [5] has sufficient support, others are simply ignored. Therefore, the frequent continuity

generated from prefix [1] is [[1], [5]], i.e. [A,E], with 4 matches. Note that the frequent continuities
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Given the recovered horizontal database RD, the encoding table V D, minsup, maxwin;

Procedure of PROWL+()
1. for each ID IDi ∈ V D do
2. Pattern[0] = IDi;
3. for j = 1 to maxwin − 1 do
4. Pattern[j] = *;
5. Project(V D[IDi], Pattern, 1);
6. end

Subprocedure of Project(T imeList, Pattern, Layer)
1. begin if (Layer <= maxwin) then
2. TempV D.clear();
3. for each time instant Ti ∈ T imeList do
4. if (Ti < |RD|) then
5. PWL = Ti + 1;
6. for each ID IDj ∈ RD[PWL] do
7. TempV D[IDj].insert(PWL);
8. begin for each ID IDi ∈ TempV D do
9. if (TempV D[IDi].size >= minsup) then
10. Pattern[Layer] = IDi;
11. Project(TempV D[IDi], Pattern, Layer + 1);
12. Output Pattern;
13. Pattern[Layer] = *;
14. Project(T imeList, Pattern, Layer + 1);
15. end
16. end

Figure 6. PROWL+: Frequent Continuity mining algorithm
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should be decoded from its original symbol sets while it is being output. Using depth-first enumeration,

we examine the frequent IDs in P[[1],[5]].PWL = {3, 6, 9, 16} to extend the continuity [[1], [5]], where we

acquire three continuities including [[1], [5], [2]], [[1], [5], [4]] and [[1], [5], [7]], each with 4 occurrences.

Note that the projected window list of these three continuities is {4, 7, 10} (time record 17(16+1) is

greater than sequence length 16), they can not be extended to any longer, so the calls to procedure

Project stop.

Recursively, we apply the above process to continuity [[1], ∗]. The projected window list of [[1], ∗]

is P[[1],∗].PWL = {3, 6, 9, 10, 13, 16}. In this layer, we find the frequent IDs [2], [4] and [7] in time

records of P[[1],∗].PWL. Thus, three continuities are generated: [[1], ∗, [2]], [[1], ∗, [4]], and [[1], ∗, [7]],

(i.e. [A, ∗, B], [A, ∗, D], [A, ∗, BD]). The extensions of the continuities can be mined by applying the

above process respectively to each continuity. In summary, all frequent continuities with window 2, and

having prefix [1] can be generated by concatenating [1] with a frequent event in P[1].PWL or the don’t

care symbol. Similarly, we can find all frequent continuities having prefix [2] by constructing P[2].PWL

and mining them respectively. The set of frequent continuities is the collection of patterns found in the

above recursive mining process.

4.2 COCOA

Since inter-transaction associations break the boundaries of transactions, the number of potential item-

sets and the number of rules will increase drastically. This reduces not only efficiency but also effective-

ness since users have to sift through a large number of mined rules to find useful ones. Thus, we apply

closed frequent itemset mining instead of frequent itemset mining in the first phase to reduce the number

of IDs. For example, frequent itemsets {A} and {B} in Figure 4(b) can be ignored since they are not

closed frequent itemsets, thus enumeration beginning with [1] and [2] can be eliminated. Therefore, we

have a similar three-phase algorithm, COCOA, ( Compressed Continuity Analysis ), where the other two

phases in COCOA are exactly the same as in PROWL+, while the first phase is replaced by CHARM

[24] for closed frequent itemset mining. The result of the mining is the compressed continuities, as de-

fined in Definition 3.7. Similar to COCOA, we can also replace the first phase of FITI by mining closed

frequent itemset to discover compressed continuities. We call the corresponding algorithm ComFITI.

The algorithm performances between COCOA and of ComFITI are compared in Section 5.
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4.3 ClosedPROWL

Although compressed continuity reduces the number of continuities, they are not the minimum set

which represent all continuities. The ideal set is the closed continuities which is the target of Closed-

PROWL. Similar to PROWL+ and COCOA, the ClosedPROWL algorithm also consists of three phases.

In the first phase, we mine frequent closed itemsets (abbreviated C.F.I.). The second phase is the same

as PROWL+, but only the closed patterns are transformed. The third phase of ClosedPROWL is outlined

in Figure 4.3. We apply two pruning strategies: sub-itemset pruning and sub-continuity pruning to

reduce redundant enumeration in lines 9-11 and 15 of the ClosedProject procedure, respectively. The

sub-itemset pruning strategy can be stated as follows.

Sub-itemset pruning: For two C.F.I. x and y in the project window list of a continuity P , if Sup(P ·

[x]) = Sup(P · [y]), the sub-itemset pruning works as following properties:

1. If x ⊂ y, then remove x since all extensions of P · [x] must not be closed.

2. If x ⊃ y, then remove y since all extensions of P · [y] must not be closed.

3. If x.timelist = y.timelist and neither x ⊂ y nor x ⊃ y, then remove both x and y, since all

extensions of P · [x] and P · [y] must not be closed.

The correctness of the pruning technique can be proven by the following lemma and theorems.

Lemma 4.1 Let P = [p1, p2, . . . , pw] and Q = [q1, q2, . . . , qw] be two frequent continuities and P.timelist =

Q.timelist. For any frequent continuity U , if P · U is frequent, then Q · U is also frequent, vice versa.

For example, the time lists of continuities [C,D] and [C,BD] in Figure 3 are both {5, 9, 12, 16}. The

probable frequent followers in the projected window list of pattern [C,D] and [C,BD] with offset 1 are

the same, e.g., {B} : 1, {D} : 2, {B,D} : 1, {E} : 2, {D,E} : 1 (the number after “:” indicate the

support counts).

Theorem 4.1 Let P = [p1, p2, . . . , pw, pw+1] and Q = [p1, p2, . . . , pw, p′w+1] be two continuities. If

pw+1 ⊂ p′w+1 and Sup(P ) = Sup(Q), then all extensions of P must not be closed.
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Given recovered the horizontal database RD, vertical database V D, minsup and maxwin;

Procedure of ClosedPROWL()
1. for each ID IDi ∈ V D do
2. if (V D[IDi].size >= minsup) then
3. Pattern[0] = IDi;
4. for j = 1 to maxwin − 1 do
5. Pattern[j] = *;
6. Project(V D[IDi], Pattern, 1);
7. end

Subprocedure of ClosedProject(T imeList, Pattern, Layer)
1. begin if (Layer <= maxwin) then
2. TempV D.clear();
3. PHTab.clear(); // Hash Table for SubItemsetPruning
4. for each time instant Ti ∈ T imeList do
5. if (Ti < |RD|) then
6. PWL = Ti + 1;
7. for each ID IDj ∈ RD[PWL] do
8. TempV D[IDj].insert(PWL);
9. for each ID IDi ∈ TempV D do
10. if (TempV D[IDi].size >= minsup) then
11. SubItemsetPruning(TempV D[IDi], PHTab);
12. for each entity Hi ∈ PHTab do
13. Pattern[Layer] = Hi.ID;
14. Project(TempV D[IDi], Pattern, Layer + 1);
15. SubContinuityPruning(Hi.Sup, Pattern, Laye + 1);
16. Pattern[Layer] = *;
17. Project(T imeList, Pattern, Layer + 1);
18. end

Figure 7. ClosedPROWL: Closed Frequent Continuity mining algorithm
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Proof 4.1 Since pw+1 is a subset of p′w+1, wherever p′w+1 occurs, pw+1 occurs. Therefore, P.timelist ⊇

Q.timelist. Since Sup(P ) = Sup(Q), the equal sign holds, i.e. P.timelist = Q.timelist. For any

extension P ·U of P , there exists Q ·U (Lemma 4.1), such that Q ·U is a super-continuity of P ·U , and

(P ·U).timelist = P.PWL|U |
⋂

U.timelist= Q.PWL|U |
⋂

U.timelist = (Q ·U).timelist. Therefore,

P · U is not a closed continuity.

Theorem 4.2 Let P = [p1, p2, . . . , pw, pw+1] and Q = [p1, p2, . . . , pw, p′w+1] be two continuities. If

P.timelist = Q.timelist and neither pw+1 ⊂ p′w+1 nor pw+1 ⊃ p′w+1, then all extensions of P and Q

must not be closed.

Proof 4.2 Consider the continuity U = [p1, p2, . . . , pw, pw+1∪ p′w+1]. U.timelist=P.timelist
⋂

Q.timelist. Since P.timelist = Q.timelist, we have U.timelist=P.timelist=Q.timelist. Using The-

orem 8, all extensions of P and Q can not be closed because Sup(U) = Sup(P ) = Sup(Q).

In order to make the pruning efficient, we devise a hash structure, PHTab (prune header table) with

PHsize buckets. All C.F.I.s with the same support counts are hashed into the same bucket. Each entry

in the same bucket records a frequent ID x of the current continuity P , the time list of P · [x], and

the support count of P · [x]. The comparison of two frequent C.F.I. x and y in the projected window

lists of a continuity P is restricted to the frequent IDs in the same buckets with the same support.

As shown in Figure 8, each new generated C.F.I. Pattern(Hi.ID) must be examined by sub-itemset

pruning strategy. Firstly, we initialize the bucket number bkNum as Hi− > size%PHSize (see line 1

in procedure SubItemsetPruning). If the C.F.I. of Hi.ID, Pattern(Hi.ID), is the subset of some C.F.I.

Pattern(Hj.ID) in PHTab[bkNum], property 1 is applied (line 5–7). Conversely, we employ property

2 to delete the unnecessary C.F.I. in PHTab[bkNum] if the new generated continuity is the superset of

the C.F.I. (line 8–10). To apply property 3, we remove both Hi.ID and Hj.ID from PHTab[bkNum]

if their timelists are equivalent (line 11–14).

The sub-itemset pruning technique removes the non-closed sub-continuity of closed frequent conti-

nuities with zero offset since the pruning is invoked within a local search of a continuity. For those

sub-continuities of closed frequent continuities with non-zero offset, they can still be generated in the

mining process. Therefore, we need a checking step to remove non-closed continuities. Again, a hash

structure, FCTab (frequent continuity table), is devised to facilitate efficient sub-continuity checking
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SubProcedure of SubItemsetPruning(TempV D[IDi], PHTab)
1. bkNum = TempV D[IDi].size%BucketSize;
2. IsClosed = true;
3. for each entry Hj ∈ PHTab[bkNum] do
4. if (TempV D[IDi].size == Hj.sup ) then
5. if (Pattern(IDi) ⊂ Pattern(Hj.ID) ) then
6. IsClosed = false; // Prune Subtree of IDi

7. break;
8. else if (Pattern(IDi) ⊃ Pattern(Hj.ID) ) then
9. Delete Hj; // Prune Subtree of Hj.ID
10. break;
11. else if (TempV D[IDi].timelist == TempV D[Hj.ID].timelist ) then
12. Delete Hj; // Prune Subtree of IDi and Hj

13. IsClosed = false;
14. break;
15. if ( IsClosed ) then
16. Add IDi into PHTab[bkNum];

Figure 8. SubItemsetPruning: Sub-Itemset Pruning strategy

SubProcedure of SubContinuityPruning(Sup, Pattern, Layer)
1. bkNum = Sup%BucketSize;
2. IsClosed = ture;
3. for each entry Pi ∈ FCTab[bkNum] do
4. if (Sup == Pi.sup ) then
5. if (Pattern ⊂ Pi.Pattern ) then
6. Delete Pi; // Prune Subtree of Hj.ID
7. break;
8. else if (Pattern ⊃ Pi.Pattern ) then
9. IsClosed = false;
10. break;
11. if ( IsClosed ) then
12. Add Pattern into FCTab[bkNum];

Figure 9. SubContinuityPruning: Sub-Continuity Pruning strategy
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Figure 10. Process of ClosedPROWL for prefix [3].

using the following as the hashing function:

bkNum = Sup(P )%BucketSize. (2)

The procedure SubContinuityPruning is shown in Figure 9. If the new generated continuity X has the

same support with a sub-continuity Y in FCTab, Y can be pruned since Y is not a closed continuity

(line 5–7). On the other hand, if X is a sub-continuity of an existing one Y in FCTab, we simply ignore

X (line 8–10). We will use the following example to illustrate the mining process of ClosedPROWL and

its corresponding flowchart is depicted in Figure 10.

Example 4.2 Given minsup = 25% (4 times) and maxwin = 3, we discover all closed frequent continu-

ities as follows. Let the bucket size of both hash structures be 4. Phase I and Phase II of ClosedPROWL

produces closed frequent itemsets and recovered horizontal database, including the IDs [3], [4], [5], [6]

and [7] (see Figure 5(b). The mining process for prefix [3] is shown in Figure 10. By examining the time

slots of P[3].PWL1 the frequent continuities generated from prefix [3] are [[3], [4]], [[3], [5]] and [[3], [7]]

with 4 matches. To apply the subitemset pruning, we insert these three continuities into the PHTab of

prefix [[3]] at bucket matches%4. Since the ID [4] ({D}) is a sub-itemset of the ID [7] ({BD}), the
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Bucket Frequent ID Sup Time list
[4] 4 {5, 9, 12, 16}

0 [5] 4 {2, 5, 8, 15}
[7] 4 {5, 9, 12, 16}

1
2
3

Bucket Frequent ID Sup Time list
0 [4] 4 {3, 6, 9, 16}

[7] 4 {3, 6, 9, 16}
1
2
3

(a) PHTab of the prefix [C] (b) PHTab of the prefix [C, E]

Figure 11. Pruning header table (PHTab) for sub-itemset pruning.

continuity [[3], [4]] is removed (see Figure 11(a)). Therefore, only the continuities [[3], [5]] and [[3], [7]]

are inserted into FCTab.

Next, the projected window list of {[3], [5]} is P{[3],[5]}.PWL1 = {3, 6, 9, 16}. In this layer, there exists

two frequent IDs in P{[3],[5]}.PWL1, [4] and [7]. Again, we apply the sub-itemsets pruning to remove ID

[4] (see Figure 11(b)) because [4] ⊂ [7] ({D} ⊂ {B,D}). For prefix [3], there are six potential closed

continuities that insert into FCTab, including [3], [[3], [5]], [[3], [7]], [[3], [5], [7]], [[3], ∗, [4]], [[3], ∗, [7]]

as shadow parts in Figure 10. Finally, we apply the sub-continuity pruning to remove non-closed conti-

nuities, the frequent continuity table after mining in prefix [3] is shown as Figure 12. Taking bucket 0 in

FCTab as an example, since continuities [C,E] ([[3], [5]]) is a sub-continuity of the continuity [C,E,BD]

([[3], [5], [7]]), it can be removed. Similarly, [C, ∗, BD] is also a sub-continuities of [C,E,BD], so it can

be removed. After employing the sub-continuity pruning, we find four potential closed frequent conti-

nuities of the prefix [C] ([3]), including [C], [C, ∗, D], [C,E] and [C,E,BD] . Note that these closed

continuities are not all closed continuities in the overall data since they could be removed by their super-

continuities with the same support in other prefix pattern. For example, after mining process of prefix

[4], [5], [6] and [7], we will find five closed frequent continuities, including [C], [AC, ∗, BD], [AC, ∗, D],

[AC,E,BD] and [C,BD] of the temporal database TD in Figure 3.

4.4 Correctness

We prove the correctness of the ClosedPROWL algorithm in this section. Since the search space of

the PROWL and COCOA are the same as ClosedPROWL except for the pruning strategies, they can be

proved similarly.
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Bucket Continuity Sup
0 [C, E] 4

[C, BD] 4
[C, E, BD] 4
[C, *, BD] 4

1 [C, *, D] 5
2
3 [C] 7

Figure 12. Frequent continuity table (FCTab) for sub-continuity checking.

Lemma 4.2 The time list of a continuity P = [p1, p2, ...., pw] is P.timelist =
⋂w

i=1 pi.PWLw−i.

We define the closure of an itemset p, denoted c(p), as the smallest closed set that contains p. If p is

closed, then c(p) = p. By definition, Sup(p) = Sup(c(p)) and p.timelist = c(p).timelist.

Theorem 4.3 A closed continuity is composed of only closed itemsets and don’t care characters.

Proof 4.3 Assume P = [p1, p2, . . . , pW ] is a closed continuity, and some of the pis are composed of non-

closed itemsets. Consider the continuity CP = [c(p1), c(p2), . . . , c(pW )], CP.timelist =
⋂w

i=1 c(pi).PWLw−i

=
⋂w

i=1 pi.PWLw−i = P.timelist (Lemma 4.2). Therefore, P is not a closed continuity. We thus have a

contradiction to the original assumption that P is a closed continuity and thus conclude that “all closed

continuities P = [p1, p2, . . . , pW ] are composed of only closed itemsets and the don’t-care characters”.

Theorem 4.3 is an important property as it provides a different view of mining closed frequent conti-

nuities. The observation tells us that instead of mining frequent itemsets, we can mine closed frequent

itemsets before mining closed frequent continuities.

Theorem 4.4 The ClosedPROWL algorithm generates all closed frequent continuities.

Proof 4.4 First of all, the anti-monotone property “if a continuity is not frequent, all its super-continuities

must be infrequent” is sustained for closed frequent continuities. According to Theorem 4.3, the search

space composed of only closed frequent itemset covers all closed frequent continuities. ClosedPROWL’s

search is based on a complete set enumeration space. The only branches that are pruned as those that do

not have sufficient support. The sub-itemet pruning only removed non-closed continuities (Theorem 4.1).
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Figure 13. Partition example.

Therefore, ClosedPROWL correctly identifies all closed frequent continuities. On the other hand, sub-

continuity checking remove non-closed frequent continuities. Therefore, the ClosedPROWL algorithm

generates all and only closed frequent continuities.

4.5 Extra-large

The proposed algorithms are basically memory-based algorithms, and their efficiency comes from

the removal of database scans and candidate generation that are required by FITI. If the data is too

large to fit in the memory space, a partition-and-validation strategy can be used to handle such a case.

Suppose the temporal database is composed of n time records, we divides the n time records into k

partitions. Since the frequent continuities consider the cross-transaction patterns, each partition should

has maxwin−1 overlapping area to avoid losing patterns in generation. Each partition can be handled in

memory by our algorithms. The local minimum support count for a partition is minsup multiplied by the

number of time records in that partition. The local frequent continuities are false-positive continuities.

Therefore, an additional scan of the original database is necessary in order to determine the global

frequent continuities. Take Figure 13 as an example. Let minsup = 25% (4 times) and maxwin =

3, suppose the memory only maintain 7 time records each time. Therefore, we divides the 16 time

record windows into 3 partitions, partitions 1 to 3, as shown in Figure 13. Firstly, we mine the local

frequent continuities which satisfied the local minimum support 25% (d7 ∗ 25%e = 2 times) in each

partition. Finally, we scan the temporal database once to check which continuity is true-positive frequent

continuities, satisfying the global minimum support of 25% (d16 ∗ 25%e = 4 times).
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4.6 Space requirements and improvement

Since the projected window list technique employs depth first enumeration for mining frequent conti-

nuities, it only generates longer patterns based on shorter ones. Specifically, it does not generate/maintain

any candidate patterns for checking. However, ClosedPROWL needs to maintain generated continuities

for subitemset and subcontinuity pruning. Compared with COCOA, we require additional memory to

store PHTab and FCTab. Assume that average matches of each continuity and the number of potential

continuities are t and n respectively. The maximum space requirement of PHTab is n ∗ t (n entities

in PHTab). Similarly, the space requirement in FCTab is m ∗ t, where m is the number of frequent

closed continuities. When the number of closed continuities grows very large, it is unrealistic to main-

tain patterns in the main memory. To reduce the memory cost, we can apply only subitemset pruning and

store the FCTab in disk, then read disk-resident buckets and apply sub-continuity pruning to remove

non-closed continuitities. The related experiments are demonstrated in the session below.

5 Experiments

In this section, we report the performance study of the proposed algorithms on both synthetic data

and real world data. Since the three phases of the proposed algorithms have good correspond once with

three phases of the FITI algorithm, it is possible to mine various continuities by combining various Phase

Is with Phase III of FITI (FITI-3) and PROWL. The combinations are shown in Table 2. We already

know the mining process of FITI and PROWL+, where the first phase involves frequent itemset mining.

If we mine closed frequent itemsets at Phase I and apply FITI-3 or PROWL, we will get compressed

frequent continuities. We call the algorithms ComFITI and COCOA, respectively. Finally, the closed

frequent itemset mining at Phase I combined with PROWL and the pruning strategies at Phase III results

the mining of ClosedPROWL for frequent closed continuities. We compare the five algorithms using

synthetic data. All the experiments are performed on a 2.8GHz Pentium PC with 2.5 Gigabytes main

memory, running Microsoft Windows/NT. All the programs are written in Microsoft/Visual C++ 6.0. In

the following experiments, the size of PHTab and FCTab is set to 1000.
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Mining Task Phase I Phase III Algorithm
Continuity Frequent Itemset FITI-3 FITI

PROWL PROWL+
Compressed FITI-3 ComFITI

Closed Frequent Itemset PROWL COCOA
Closed PROWL+Pruning ClosedPROWL

Table 2. Comparison of various mining tasks

Sym Definition Default
|D| # of time instants 100K
N # of events 500
T Average transaction size 10
|C| # of candidate continuities 2
L Average continuity length 3
I Average itemset length 2
W Average window length 5
Sup Average support 2%

Table 3. Meanings of symbols

5.1 Synthetic data

For performance evaluation, we use synthetically generated temporal data, D, consisting of N distinct

symbols and |D| time instants. A set of candidate continuities C, is generated as follows. First, we decide

the window length using geometrical distribution with mean W . Then L (1 < L < W ) positions are

chosen for non-empty event sets. The average number of frequent events for each time slot is set to

I . The number of occurrences of a candidate continuity follows a geometrical distribution with mean

Sup∗ |D|. A total of |C| candidate continuities are generated. With all candidate continuities generated,

we then assign events to each time slot in D. The number of events in each time instant is picked from a

Poisson distribution with mean T . For each time instant, if the number of the events in this time instant

is less than T , the insufficient events are picked randomly from the symbol set N . Table 3 shows the

notations used and their default values.

We start by looking at the performance of ClosedPROWL with default parameter minsup = 0.6%

and maxwin = 5. Figure 14(a) shows the scalability of the algorithms with varying database size.

ClosedPROWL is faster than FITI (by a magnitude of 5 for |D| = 500K). The scaling with database

size was linear. Therefore, the scalability of the projected window lists technique is proved. Another
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Figure 14. Performance comparison I

remarkable result is that COCOA performs better than ComFITI for the same mining task (compressed

frequent continuity mining). The reason for the considerable execution time of FITI and ComFITI is

that they must count the supports of all candidate continuities.

The memory requirement of the algorithms with varying database size is shown in Figure 14(b).

In this case, the number of frequent continuities and closed frequent continuities are 13867 and 1183

respectively. The compression rate (# of closed frequent continuities /# of frequent continuities) is about

9%. As the data size increases, the memory requirement of ClosedPROWL, COCOA and FITI increases

as well. However the memory usages of FITI and ClosedPROWL are about the same at |D| = 100K and

the difference is only 18MB at |D| = 500K, with an original database of 12.2 MB. Since ClosedPROWL

requires additional memory to maintain frequent continuities (FCTab), we modify the algorithm as

described in Section 4.6 to disk-resident ClosedPROWL (labelled ClosedPROWL(Disk)). As illustrated

in Figure 14(b), the memory requirement of the ClosedPROWL(Disk) is thus less than FITI but more

than COCOA for subitemset pruning (PHTab).

The runtime and memory usage of FITI and ClosedPROWL on the default data set with varying min-
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imum support threshold, minsup, from 0.4% to 1.6% are shown in Figures 14(c) and (d). Clearly,

ClosedPROWL is faster and more scalable than both FITI and ComFITI with the same memory re-

quirements (by a magnitude of 5 and 3 for minsup = 0.4% respectively), since the number of frequent

continuities grows rapidly as the minsup diminishs. ClosedPROWL and ClosedPROWL(Disk) require

129MB and 94MB at the minsup = 0.4%, respectively. Thus maintaining closed frequent continuities

(FCTab) in ClosedPROWL needs 35MB main memory approximately. Meanwhile, we can observe

that the pruning strategies of ClosedPROWL increase the efficiency considerably (by a magnitude of

2) through the comparison between ClosedPROWL and COCOA in Figure 14(c). In summary, pro-

jected window list technique is more efficient and more scalable than Apriori-like, FITI and ComFITI,

especially when the number of frequent continuities becomes really very large.

The advantage of ClosedPROWL over FITI becomes even evident when the maximum window maxwin

is increased since the number of frequent continuities often increases drastically as maxwin increases

as shown in Figure 15 (a) and (b). For the same reason, the same behavior can be observed in Figures 15

(c) to (h). As shown in these figures, the compression rate varies with various parameter maxwin, I , T

and L. Practically, it could be related to the characteristics of the data. This could also be phrased as

“different data may have different relationships between compression rate and parameters”.

5.2 Real World Dataset

We also apply ClosedPROWL, COCOA and FITI to a data set comprised of ten stocks (electronics

industry) in an the Taiwan Stock Exchange Daily Official list for 2618 trading days from September

5, 1994 to June 21, 2004. We discretize the stock price of go-up/go-down into five level: upward-

high(UH): >= 3.5%, upward-low(UL): < 3.5%and > 0%, changeless(CL): 0%, downward-low(DL):

> −3.5%and < 0%, downward-high(DH): <= −3.5%. In this case, the average events in each time slot

is 10, and the number of events is 50 (10*5). Figure 16(a) shows the running time with an increasing sup-

port threshold, minsup, from 5% to 11%. Figure 15(c) shows the same measures with varying maxwin.

As the maxwin/minsup threshold increases/decreases, the gap between FITI and ClosedPROWL in the

running time becomes more substantial. Finally, Figures 15(b) and (d) show the compression rate with

varying minsup and maxwin. As the maxwin threshold increases or minsup threshold decreases, the

compression rate is increased since the number of frequent continuities will increase drastically.

27



51

221

1484
3838

62116

32
58

290

1512

7106

18
36

78
158

342

1

10

100

1000

10000

100000

3 4 5 6 7
MaxWin

E
xe

cu
tio

n 
Ti

m
e(

se
c)

FITI
COCOA
ClosedPROWL

8�9�:

;�;�9�<

:�8�9�:�=?> =�=�@�<�<

> @�:�: > <�<

=�AB<
<�=�@ > AB8�=

=�C�:DA ABC�9�9
CBE AB:�9

CBE > C�; CBE C�=�= CBE C > ; CBE C�C�=> C�C
> C�C�C
> C�C�C�C
> C�C�C�C�C
> C�C�C�C�C�C
> C�C�C�C�C�C�C

9 A 8 : ;FHG�I(JHK L

M N
O PN
QRS QT
S RS U
V

CBE C
CBE >
CBE =
CBE 9
CBE A
CBE 8
CBE :
CBE ;
CBE <
CBE @

W N
XYZU
VVS N
Q[ \
R U

]_^�`Bab^ LDc K L�d�K c K e�f
]_^�`Bahg ^ fDe�i ab^ LDc K L�d�K c K e�f
aj^ Flk�m e�f(f�K ^ Lon#G�c e

(a) Execution Time v.s. maxwin (b) # of patterns v.s. maxwin

590

3636

976

74
166

34
68

34

192

41

1

10

100

1000

10000

1 2 3 4
I

E
xe

cu
tio

n 
Ti

m
e(

se
c)

FITI
COCOA
ClosedPROWL

p q r

s(t u

p+p q t+t

u q u(t q

p+p+p
r u v

p r+w(q
r+q r�p

xDy z {xDy z {xDy z {xDy z {

xDy {�|xDy {D|xDy {�|xDy {D|

x�y }+}xDy }+}x�y }+}xDy }+}
xDy x+~xDy x(~xDy x+~xDy x(~�(���

�(�����

�(�������

�(���������

p r q v�

� ���
�
��� ��
� �� ��

�D� � �
�D� r �
�D� v �
�D� s �
�D� t �
p � � �
p � r �

� �
�����
�� �
�� �
� �

�o�����b�B�D� � ����� � � ���
�o�����h� ���D���o�b�B�D� � ����� � � ���
�b�B o¡�¢ ���(��� �B�o£#¤�� �

(c) Execution Time v.s. I (d) # of patterns v.s. I

317 407
549

867

3431

117 164 206 242

747

0

500

1000

1500

2000

2500

3000

3500

6 8 10 12 14
T

E
xe

cu
tio

n 
Ti

m
e(

se
c)

FITI
COCOA
ClosedPROWL

¥(¦�§�¥+¨©¥(¦�§�¥+¨ª¥(¦�§�«�« ¥ ¬B«D¬B§ ¥(�¥(¦�¦

®�¥(« �«�¥ ¥�¥ ¬B¦ ¨�¨¯¥ ¬
§D¬B�°

°B± °D¬ °B± °�® °B± °�§
°B± ¥(²

°B± ¬B«

¥(°�°

¥(°�°�°

¥(°�°�°�°

¥(°�°�°�°�°

¥(°�°�°�°�°�°

® § ¥(° ¥+¨ ¥ ¬³

´ µ
¶ ·µ
¸¹º ¸»
º ¹º ¼
½

°B± °
°B± ¥
°B± ¨
°B± ¦
°B± ¬
°B± ²
°B± ®

¾ µ
¿ÀÁ¼
½½º µ
¸Â Ã
¹ ¼

Ä_Å�ÆBÇjÅBÈDÉ Ê È�Ë�Ê É Ê Ì�Í
Ä_Å�ÆBÇ-Î Å�Í(Ì�ÏoÇbÅBÈDÉ Ê È�Ë�Ê É Ê Ì�Í
ÇjÅBÐlÑ�Ò Ì�Í(Í�Ê ÅBÈlÓ#Ô�É Ì

(e) Execution Time v.s. T (f) # of patterns v.s. T

11

65

482

7517

41 44

230

1464

78

201

1

10

100

1000

10000

1 2 3 4
L

E
xe

cu
tio

n 
Ti

m
e(

se
c)

FITI
COCOA
ClosedPROWL

Õ(Ö

×�Ø�Ù

Õ�Õ(×�Ú�Ö

Ø�Û�Ø�×�Ö�Ü

Ø

Ø�Ø�Ö
Õ+Ø�Ù�Ö Ú�Õ(ÖDÝ

ÙBÞ Õ�Õ

ÙBÞ Ú�Ü

ÙBÞ ÕDÙ
ÙBÞ Ù�ÕÕ

Õ(Ù�Ù

Õ(Ù�Ù�Ù�Ù

Õ(Ù�Ù�Ù�Ù�Ù�Ù

Õ Ø Ú Ýß

à á
â ãá
äåæ äç
æ åæ è
é

ÙBÞ Ù
ÙBÞ Ø
ÙBÞ Ý
ÙBÞ ×
ÙBÞ Û
Õ�Þ Ù
Õ�Þ Ø

ê á
ëìíè
ééæ á
äî ï
å è

ðoñ�ò�óbñBôDõ ö ô�÷�ö õ ö ø�ù
ðoñ�ò�óhú ñ�ù(ø�ûoójñBôDõ ö ô�÷�ö õ ö ø�ù
óbñBülý�þ ø�ùDù�ö ñBôlÿ���õ ø

(g) Execution Time v.s. L (h) # of patterns v.s. L
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Figure 16. Performance comparison III

Finally, we apply ClosedPROWL to protein sequences to discover tandem repeats, which is an im-

portant problem in bioinformatics. We used data from the PROSITE database of the ExPASy Molecu-

lar Biology Server (http://www.expasy.org/). We selected a protein sequence P13813 (110K PLAKN)

with a known tandem repeats “{E,E,T,Q,K,T,V,E,P,E,Q,T}”. As expected, several closed frequent con-

tinuities which are related to the known tandem repeat are discovered. For example, we found con-

tinuities: {E,E,T,Q,*,T,V,E,P,E, Q,*}, {E,E,T,Q,*,T,V,E,P,E,*,T,}, {E,E,*,Q,K,T,V,E,P,E,Q,*} and {E,

E,*,Q,*,T,V,E,P,E,Q,T,}, which have 2 mismatches of the known tandem repeat. This indicates that

continuity mining can be used in protein sequence mining.

6. Conclusion

In this paper, we propose a series of algorithms for the mining of frequent continuities. We show

that the three-phase design lets the projected window list technique, which was designed for sequences

of events, also applicable to general temporal databases. The proposed algorithm uses both vertical

and horizontal database formats to reduce the searching time in the mining process. Therefore, there

29



is no candidate generation and multi-pass database scans. The main reason that projected window list

technique outperforms FITI is that it utilizes memory for fast computation. This the same reason that

later algorithms for association rule mining outperform Apriori. Even so, we have demonstrated that the

memory usage of our algorithms are actually more compact than the FITI algorithm. Furthermore, with

subitemset pruning and sub-continuity checking, ClosedPROWL successfully discovered efficiently all

closed continuities. For future work, maintaining and reusing old patterns for incremental mining is an

emerging and important research. Furthermore, using continuities in prediction is also an interesting

issue.
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