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Abstract

In this paper, we proposed an efficient and accurate text chunking system using linear SVM kernel and a new technique called masked
method. Previous researches indicated that systems combination or external parsers can enhance the chunking performance. However,
the cost of constructing multi-classifiers is even higher than developing a single processor. Moreover, the use of external resources will
complicate the original tagging process. To remedy these problems, we employ richer features and propose a masked-based method to
solve unknown word problem to enhance system performance. In this way, no external resources or complex heuristics are required for
the chunking system. The experiments show that when training with the CoONLL-2000 chunking dataset, our system achieves 94.12 in Fp
rate with linear. Furthermore, our chunker is quite efficient since it adopts a linear kernel SVM. The turn-around tagging time on CoN-
LL-2000 testing data is less than 50 s which is about 115 times than polynomial kernel SVM.

© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Automatic text chunking aims to recognize non-overlap
phrases in a given sentence. Non-overlap phrases are
phrases that are not included in other chunks [1]. A chunk
is usually meaningful and contains more than one word.
For example, a phrase “Natural Language Processing’ is
much less ambiguous than its individual component words
“Natural”, or “Language”, or “Processing”’. Noun Phrase
chunk (NP-chunk) recognition is similar to the text chunk-
ing problem, although it focused solely on extracting noun
phrases in texts rather than all other chunk types.

Chunk information is important to many Natural Lan-
guage Processing (NLP) studies, like shallow parsing
[18,20], full parsing [27,26], clause identification [3,26],
Semantic Role Labeling (SRL) [5], text categorization
[22], Named Entity Recognition (NER) [10], and question
and answering [31]. In particular for parsing and SRL
tasks, the performance of the final result is greatly influ-
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enced by the effect of the chunker. In Q/A tasks, chunkers
also faced the challenges of huge datasets. Thus, accurate
and efficient text chunkers are needed.

Text chunking problem can be viewed as a sequence of
word tagging [23], which assigns the optimal tag sequence
for an input sentence. Traditionally, a set of human-made
rules is used to extract all of the phrases in a text. Such
rule-based systems can usually perform well on a specific
domain, but are not applicable to other domains. There-
fore, Machine Learning (ML) approaches are proposed
for learning such rules in order to predict new data without
human intervention. In recent, many machine learning-
based chunking systems are presented, e.g., Transforma-
tion-Based Learning (TBL) [23], Hidden Markov Model
(HMM) [19,34], Winnow [32,33], memory-based learning
[13,26,28], voted-perceptrons [4], and voted-SVMs [16,17].

Zhang et al. [33] proposed a text chunking system
involving Winnow algorithm which employed an external
parser that was called English Slot Grammar (ESG). The
learning speed of Winnow is quite fast (about 12 min). It
achieves the best performance on the Computational Nat-
ural Language Learning (CoNLL) chunking dataset (94.17
in Fp rate). However, using parsers is not the real purpose
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of chunking tasks. The chunker generates a phrase-level
granule to the parser, which constructs dependency and
tree structures of the sentence. Without ESG, their general-
ized-Winnow chunker obtained 93.57 Fg, rate. Kudoh and
Matsumoto [16] developed an SVM chunker with the poly-
nomial kernel type. Their system attained the highest per-
formance for CoNLL-2000 shared task (93.48 Fp rate).
However, the training time is long and tagging speed is
slow since the kernel is polynomial. It costs 24 h to train
the system with CoNLL-2000 chunking data and identify
20 tokens per second. They further combined eight differ-
ent single chunkers to improve system performance (from
Fp) rate 93.48 to 93.91) in their later study [17]. Moreover,
both [26] using Majority voting with five memory-based
learners, and [12], employing Weighted Probability Distri-
bution Voting models, presented different frameworks to
combine several memory-based classifiers. The Fg rates
are 92.50 and 93.32, respectively. Similar to Kudoh’s later
results, the combination of several classifiers performs bet-
ter than an individual system. Although the combinations
of multiple classifiers and integration of external resources
can relatively enhance the chunking performance, the use
of multi-classifiers can largely increase the tagging speed
as well as complicate the system design. In addition, exter-
nal resources are not always available in many domains
and languages.

In general, the efficient chunking systems, like HMM,
and TBL, are not high-performanced, although they could
handle large data set in few seconds. On the contrary, the
high-performanced chunkers, for example, SVM, and vot-
ed-perceptrons, are not efficient since they employed non-
linear kernels. Fewer of the current text chunkers are both
accurate and efficient. To remedy this impact, we present a
linear SVM-based chunker in terms of efficiency and per-
formance. Both training and testing time are largely
reduced when compared with previous kernel-method
approaches since we employ a simple linear kernel SVM
instead of more complex kernels. Theoretically speaking,
the linear kernel type is the simplest and most efficient ker-
nel to perform similarity calculation; while other kernel
types, like polynomial, require more computation time
for training and testing. Thus, the linear kernel type is a
better choice for developing efficient learners.

Another observation is that many tagging errors
occurred when the words were unknown to the training
set. When unknown word occurs during testing, the lexi-
cal-related features, like unigram, are missed. The chunk
class of the unknown word is determined by other non-lex-
ical-related features, like Part-of-Speech (POS) tags. In
general, the lexical feature is more distinct than non-lexical
features. Even though unknown words had been identified
and labeled with POS tags via POS taggers, these features
are too general for guessing unknown word in chunk task.
To overcome this problem, we propose a simple masked
method for collecting unknown word examples. These
examples are derived from existing training instances by
masking some known words. In this way, we provide new

training examples that do not contain complete lexical
information. Therefore, when the learning algorithm is
trained with these additional examples, the system perfor-
mance can be improved. In our experiments, when the
chunker is trained with only known examples, the Fis, rate
1s 93.53; and when trained with unknown word instances, it
achieves 94.12 F. With the help of the unknown word
examples and a simple linear kernel to SVM, our chunker
achieves the state-of-the-art performance within the satis-
factory time and at a reasonable cost.

The remainder of this paper is organized as follows. In
Section 2, we discuss text chunking task. Section 3 explains
our SVM chunking model and the feature selection tech-
niques. The proposed masked method will be discussed in
Section 4. Experimental results on benchmarking corpus
(CoNLL-2000 shared task) and another large corpus are
shown in Section 5. Concluding remarks and future work
are given in Section 6.

2. Text chunk and base NP-chunk

Chunking is generally considered as a shallow parsing
[1]. In 1995, Ramshaw and Marcus [23] used transforma-
tion-based error driven learning to derive transformation
rules for tagging the Noun Phrase (NP) chunk. They
regarded finding out chunks in a text as a sequence of word
tag classification. Ramshaw and Marcus defined the repre-
sentation of chunking task that is called B-I-O tags. The I
tag denotes the word insides a chunk. The O tag denotes a
word that is outside a chunk. Finally, the B tag denotes the
first word of the second noun phrase indicating the bound-
ary between two immediate chunks.

In addition to the B-I-O representation, Tjong Kim
Sang and Veenstra [30] proposed three other chunk tag
representations: IOB2, IOEl, IOE2, and renamed the
Ramshaw and Marcus’s B-I-O tag representation as
IOBI1. IOB2 is a variant type of IOBI1. In IOB2 tagging
method, the B tag is always the beginning of a noun phrase,
and I tag is used to indicate the words inside a chunk. IOE1
can be viewed as another variant type of IOB1 where E tag
is used to indicate the ending word of a phrase immediately
followed by the next phrase, while the use of E tag in IOE2
is similar to that of B tag in IOB2, where the E tag is used
to indicate the end of any noun phrase regardless whether
it is followed by another chunk or not. Table 1 shows the
four representation styles of the above example.

In addition to NP chunks, there are other chunk types as
shown in Table 2 [29]. The goal of text chunking is to identify
the optimal chunk tag sequence for a given sentence, i.c.,
assigning a suitable class for each word. Tjong Kim Sang
and Buchholz[29]used the IOB2 representation style to indi-
cate the boundaries between chunks. According to the POS
tag set of the Wall Street Journal, they derived 11 chunk
types for CoNLL-2000 text chunking task as shown in Table
2. Details of each chunk have been described by Tjong Kim
Sang and Buchholz [29]. For example, the B-PP means the
beginning of a prepositional phrase, and the I-VP is the
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Table 1

The four representation styles of base NP chunking

Word POS tag 10B1 10B2 IOE1 IOE2

The DT (0] (6] 0} 0}

Security NN 1 B 1 1

Authority NN 1 | I I

Robert NNP 1 | I I

L. NNP 1 | I I

Duston NNP 1 1 I E

Favors VBZ (6] (6] (6] (6]

Disciplining VBG (@) (@) (0] (0]

All DT 1 B I I

Employees NNS 1 1 E E

Who WP B B I E

Cheat VBP (0] (0] o 0}
(¢} o o 0}

Table 2

Various chunk types

Notation Meaning

ADJP Adjective phrase

ADVP Adverb phrase

CONJP Conjunction phrase

INTJP Interjection

LST List marker

NP Noun phrase

PP Prepositional phrase

PRT Particles

SBAR Subordinated clause

UCP Unlike coordinated phrase

VP Verb phrase

interior word of a verb phrase. Totally, there are 11(chunk
types) x 2(B/I tags) + 1(O tag) = 23 chunk tags used. Table
3 shows the IOB2 tags of a text chunking example. The POS
tag of each word is shown as well.

2.1. Related works
In this section, we compare the performance of various

approaches to the CoNLL-2000 chunking shared tasks in
terms of system performance and the time efficiency for

Table 3
The IOB2 chunk representation
Word POS tag Chunk tag (I0B2)
Fear CC B-NP
of IN B-PP
The DT B-NP
Price NN I-NP
Police NN I-NP
Could MD B-VP
Help VB I-VP
Cool 1 I-vpP
Things NNS B-NP
Off IN B-PRT
In IN B-PP
The DT B-NP
1990s CD I-NP
o

training and testing. The surveyed approaches include
Generalized/Regularized-Winnow, voted-SVMs, SVMs,
voted-perceptions, WPDYV, and memory-based chunkers.
The performances of these systems are summarized in
Table 4.

2.1.1. GIR-Winnow systems

Zhang et al. [33] derived two versions (generalized and
regularized) of the Winnow algorithm. They used a similar
way for deriving a “soft-margin” version of the algorithms
for non-separable problems. They employed the standard
representation style (IOB2) and used the first and second
order feature sets. The total dimension of their chunking
system is about 460,000 where the number of non-zero fea-
tures per datum is 48. Surprisingly, the training time is only
12 min which is shown to be more efficient than other
chunkers, like SVM or voted-perceptrons. They achieved
the state-of-the-art chunking performance (Fg = 94.17
for generalized Winnow and F = 94.13 for regularized
Winnow) among other systems. However, the best results
were contributed by integrating an external parser, English
Slot Grammar (the improvement is about 0.6). As
described above, the cost of constructing such a chunker
is not cheap. When the ESG parser is excluded, the perfor-
mance is decreased to 93.57 in Fp for generalized Winnow.

2.1.2. SVM systems

Kudoh and Matsumoto [16] proposed an SVM-based
chunking system. In their research, they used the IOB2
representation style and trained 231 (C5’ = 231) SVMs in
so-called “One-Again-One” type with polynomial kernels
(degree = 2). Their chunking systems were developed from
the polynomial kernel since they use fewer feature types.
However, the training time for their system was about
24 h. In their latter study [17], they reported another
high-performance chunker (voted SVMs) by combining
eight individual chunking systems (four representation
styles multiplied by forward/backward processing direc-
tions) and achieved 93.91 in F value. In other words,
there are 8§x 231 SVMs in their chunking system. It is
worth to note that the Fp rate of an individual chunker
of theirs with IOE2 style and backward processing direc-
tion is 93.85. Because the training time taken by SVMs
scales exponentially with the number of input examples
[14,15], it may not be an efficient choice in practice for
developing learners.

2.1.3. Voted-perceptrons systems

The voted-perceptrons chunking system was proposed
by Carreras et al. [4]. In their chunking systems, two-pass
processing is used where pass one identifies the boundaries
(both start and end) for each chunk class and pass two dis-
ambiguates the phrase type. In their studies, each of the
perceptron employed the polynomial kernel [6] instead of
the original linear kernel type. The performance of the
two-pass voted-perceptrons reached 93.74 in F{4) rate. They
did not report the training and testing time. Analytically,
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Table 4
A selection of previous results for CONLL-2000 chunking task
System name Recall Precision Fp
Generalized Winnow [33] Without ESG 93.60 93.54 93.57
With ESG 94.07 94.28 94.17
Regularized Winnow [32] Without ESG 93.49 93.53 93.51
With ESG 94.01 94.24 94.13
Voted-SVMs [17] 93.89 93.92 93.91
SVMs [16] 93.51 93.45 93.48
Voted-perceptrons [4] 93.38 94.20 93.79
WPDV [12] 93.51 93.13 93.32
Memory-based model [26] 91.00 94.04 92.50

the dual form of perceptron learning is similar to the SVM
but the perceptron classifier is simpler than the SVM. Nev-
ertheless, both training and time cost are not cheap, where
the testing phase relies on comparing with all of the sup-
port vectors of each category. As reported by Kudo and
Matsumoto, they spent at least one day for training a single
SVM with the polynomial kernel type. Thus, to train
two-pass voted-perceptrons for chunking, the time cost is
similar to that for training SVMs.

2.1.4. WPDV and memory-based systems

The combined approaches of memory-based chunking
systems are very similar to voted-SVMs chunkers. There
were two multiple classifiers architecture: WPDV [12] and
majority-voted method [26]. The former used five memory-
based learning models [8]with weighted probability distribu-
tion voting method to determine the final output from the
five sources. The latter approach used the same learner but
trained with four different B-I-O chunk representation
styles and another O + C type. In comparison, the WPDV
seemed to outperform the majority-voted method in text
chunking (93.32 F; rate compared with 92.50 F;) rate).
The two memory-based chunking systems are not high-per-
formance even they combined multiple classifiers. The multi-
ple-based chunking systems involve training and testing cost
several times higher and more complicate than a single-based
system. However, as reported by [17] each of the individual
SVM-based chunker achieved at least 93.48. Thus, we work
toward single-learner chunking systems.

3. SVM-based chunking model

This section describes the proposed chunking system
developed from SVM using a linear kernel. SVM learns
to predict new items by training with these vector sets.
The system is divided into two parts: the known part and
unknown word instances (see Fig. 1. Training processing
for the proposed chunker). We describe the known part
in this section and leave the unknown part to Section 4.

3.1. Example representation

One of the advantages of the SVM with a linear kernel is
that it can handle high dimensional data effectively [14,15]

since it compares the “active’ features rather than the com-
plete dimensions. We can therefore impose richer feature
types upon each training example to enhance system per-
formance. As reported [11,3], the richer feature set had
shown to be more effective than the simple feature set. In
general, contextual information is often used as the seed
feature type [2,9,17]), the other features can then be derived
from the surrounding words. For example, let WW; be the
current word, W,_, be the word before W;, and W, be
the word after W, To classify W, we use the words and
features surrounding W, For example, when we tag the
word ““police”, the context words are:

the (W, ,) price (W,_;)police(W;) could (W) help (W2)

If we include two words surrounding the current word,
both the preceding two words and following two words
should be considered. Therefore, a vector comprises five
sections, which are equal to the locations of the contextual
words. In this paper, we set the context window size to be
2, which is consistent with previous researches [16,32,33].
Using a good feature selection technique not only ecases
the searching for important or discriminative examples,
but also increases the accuracy for classification tasks
[25]. The SVM chunker proposed by [16] encoded only uni-
gram, POS tag, and chunk information but require a poly-
nomial kernel to perform well. As mentioned by Giménez
and Mdrquez [11], high-quality POS tagging performance
can be achieved by employing a richer feature set, such
as OrthoFlags, Affixes, N-grams, to represent the meaning
and relations of these words. Therefore, we adopt more
features while using a linear kernel to reduce training time.

e Lexical information (unigram and bigram). Lexical fea-
ture is the most commonly used feature in NLP for a
word itself carries certain meanings. For example, the
words “Mr” or “Mrs” are good lexicons indicating the
start of a noun phrase, while the words “was” and
“were” usually precede a verb phrase. Bigram lexical
information is generally considered more informative
than unigram lexicons. In the vector representation,
each unigram/bigram dimension indicates the presence
or absence of a unigram/bigram. The unigram/bigram
lexical dictionary is the set of frequent unigrams/
bigrams in the training data.
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Data
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Representation Representation
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Example Example| [Example Example
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i :

!

‘ SVM-Learning

Algorithm

Fig. 1. Training processing for the proposed chunker.

e POS tag information (Uni-POS, Bi-POs, and Tri-POS).
POS tags are other informative features used in NLP,
since they show more abstracted and syntactic relations.
The size of the tag set is 48, i.e., there are 48 different
POS tags. We adopt Uni-POS, Bi-POS and Tri-POS
tags. For the above example, the Bi-POS tags of the
word “police” include “NN(price) NN(police)”’, and
“NN(police) MD(could)”. Similarly, the Tri-POS tags
are “DT(the) NN(price) NN(police)”, “NN(price)
NN(police) MD(could)”, and “NN(police) MD(could)
VB(help)”.
Affix (2-4 suffix and prefix letters). The affix feature is
widely used for guessing an unseen word from the train-
ing examples [9,11]. For this feature type, we extract dif-
ferent length of prefix/suffix letters in the head/tail of a
word. We select length 2-, 3-, 4-letters from the begin-
ning and ending of a given word. For example, the affix
features of “police” are:

prefix: “po”, “pol”, and “poli”

suffix: “ce”, “ice”, and “lice”.
Token feature. Token feature type is a language-depen-
dent feature type that is commonly used in named entity
recognition. It recognizes by specific symbols and punc-
tuations, such as “$”, or “%”. For example, the word
“1990s” matches the token category ‘“Year decade”
(see Table 5). Each term will be assigned to a token class
type via the pre-defined word category mapping.
Previous chunk information (uni/bi-chunks). This fea-
ture type is generated by including previous word chunk
tags. Most chunking systems use this feature type to
help find the context relations between previous chunks
and the current word. In this paper, we include both uni-
chunk and bi-chunk in our feature set.
Possible chunk classes. For the current word to be
tagged, we recall its possible chunk tags in the training
data and use its possible chunk class as a feature.

As an example, Fig. 2 shows the vector representation

for word W,. In general, each feature type has its own dic-

Table 5

Token feature categories

213

Feature description

Example text

Explanation

1 Digit number

2 Digit number

4 Digit number
Decade

Only digit

Number + one slash
Number + two slash
Number + money
Number + percent
Number + hyphen
Number + comma
Number + period

Number + colon
Number +ao + slash
All Capital word
Capital + one period
Capital + periods

o + money

o + periods

Capital word
Number + o

Initial capitalization

Inner capitalization
All lower case
Others

9
20

1997
2010s
432

55/4
2005/7/7
$222
90%

3-4

1999
3.441

1:00
1/10th
BLP
F.
M.S.

NTS$
Dr.
Taipei
F-91
Jhonli

WordNet
be
5\/4

Digital number
Two-digit year
Four-digit year
Year decade

Misc. numbers
Amount or date
Date

Money

Percent

Number period
Monetary amount
Percentage or
monetary amount
Time

Fraction or score
Organization name
Name abbreviation
Organization
abbreviation
Money

Titles

Proper noun

Some code
Person/Location/
Organization names
Proper noun
General words
Special symbols

tionary that collects homogenecous items. For example, the
unigram dictionary contains “frequent” unigrams in the
training set and the dictionary of bigram collects ““fre-
quent” bigrams from the training data. Here, the term “fre-
quent” means that the terms in the dictionary appear at
least M (=2 in this paper) times in the training set. For
those that are not frequent, we simply discard them since
they are rare. The feature mapping process is to determine
the vector representation for each word. The total number
of dimensions for the CoNLL-2000 chunking task is about
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Wt—2 Wt—1 Wt Wt+1 W1+2
IUnigraml_Ql IUnigramHl I Unigram, I Unigram,,, | |Unigram,,,
‘Bigram,_g ‘Bigramt,, H Bigram, ‘ Bigram,,, | | Bigram,,,
‘Uni-POSLg ‘Uni-POSH‘ | Uni—POS“ Uni-POS,,,| Uni-POS,,,
‘BLPOSI,2| ‘Bi-POSH H Bi-POS, HBI-POSM ]Bi-POSM
Tri-POS,,| [TriPOs,,| | Tri-Pos, | [Tri-Pos,, | [Tri-Pos,,

[, || e, ][ A ][ afx, |[ x|
ESNIENIEEIESN R
Uni-Chunk bUni-Chunk, | Possiol
Bi‘Chunkul Bi-ChunkM] Classes

Fig. 2. The employed contextual feature representation style in this paper.

600,000, as for the large-scale training set WSJ sections 00—
19, the number of dimensions is 2,300,000. The number of
non-zero features per datum is 51.19 and 54.05 for the two
datasets, respectively.

3.2. SVM-learning algorithms

We use the SVM as the classification algorithm, which
has been shown to perform well on text classification prob-
lems [14,15]. All of the training and testing data are con-
verted into vectors as described above. In this paper, we
use SVM"M [14] as the learning algorithm, which is quite
effective and efficient in dealing with high-dimensional
data. We do not tune the parameter settings to that of
SVM, ie., we simply use the default parameters of
SVMlight.

Since the SVM algorithm is a binary classifier, we have
to convert it into several binary problems. Here, we use the
“One-Against-All” type to solve the problem. Thus, for 23
chunk types, 23 SVM models are trained. The default ker-
nel type of SVM'€" is a linear kernel-based model which is
the simplest and the most efficient model among other ker-
nel types, such as “polynomial”, “radial basis function
(RBF)”, and “‘sigmoid”. When using these advanced kernel
types in SVM, it will increase both training and testing time
since these kernels types map original data items into high-
er dimensional vectors. For example, the training time of
Kudoh’s SVM chunker (polynomial kernel with degree
two) is 24 h and the tagging speed is about 20 tokens per
second. On the contrary, our SVM chunking system spent
37 min on training but required about 3 h when training
with unknown word model. The complete tagging speed
of our chunking model is about 810-988 tokens per second
(including the full turn-around time). Both the training and
testing time are largely improved.

4. The masked method

In real world, training data is usually not sufficient
where the out-of-vocabulary problem often occurs. During

testing, if a term is an unknown word (or one of its context
words is unknown), then its unigram, bigram, and possible
chunk class features will be set to zero because we do not
have any information of the term from the training data.
In this case, the chunk class of this word is mainly deter-
mined by non-lexical features. Thus, there is no lexical
information when the term is unknown.

The most common way for solving unknown word
problem is to use different feature sets for unknown words
and divide the training data into several parts to collect
unknown word examples [2,7,21,11]. However, the selec-
tion of these feature sets for known word and unknown
word were often arranged heuristically and it is difficult
to select when the feature sets are different. Moreover, they
just extracted the unknown word examples and miss the
instances that contain unknown contextual words.

To solve this, we change the view of unknown word
chunking problem. We present the masked method which
aims to derive more training examples from the original
training set. Fig. 3 lists the proposed masked algorithm.
Suppose we have derived lexicon-related features from
the training dataset, including unigram dictionary (UD),
bigram dictionary (BD), and possible-chunk-class dictio-
nary (PD) from all training parts except for part i. We then
generate new training examples by mapping the new dictio-
nary set X; (Z; is created from F by replacing UD, BD, and
PD with UD;, BD,, and PD,, respectively). Technically, we
derive a new feature set X’ of length || where a bit is set for
a lexicon in X; and clear if the lexicon is not in X;. We then
generate new vectors for all examples by representing the
original examples with the new derived feature set £'. Thus,
items which appear only in part i are regarded as unknown
words. The process is repeated for £ times and a total of
(k+1) x n example vectors are generated (n is the original
number of training examples).

Let us starts with a simple example, suppose we have the
feature set ¥ that includes eight dimensions (A-H). By
making one part, the derived feature set X, includes fea-
tures: B, C, D. The masked feature set £’ should be pro-
duced by “AND” the X and X, If an example that
contains features A, B, H, it will be re-represented B since
only B occurs in X’. In other words, both A and H were
masked as regarded as unknown words.

The masked method can transform the known lexical
features into unknown lexical features and add k times
training materials from the original training set. Thus, it
is not necessary to prepare additional training materials
to derive unknown word examples and the original data
can be reused effectively. As outlined in Fig. 3, new exam-
ples are produced through mapping into the derived new
feature set X, This is quite different from previous
approaches, which employed variant feature set for
unknown words. The proposed method aims to emulate
examples that do not contain lexical information, since
errors often occur due to the lack of lexical features in
training phase. Traditionally, the learners are given suffi-
cient and complete lexical information; therefore, the
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Algorithm: Masked_Method( 2, T'S)

Algorithm:

MTS=¢

s =75,

i=1

2r=2in’x

3.4 MTS = MTSUv;

Input: the set of labeled training example set 7.S
Output: masked labeled training example set MTS.

Step 1. Let ' be the feature dictionary constructed in Section 3.
Let lexical-related dictionary be:
UD: the unigram feature dictionary
BD: the bigram feature dictionary
PD: the possible-chunk-class dictionary
(UD X,BD XY,andPD 1)

Step 2. Divide the original training data 7S into & parts.
k

Step 3. For each part i, mask 7; by operating 75" = TS - TS;
31 Generate lexical-related dictionaries from 7S’
UD;: the unigram dictionary of 7S’
BD;: the bigram dictionary of 7S’
PD;: the possible-chunk-class dictionary of 7.S”
i is created from X' by replacing UD/BD/PD with UD/BD,/PD;

32 Create a new feature set J” and
33 For each training example v; represented by feature 2",

Step 4. Go to Step 3 until all parts have been processed

Fig. 3. The masked method algorithm.

trained models cannot generalize examples that contain
incomplete lexical information. By including incomplete
examples, the learners can re-adjust the feature weights ti
improve testing performance for unknown words.

5. Evaluations and experimental results

In this section, we report the experimental results on the
performance of the proposed chunker, the effect of the
masked method, and the scalability when porting to large
datasets. We use two standard chunking datasets: one from
the CoNLL-2000 shared task and one from WSJ sections
00-24 for the large-scale experiment.

For the CoNLL-2000 chunking task, the training data
are derived from the WSJ sections 15-18 while the testing
data are taken from section 20. Table 6 lists the detailed
records of the two datasets. For the training part, there
are 220,663 tokens (terms and punctuations) in the training
set and 49,389 tokens in the testing part. The ratio of the
training and testing sets is about 4.5:1. For the large-scale

Table 6
Description of the CoNLL-2000 and large-scale datasets

Tokens Phrases Sentences
CoNLL-2000
Training 220663 106978 8936
Testing 49389 23852 2012
Large-scale dataset
Training (00-19) 999277 481529 42581
Testing (20-24) 226832 108750 9762

chunking task, the training data is derived from the WSJ
sections 00-19 and the testing data are taken from sections
20-24. Both the size of training and testing parts are four
times larger than those of CoNLL-2000. The distribution
of the chunk types in the training data of the large-scale
WSJ was shown in Table 7. The largest chunk type is NP
(Noun Phrase) and the three large chunk types (NP, VP,
and PP) cover more than 90% of the whole dataset.

There are three parameters in our chunking system: the
context window size, the frequent threshold for each fea-
ture dictionary, and the number of division parts for the
unknown word examples (k). We set the first two parame-
ters to 2 as previous chunking systems [16,17]. Since the
training time taken by SVMs scales exponentially with
the number of input examples [14,15], we set k as two for
all of the following experiments.

Table 7
Percentage of each chunk type in the training set of the large-scale task

Chunk type Tokens Phrases Percentage (%)
ADJP 12338 9240 1.92
ADVP 19742 17846 3.71
CONIJP 716 302 0.06
INTJ 162 125 0.03
LST 47 45 0.001
NP 536884 249196 51.75
PP 96754 95427 19.82
PRT 2594 2590 0.54
SBAR 10636 10325 2.14
ucCp 33 9 0.00
VP 150881 96424 20.02




216

The performance of the chunking task is usually mea-
sured with three rates, namely recall, precision, and
Fp—1y [29]. First, the recall rate is to estimate the ratio of
chunks found by the system. Second, the precision rate
measures the percentage of the predicted chunks that are
correct. Finally, the Fis_;) rate combines both recall and
precision rates into one single measure by the following,

2 x recall x precision
precision + recall

Fp-1) =

We use the perl-script evaluator (see http://lcg-www.
uia.ac.be/conll2000/chunking/conlleval.txt) released by
CoNLL to evaluate the three measures for the following
experimental results.

5.1. Standard test vs non-standard test

The first test (standard) is performed under a strict
constraint, i.e., all of the settings should coincide with
those of the CoNLL-2000 shared task. Thus, the use of
external resources or other components is not required.
We report two results, one is trained with complete lex-
ical information and the other is trained with both com-
plete and incomplete examples (i.e., the masked method).
The performance comparison is shown in Table §, where
the latter model achieves better system performance. The
training time is less than 30 min and 2.8 h, respectively.
The total tagging time for the testing data is about
50s; in other words, the tagging speed is nearly 1000
tokens per second, respectively. Compared with the vot-
ed-SVMs and voted-perceptrons, our system is better in
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both accuracy and efficiency. Although the Winnow
algorithm is more efficient in training (12 min), our chun-
ker has better performance (94.12 vs 93.57 in Fs—,, rate).
The overall chunking results are listed in Table 9 (left
part) where the masked method is used.

In the second test (non-standard), chunking systems
could make use of external resources to enhance system
performances. Therefore, we employ an advanced POS
tagger proposed by Giménez and Marquez [11] instead
of the original Brill-tagger. In our chunking system, rich
POS N-gram features are used to extract more syntactic
information. Thus, the more accurate the POS tagger is,
the better the chunker performs. In our experiments, the
SVM POS tagger achieves 97.20 token accuracy on the
CoNLL-2000 test data compared with 97.00 token accu-
racy achieved by the original Brill-tagger. It is worth to
note that the SVM POS tagger was trained with WSJ
sections 00-18 which did not overlap with testing part
of chunking tasks. But the testing data is a part of val-
idation data for tuning the parameter settings of the
SVM POS tagger.

Table 10 lists the chunking performances of related
researches that adopt the same constraint. Again, our
chunker achieves the best performance (F{3—; rate = 94.20
obtained by employing the masked method). The second
and third best systems (Generalized/Regularized Winnows)
were mainly contributed by the combinations of external
parsers (ESG grammar). In practice, the Treebank data
are not always available in many languages and domains.
Thus, the use of parsers is not an economical choice of
external resources when porting to other languages and

Table 8

Comparison of chunking performance for standard test Table 10

Chunking system Recall Precision Fi) Chunking performance of some related (non-standard) studies

This paper (with masked method) 94.11 94.13 94.12 Chunking system Recall Precision Fy
Voted-SVMs [17] 93.89 93.92 93.91 SVM+ incomplete examples (This paper)  94.32 94.07 94.20
Voted-perceptrons [3] 94.20 93.38 93.79 Generalized Winnow [33] 94.07 94.28 94.17
Generalized Winnow [33] 93.60 93.54 93.57 Regularized Winnow [32] 94.01 94.24 94.13
This paper (without masked method) 93.60 93.53 93.56 Voted-perceptrons [5] 93.65 94.28 93.96
Regularized Winnow [32] 93.49 93.53 93.51 Voted-SVMs [17] 93.89 93.92 93.91
SVMs [16] 93.51 93.45 93.48 SVM (This paper) 93.88 93.62 93.75
Table 9

Chunking performance for each chunk type for standard (left) and non-standard (right) tests

Chunk type Recall Precision Fip Recall Precision Fp)
ADIJP 71.46 81.09 75.97 73.52 81.73 77.40
ADVP 81.41 83.63 82.50 82.43 82.33 82.38
CONJP 55.56 41.67 47.62 45.45 55.56 50.00
INTJP 50.00 100.00 66.67 50.00 100.00 66.67
LST 0.00 0.00 0.00 0.00 0.00 0.00
NP 94.49 94.62 94.55 94.57 94.54 94.55
PP 98.30 96.91 97.60 98.44 96.97 97.70
PRT 79.25 76.36 77.78 83.02 75.86 79.28
SBAR 86.92 87.74 87.32 88.60 87.29 87.94
VP 94.61 94.19 94.40 94.72 94.33 94.53
All 94.11 94.13 94.12 94.32 94.07 94.20




Y.-C. Wu, C.-H. Chang | Knowledge-Based Systems 20 (2007) 209-219 217

domains. On the contrary, to develop POS-tagging and
chunking corpus is much easier. Note that the same POS
tagger is used by the fourth best chunking system, voted-
perceptrons [5]. The improvement of voted-perceptrons
by SVM POS tagger is from 93.79 to 93.96 while our
chunking system enhances Fg) rates from 94.12 to 94.20.
It is clear that when employing more advanced POS tag-
gers, the chunking performance can be improved.

The learning curve of our chunker is shown in Fig. 4.
When using 0.1 million examples, we achieve 91.32 in
F—1) rate. On the contrary, the HMM-based chunker
[19] made use of one million training examples to achieve
93.25in F(p—;) rate. Although HMM is much efficient than
our SVM chunker, our chunker outperforms the
HMM-based systems and the need of training data is
almost 1/10 times. In addition, when training with 0.14
and 0.16 million examples, the performance is equivalent
(93.63 and 93.68).

We also show the masked method combined with the
polynomial kernel SVM. Table 11 lists the results on the
11 chunk types for the CoNLL-2000 shared task. In this
experiment, the total training time of the polynomial kernel
is about 4 days with masked method (in the right hand side
of Table 11), and 14 h without masked method (in the left
hand side of Table 11). For the tagging speed, the turn-
around times of the two chunkers are about 105 min. The

94.5
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Size of Training data (million examples)

Fig. 4. System performance using CoNLL-2000 training set of different
sizes.

Table 11
Chunking performance for each chunk type for polynomial kernel without
(left) and with (right) the masked method

Chunk type Recall Precision  Fp Recall ~ Precision  Fiy

ADIJP 72.60  81.69 77.00 7192  78.75 75.18
ADVP 81.99 8333 82.65 81.29  82.15 81.72
CONJP 55.56  55.56 55.56  55.56 4545 50.00
INTJP 0.00 0.00 0.00  100.00  100.00 100.00
LST 0.00 0.00 0.00 0.00 0.00 0.00
NP 94.52  94.26 9439 9474  94.67 94.71
PP 98.34  96.53 97.43 98.32  97.01 97.66
PRT 76.42  77.88 77.14 7830  78.30 78.30
SBAR 85.61  89.80 87.66  87.66  89.33 88.49
VP 94.48 9422 94.35 94.59  94.39 94.49
All 94.10  93.95 94.03 9426  94.16 94.21

improvement of the polynomial kernel is marginally (from
94.12 to 94.21), but the time cost is not tolerable.

5.2. The improvement of masked method

Tables 8 and 10 showed that the inclusion of incomplete
examples as training instances has improved the chunking
performance from 93.56 to 94.12 (from 93.75 to 94.20)
for standard (non-standard) test. As listed in Table 12,
the percentage of unknown phrases in the testing set is
about 13.53% and the improvement for unknown phrases
is from 89.68 to 93.43 (89.31-90.19). The masked method
improves not only the unknown phrase chunking, but also
known phrase chunking for both standard and non-stan-
dard tests.

In order to compare with previous studies, we also
implement several unknown word recognition methods
similar to [21] and [11]. The first method used a simple fea-
ture set, unigram, uni-POS, uni-Chunk tags for represent-
ing the known word examples, while the affix features are
used to represent unknown word examples. The second
method employed more features (see Section 3.1) to repre-
sent the known word examples, while the affix features are
used for representing the unknown word examples. In this
evaluation, we use the same settings to the SVM under the
standard test. Table 13 shows the experimental results of
these methods.

5.3. Impact on POS taggers

As discussed above, chunking system performance can
be improved by employing a better POS tagger. We extend
our work to compare the influence on various POS taggers.
Three POS taggers:Brill [2], SVM [11] and Tree [24] are
compared here. The performances of the three POS taggers
on the CoNLL-2000 chunking and large-scale datasets are
listed in Table 14. Note that these taggers are trained from
various sources. SVM POS tagger achieves the best result
on CoNLL-2000 and large-scale dataset.

Table 12
The improvement by the masked method
CoNLL-2000 Percentage (%) Standard Non-standard
Unknown 13.53 89.84 — 90.74 89.46 — 90.18
Known 86.46 94.34 — 94.79 94.63 — 95.03
Total 100.00 93.56 — 94.12 93.75 - 94.21
Table 13
Comparison to other unknown example collecting methods

Recall Precision Fp)
Simple feature set 92.03 91.46 91.74
Complete feature set 93.55 93.50 93.53
Nakagawa’s method [21] 92.12 91.53 91.82
Nakagawa’s method + our feature set 93.42 93.34 93.38

Masked method 94.11 94.13 94.12
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Table 14

Results of using POS taggers on the CoNLL-2000 and large-scale test sets
CoNLL-2000 Large-scale dataset

Brill-tagger 97.00 96.92

Tree-tagger 96.80 97.03

SVM POS tagger 97.23 97.13

Table 15

Comparison of the chunking performance using various POS taggers

Recall Precision Fp)

Chunking + Brill-tagger 94.11 94.13 94.12

Chunking + Tree-tagger 94.32 94.40 94.36

Chunking + SVM POS tagger 94.26 94.16 94.21

Chunking + Gold-tagger 94.72 94.58 94.65

Table 15 shows the chunking performances attained by
using various POS taggers. In this experiment, an addition-
al POS taggers is used, i.e., Gold (hand-annotated) POS
tagger. As seen in the table, the first and last results give
the lower and upper bounds of the chunking performances,
respectively. Interestingly, when our chunker is combined
with the Tree-tagger, it achieves better results than com-
bined with the SVM POS tagger, although Tree-tagger
does not perform better than SVM POS tagger in POS tag-
ging. However, since the training data of the Tree-tagger
cover various parts in the WSJ and some of the testing data
of CoNLL-2000 may be included in the Tree-tagger. The
SVM POS tagger made use of WSJ sections 19-21 for val-
idation. We therefore use the Brill-tagger in the large-scale
experiments.

5.4. Large-scale experiments

For large-scale experiments, we use the Brill-tagger to
generate POS tags. Table 16 gives the chunking results of
each phrase type. The total training times of large-scale
experiments are 27.8 and 4.8 h without using the masked
method. Both training times increase more than nine folds
compared with previous results. However, the total tagging

Table 16

Chunking performance on the large-scale chunking task

Chunk Type Recall Precision F,
ADJP 78.10 84.28 81.07
ADVP 85.18 83.57 84.37
CONJP 70.77 71.88 71.32
INTJP 65.52 73.08 69.09
LST 30.00 66.67 41.38
NP 95.59 95.73 95.66
PP 98.37 97.27 97.82
PRT 79.13 80.51 79.81
SBAR 89.55 90.74 90.14
UCP 0.00 0.00 0.00
VP 95.00 95.13 95.06
All 95.01 95.01 95.01
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Fig. 5. System performance using large-scale training set of different sizes.

time of the large-scale data is only 4 min, meaning that the
tagging speed is near 1000 tokens per second.

Fig. 5 shows the system performances for different train-
ing sizes. The lower bound of our chunker achieves 92.83
Fp) rate using 0.07 million training examples, while the
upper bound 95.01 is reached using all (~1 million) train-
ing examples.

6. Conclusion and future remark

Efficient and high-performance text chunker is impor-
tant for many real world NLP applications. Unknown
words in testing examples are one of the reasons account-
ing for chunking errors. This paper proposes a “masked-
based” method to derive incomplete training examples
and therefore improve chunking performance. Compared
with pervious unknown word example collecting tech-
niques, the masked method is better. The proposed masked
method improves the performance not only of known
words but also unknown words. From the experiments,
our chunking system performs better than other systems
in both standard and non-standard tests. The best system
performances of our chunker are 94.21 (with polynomial
kernel) and 94.12 (with linear kernel) in Fg, rates, which
outperforms the other chunking systems that employed
external resources or combined multiple learners.

Moreover, the masked method can be combined with
other learners, like Winnow and voted-perceptrons. In
terms of efficiency, by using a linear SVM kernel with rich-
er feature set and masked method, the learning time is less
than 3h for CoNLL-2000 training data and the turn-
around time of the testing data is 50 sec. In the large-scale
test, our system also performs better than HMM-based
chunking systems. The online demonstration of our chun-
ker can be found at the following web site: http://
dblab87.csie.ncu.edu.tw/bebb/chunking. htm.
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