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Abstract

Discovering patterns with great significance is an important problem in data mining discipline. An episode is defined to

be a partially ordered set of events for consecutive and fixed-time intervals in a sequence. Most of previous studies on

episodes consider only frequent episodes in a sequence of events (called simple sequence). In real world, we may find a set

of events at each time slot in terms of various intervals (hours, days, weeks, etc.). We refer to such sequences as complex

sequences. Mining frequent episodes in complex sequences has more extensive applications than that in simple sequences.

In this paper, we discuss the problem on mining frequent episodes in a complex sequence. We extend previous algorithm

MINEPI to MINEPIþ for episode mining from complex sequences. Furthermore, a memory-anchored algorithm called

EMMA is introduced for the mining task. Experimental evaluation on both real-world and synthetic data sets shows that

EMMA is more efficient than MINEPIþ.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Many data mining and machine learning techni-
ques are adapted towards the analysis of unordered
collections of data, e.g., transaction databases and
sequence databases [1–7]. However, there are
important application areas where the data to be
analyzed are ordered, e.g., alarms in a telecommu-
nication network, user interface actions, occurrences
e front matter r 2007 Elsevier B.V. All rights reserved

2007.07.003

was sponsored by National Science Council,

Grant NSC95-2524-S-008-002.

ing author. Tel.: +886 3 4227151x35302.

esses: want@db.csie.ncu.edu.tw (K.-Y. Huang),

du.tw (C.-H. Chang).
or recurrent illnesses. One basic problem in analyz-
ing such a sequence is to find frequent episodes, i.e.,
collections of events occurring frequently together
[8–10]. The goal of episode mining is to find
relationships between events. Such relationships
can then be used in an on-line analysis to better
explain the problems that cause a particular event or
predict future result. Episode mining has been of
great interest in many applications, including
internet anomaly intrusion detection [11,12], bio-
medical data analysis [13,14], stock trend prediction
[15] and drought risk management in climatology
data sets [16]. Take stock data as an example, we
will find an episode rule R1 like ‘‘When the price of
stock Microsoft goes up for two consecutive days,
.
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the price of stock IBM will go up within two days

with 80% probability.’’ Besides, there are also
studies on how to identify significant episodes from
statistical model [17,18].

The task of mining frequent episodes was
originally defined on ‘‘a sequence of events’’ where
the events are sampled regularly as proposed by
Mannila et al. [8]. Informally, an episode is a
partially ordered collection of events occurring
together. The user defines how close is close enough
by giving the width of the time window win. The
number of sliding windows with width win in a
sequence is te � ts þ win, where ts and te are called
the starting interval and the ending interval,
respectively. Take the sequence S ¼ A3A4B5B6 (the
subscript i represents the ith interval) and win ¼ 3 as
an example, there are 6� 3þ 3 ¼ 6 sliding windows
in S, e.g., W 1 ¼ A3, W 2 ¼ A3A4, W 3 ¼ A3A4B5,
W 4 ¼ A4B5B6, W 5 ¼ B5B6 and W 6 ¼ B6. Mannila
et al. introduced three classes of episodes. Serial

episodes consider patterns of a total order in the
sequence, while parallel episodes have no constraints
on the relative order of event sets. The third class
contains composite episodes like serial combination
of parallel episodes. In a way, serial and parallel
episodes can be captured by sequential patterns and
frequent itemsets, respectively. Frequent itemsets
for transaction databases are similar to parallel
episodes, while sequential patterns for sequence
databases are similar to serial episodes as defined in
[8]. Therefore, we can mine parallel episodes by
transforming an event sequence to a transaction
database where each transaction is the union of
events from sliding window W i. Similarly, we can
mine serial episodes by transforming an event
sequence to a sequence database, where each
sequence is the serial combination of events from
W i. However, such methods are not efficient, since
the space requirement is win times the original
database size. Finally, composite episodes can be
mined from serial joins of parallel episodes.

Mannila et al. presented a framework for
discovering frequent episodes through a level-wise
algorithm, WINEPI [8], for finding parallel and
serial episodes that are frequent enough. The
algorithm was an Apriori-like algorithm with the
‘‘anti-monotone’’ property of episodes’ support.
Unfortunately, this support count has a defect,
i.e., over-estimate of the occurrences of an episode.
Take the sequence S ¼ A3A4B5B6 and win ¼ 3 as an
example, the serial episode rule ‘‘When event A
occurs, then event B occurs within 3 time units’’
should have probability or confidence 2
2

in the
sequence S since every occurrence of A is followed
by B within 3 time units. However, since episode hAi
is supported by four sliding windows (W 1 ¼ A3,
W 2 ¼ A3A4, W 3 ¼ A3A4B5, W 4 ¼ A4B5B6), and
serial episode hA;Bi is matched by two sliding
windows (W 3 and W 4), the above rule will have
confidence 2

4
.

Instead of counting the number of sliding
windows that support an episode, Mannila et al.
consider the number of minimal occurrences of an
episode from another perspective. They presented
MINEPI [9], an alternative approach to the
discovery of frequent episodes from minimal occur-
rences (mo) of episodes. A minimal occurrence of an
episode a is an interval such that no proper
subwindow contains the episode a. For example,
episode hAi has mo support 2 (interval ½3; 3� and
½4; 4�) as the number of occurrences, while episode
hA;Bi has only mo support 1 from interval ½4; 5�.
Thus, the above rule will have confidence 1

2
.

However, both measures are not natural for the
calculating of an episode rule’s confidence. There-
fore, we need a measure that facilitates the
calculation of such episode rules to replace the
number of sliding windows or minimal occurrences.
The problem has also been discussed in [19], but no
algorithms are proposed.

In addition, we sometimes find several events
occurring (multi-variables) at one time slot in terms
of various intervals (e.g., hours, days and weeks).
We refer to such sequences as complex sequences.
Note that a temporal database is also a kind of
complex sequence when temporal attributes are
considered. Mining frequent episodes in a complex
sequence has more extensive applications than that
in a simple sequence. Therefore, we discuss the
problem on mining frequent episodes over a com-
plex sequence in this paper, where the support of an
episode is modified carefully to count the exact
occurrences of episodes. We propose two algorithms
in mining frequent episodes in complex sequences,
including MINEPIþ and EMMA. MINEPIþ is
modified from previous vertical-based MINEPI [9]
for mining episodes in a complex sequence.
MINEPIþ employs depth-first enumeration to
generate the frequent episodes by equalJoin and
temporalJoin. To further reduce the search space in
pattern generation, we propose a brand new algo-
rithm, EMMA (Episodes Mining using Memory
Anchor), which utilizes memory anchors to accel-
erate the mining task. Experimental evaluation on
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both real-world and synthetic data sets shows that
EMMA is more efficient than MINEPIþ.

The rest of this paper is organized as follows. We
define the problem of frequent serial episode mining
in Section 2. Section 3 reviews related work in
sequence mining. Section 4 presents our serial
episode mining algorithms, including MINEPIþ
and EMMA. Experiments on both synthetic and
real-world data sets are reported in Section 5.
Finally, conclusions are made in Section 6.

2. Problem definition

In this section, we first define the problem of
frequent serial episode mining (parallel episode
mining is discussed in the Appendix A). Let E be
a set of all events. An event set is a nonempty subset
of E. An input sequence can be represented as
ðX 1;X 2; . . . ;X OÞ where X i is an event set that
occurs in ith time interval or empty. The input
sequence can also be described using a more general
concept like a temporal database, where each tuple
(tj, X tj

) records the time interval (in terms of various
units, hours, days, etc.) tj for each event set X tj

(nonempty). We use time intervals because event set
sequences (or temporal databases) are formed due
to the merging of several records in the same time
interval. Fig. 1(a) shows an input sequence with this
horizontal format. Let N be the number of tuples in
the temporal database TDB. We say that TDB has
length N in O observation time intervals. We say
that an event set Y is supported by a record ðti;X ti

Þ

if and only if Y � X ti
. An event set with k events is

called a k-event set. Let maxwin be the maximum
Fig. 1. Temporal database TDB: (a) a temporal database T
window bound. When mining episode rules, only
the rules with span less than or equal to maxwin

intervals will be mined. Users can thus use this
mining parameter to avoid mining rules that span
across too many intervals.

Definition 2.1 (Sliding window). A sliding window

W i in a temporal database TDB is a block of
maxwin continuous records along the time interval,
starting from interval ti (where TDB contains an
event set at tith time interval). Each interval tij

in
W i is called a subwindow of W i denoted as W i½j�,
where j ¼ tij

� ti. Therefore, TDB with length N can
be divided into N sliding windows, such as W 1 ¼

ðX t1
;X t1þ1

; . . . ;X t1þmaxwin�1Þ, W 2 ¼ ðX t2
;X t2þ1

; . . . ;
X t2þmaxwin�1Þ; . . . ;W N ¼ ðX tN

Þ.

Example 2.1. Fig. 1(a) shows a temporal database
TDB with 14 ðN ¼ 14Þ transactions located at
intervals 1–16 except 2 and 10. Assume a value of 3
is set for maximum window maxwin. According
to the definition, the number of sliding windows in
Fig. 1(c) is 14, from W 1;W 2; . . . ;W 14. This will form
a sequence database of size 14, which is different from
the 18 sliding windows defined in [8] where empty
intervals are considered. Thus, window W 1 has three
subwindows W 1½0� ¼ fA;C;Fg, W 1½1� ¼ ; and
W 1½2� ¼ fB;Dg. As another example, window W 2

has also three subwindows W 2½0� ¼ fB;Dg, W 2½1� ¼
fA;C;Fg, and W 2½2� ¼ fD;Eg. Fig. 1(b) shows the
transaction database where each transaction is the
union of the events in all subwindows of a window
W i, while Fig. 1(c) shows the sequence database
where each sequence represents a sliding window (with
subscript denoting the time interval).
DB, (b) transactional database, (c) sequence database.
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Definition 2.2 (Serial episode). A serial episode is
a nonempty partial ordered set of events P ¼

hp1; p2; . . . ; pki where each pi is a nonempty event
set and pi occurs before pj for ioj. P is a k-tuple
serial episode or has length k.

Definition 2.3 (Super/Sub sequence). Given two se-
quences S ¼ hs1; s2; . . . ; sni and S0 ¼ hs01; s

0
2; . . . ; s

0
mi,

we say that S is a super-sequence of S0 (i.e., S0 is a
subsequence of P) if and only if, each s0j can be
mapped by sij

ðs0j � sij
Þ and preserve its order

ð1pi1pi2p � � �pimpnÞ.

For example, sequence S1 ¼ hfA;Bg; fCg; fD;Egi
is a super-sequence of sequence S2 ¼ hfAg; fDgi,
since the pattern fAg (fDg, resp.) is a subset of fA;Bg
(fD;Eg, resp.). On the contrary, S3 ¼ hfAg; fC;Dgi
is not a subsequence of S1, since the pattern fC;Dg
cannot be mapped to any itemset in S1.

Usually, a match of serial episode P is defined
when P is a subsequence of a sliding window.
However, it causes duplicate counting of the
occurrence of an episode. To overcome this
problem, the match of a serial episode in this paper
is defined as following.

Definition 2.4 (Match). Given a serial episode P ¼

hp1; p2; . . . ; pki and window bound w, we say that a
sliding window W i ¼ ðX ti

;X tiþ1
; . . . ;X tiþw�1Þ in

TDB supports P if and only if, p1 � X ti
and

hp2; . . . ; pki is a subsequence of ðX tiþ1
; . . . ;

X tiþw�1Þ. W i is also called a match of the serial
episode P. The number of sliding windows that
match episode P is called the support count of P in
temporal database TDB.

Let us return to the previous example in Fig. 1(a)
and assume maxwin ¼ 3, the serial episode
hfAg; fDgi is matched by sliding windows starting
from time slots 1; 4; 7; 8; 11 and 14. Therefore, there
are six matches with respect to serial episode
hfAg; fDgi. Note that the sequence corresponding
to window W 2 ¼ hfB;Dg; fA;C;Fg; fD;Egi, although
contains hfAg; fDgi, does not support this episode
because the first subwindow does not contain {A}.

This definition of match is sufficient to capture
the true support of an episode without over-
estimate. However, the problem is that a serial
episode of length 1 may has support counts less than
its super episode since the overlapping of sliding
windows make most subwindows counted maxwin

times (except for the first maxwin� 1 subwindows).
Take sequence S ¼ A1A2B3B4C5, maxwin ¼ 3 for
example. Although episode hCi has support 1,
episode hB;Ci has support 2 since it appears in
W 3 and W 4. Note that the matches of serial episode
are equally over-counted, therefore this problem
does not exist in previous work. Despite this issue,
anti-monotone property still holds for the supports
of most serial episodes. In fact, we are more
interested in frequent serial episodes whose sub
episodes are frequent as well. Thus, the frequent
episodes in this paper are defined as follows.

Definition 2.5 (Frequent episode). An episode P ¼

hp1; . . . ; pki is frequent if and only if the supports of
P and all subsequences pi ð1pipkÞ in P are at least
the required user-specified minimum supports (i.e.,
minsup).

Definition 2.6 (Episode concatenation). The concate-

nation of two serial episodes P ¼ hp1; . . . ; pl1
i and

Q ¼ hq1; . . . ; ql2
i is defined as P �Q ¼ hp1; . . . ; pl1

;
q1; . . . ; ql2

i. P is called a prefix of P �Q.

Definition 2.7 (Episode rule). An episode rule is an
implication of the form X ) Y , where
(1)
 X ;Y are episodes with length l1 and l2,
respectively.
(2)
 The concatenation X � Y is an episode with
length l1 þ l2.
Similar to the studies in mining typical associa-
tion rules, episode rules are governed by two
interestingness measures: support and confidence.

Definition 2.8 (Support and confidence). Let N be
the number of transactions in the temporal database
TDB. Let MatchðX � Y Þ be the number of support
counts with respect to episode X � Y and MatchðX Þ

be the number of support counts with respect to
episode X. Then, the support and confidence of an
episode rule X ) Y are defined as

Support ¼
MatchesðX � Y Þ

N
,

Confidence ¼
MatchesðX � Y Þ

MatchesðX Þ
. ð1Þ

Example 2.2. Let the user-specified threshold mini-
mum support minsup and minimum confidence
minconf be 30% and 100%, respectively. An
example of a serial episode rule with maximum
time window bound maxwin ¼ 3 from the temporal
database in Fig. 1(a) will be

hfA;C;Fgi ) hfB;Dgi.
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This rule ‘‘event set fB;Dg occurs within two
interval after event set fA;C;Fg’’ holds in the
temporal database TDB with support ¼ 35:7%ð 5

14
Þ

and confidence ¼ 100%ð5
5
Þ.

As in classical association rule mining, when
frequent episodes and their support are known, the
episode rule generation is straightforward. Hence,
the problem of mining episode rules is reduced to
the problem of determining frequent episodes and
their supports. Therefore, the problem is formulated
as follows: given a minimum support level minsup

and a maximum window bound maxwin, our task is
to mine all frequent episodes from the temporal
database with support greater than minsup and
window bound less than maxwin.

3. Related works

Mining significant patterns in sequence(s) is an
important and fundamental issue in knowledge
discovery area. For example, sequential patterns
[1–3,5–7] consider the problem on discovering
repeated subsequences in a database of sequences.
On the other hand, some mining tasks focus on
mining repeated subsequences in a sequence, e.g.,
frequent episodes [8–10], frequent continuities
[20–22] and periodic patterns [23–27]. In this
section, we distinguish various sequence mining
tasks including sequential patterns, periodic pat-
terns and frequent continuities which are related to
frequent episodes. We also make an overall
comparison between frequent itemsets and the four
mining tasks.

The problem of mining sequential patterns was
introduced in [1]. This problem is formulated as
‘‘Given a set of sequences, where each sequence
consists of a list of elements and each element
consists of a set of items, and given a user-specified
minsup threshold, sequential pattern mining is to
find all frequent subsequences, whose occurrence
frequency in the set of sequences is no less than
minsup.’’ The main difference between frequent
itemsets and sequential patterns is that a sequential
pattern considers the order between items, whereas
frequent itemset does not specify the order. Srikant
et al. proposed an Apriori-based algorithm, GSP
(Generalized Sequential Pattern) [6] to the mining of
sequential patterns. However, in situations with
prolific frequent patterns, long patterns, or quite
low minsup thresholds, an Apriori-like algorithm
may suffer from a huge number of candidate sets
and multiple database scans. To overcome these
drawbacks, Han et al. extend the concept of FP-tree
[28] and proposed the PrefixSpan algorithm by
prefix-projected pattern growth [5] for sequential
pattern mining. In addition to algorithms based on
horizontal formats, Zaki proposed a vertical-based
algorithm SPADE [7]. SPADE utilizes combinator-
ial properties to decompose the original problem
into smaller sub-problems that can be indepen-
dently solved in main memory using efficient lattice
search techniques and simple join operations.
SPAM [29] employs a vertical bitmap representa-
tion, which makes it more efficient than PrefixSpan
and SPADE. However, it consumes more memory
space for vertical bitmap maintenance.

Periodic pattern, as suggested by its name,
consider regularly appear events where the exact
positions of events in the period are fixed [30,27,26].
To form periodicity, a list of k disjoint matches is
required to form a contiguous subsequence where k

satisfying some predefined minimum repetition
threshold. For example, in Fig. 1, pattern (A,*,B)
is a periodic pattern that matches ½1; 3�, ½4; 6�, and
½7; 9�, three contiguous and disjoint matches, where
event {A} (resp. {B}) occurs at the first (resp. third)
position of each match. The character ‘‘�’’ is a ‘‘do
not care’’ character, which can match any single set
of events. Note that ½14; 16� is not part of the pattern
because it is not located contiguously with the
previous matches. To specify the occurrence, we use
a 4-tuple ðP; l; rep; posÞ to denote a valid segment of
pattern P with period l starting from position pos

for rep times. In this case, the segment can be
represented by ((A,*,B), 3, 3, 1). Algorithms for
mining periodic patterns also fall into two cate-
gories, horizontal-based algorithms, LSI [26], and
vertical-based algorithms, SMCA [30,27].

A continuity pattern is similar to a periodic
pattern, but without the constraint on the contig-
uous and disjoint matches. For example, pattern
[A,*,B] is a continuity with four matches ½1; 3�, ½4; 6�,
and ½7; 9�, and ½14; 16� in Fig. 1. The term continuity
pattern was coined by Huang et al. in [21] to replace
the general term inter-transaction association de-
fined by Tung et al. in [22], since episodes and
periodic patterns are also a kind of inter-transaction
associations in the conceptual level. In comparison,
frequent episodes are a loose kind of frequent
continuities since they consider only the partial
order between events, while periodic patterns are a
strict kind of frequent continuities with constraints
on the subsequent matches. In a word, frequent
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episodes are a general case of the frequent
continuity, and periodic patterns are a special case
of the frequent continuity. Two algorithms have
been proposed for this task, including FITI and
PROWL. FITI [22] is an Apriori-based algorithm
which uses breadth-first enumeration for candidate
generation and scans the horizontal-layout data-
base. The PROWL algorithm [21], on the other
hand, generates frequent continuities using depth-
first enumeration and relies on the use of both
horizontal and vertical-layout databases.

Table 1 shows the comparison of the above
mining tasks with frequent itemsets. The column
‘‘Order’’ represents whether the discovered pattern
specify order; the column ‘‘Temporal’’ indicates
whether the task is defined for a temporal database.
According to the input database, frequent itemsets
and sequential patterns are similar since they are
defined on databases where the order among
transactions/sequences is not considered; whereas
episodes, continuities, and periodic patterns are
similar for they are defined on sequences of events
that are usually sampled regularly. Frequent item-
sets and sequential patterns are defined for a set of
transactions and a set of sequences, respectively.
Frequent itemsets show contemporal relationships,
i.e., the associations among items within the same
transaction; whereas sequential patterns present
temporal/causal relationships among items within
transactions of customer sequences.

Among the mining tasks from a single sequence,
periodic patterns have the most restrictions, while
episodes have the least restrictions. Episode mining
discovers more patterns than periodic patterns and
continuity patterns, thus it requires more computa-
tion time. There are also other kinds of patterns
defined over sequences. For example, MAGIIC-pro
employs both intra- and inter-block gap constraints
to discover functional long motifs that are interleaved
Table 1

Comparison of various pattern mining

Notation Order

Frequent itemset I ¼ fi1; . . . ; ing N

Sequential pattern S ¼ I1; . . . ; In Y

Serial episode SEP ¼ hI1; . . . ; Ini Y

Parallel episode PEP ¼ fI1; . . . ; Ing N

Frequent continuity C ¼ ½I1; . . . ; In� Y

Periodic pattern P ¼ ðI1; . . . ; InÞ Y

aFixed interval between I i and I iþ1.
bContiguous match.
by several large irregular gaps [31]. Whether episode
patterns are more useful than periodic patterns or
continuity patterns depends on the applications,
which is not the main topic of this paper. In this
paper, we should focus on how to discover serial
episodes (which are similar to sequential patterns)
more efficiently.

4. Mining serial episodes

In this section, we propose two algorithms for
serial episode mining. Note that MINEPI outper-
forms WINEPI and overcome some drawbacks of
WINEPI. Therefore, we first show how to extend
existing algorithm MINEPI to find the support
counts instead of minimal occurrences in a complex
sequence. Then, a new algorithm EMMA is
proposed for more efficient mining of serial episodes
from complex sequences. The comparison of the
two algorithms is given in Section 4.3.

4.1. MINEPIþ

MINEPI is an iteration-based algorithm which
adopts breadth-first manner to enumerate longer
serial episodes from shorter ones. However, instead
of scanning the temporal database (in horizontal
format) for support counting, MINEPI computes
the minimal occurrences mo of each candidate
episode from the mo of its subepisode by temporal
joins. For example, we want to find all frequent
serial episodes from a simple sequence S ¼

A1A2B3A4B5 with maxwin ¼ 4 and minsup ¼ 2.
MINEPI first finds frequent 1-episode and records
the respective minimal occurrence, i.e., moðAÞ ¼

f½1; 1�; ½2; 2�; ½4; 4�g, moðBÞ ¼ f½3; 3�; ½5; 5�g. (We call
this representation of the temporal sequence as
vertical format.) Using temporal join, we get
intervals ½1; 3�, ½2; 3�, ½2; 5� and ½4; 5� for candidate
Temporal Input Constraint

N A transaction DB

N A sequence DB

Y A sequence

Y A sequence

Y A sequence a

Y A sequence a,b



ARTICLE IN PRESS
K.-Y. Huang, C.-H. Chang / Information Systems 33 (2008) 96–114102
2-tuple episode hA;Bi. Since ½1; 3� and ½2; 5� are not
minimal, the minimal occurrences of hA;Bi will be
f½2; 3�; ½4; 5�g.

To extend MINEPI for our problem, where the
support of an episode is defined by the number of
sliding windows that match serial episode hA;Bi, the
support count for serial episode hA;Bi is 3,
including intervals ½1; 3�, ½2; 3�, and ½4; 5� since ½2; 3�
and ½2; 5� denote the same sliding window. We will
use these intervals or bounds to compute the right
support count for the problem.

Definition 4.1 (Bound list for episode). Given the
maximum window boundary maxwin, the bound list

of a serial episode P ¼ hp1; . . . ; pki is the set of
intervals ½tsi; tei� ðtei � tsiomaxwinÞ such that
p1 � X tsi

, pk � X tei
and ½X tsiþ1

;X tsiþ2
; . . . ;X tei�1

�

is a super-sequence of hp2; . . . ; pk�1i. Each interval
½tsi; tei� is called a matching bound of P. By
definition, the bound list of an event Y is the set
of intervals ½ti; ti� such that X ti

supports Y.

Given a serial episode P ¼ hp1; . . . ; pki and a
frequent 1-pattern f and their matching bound
lists, e.g., P.boundlist ¼ f½ts1; te1�; . . . ; ½tsn; ten�g and
f.boundlist ¼ f½ts01; ts

0
1�; . . . ; ½ts

0
m; ts

0
m�g. The operation

temporal join (concatenation) of P and f (denoted by
P � f ) which computes the bound list for new serial
episode P1 ¼ hp1; . . . ; pk; f i is defined as the set of
intervals ½tsi; te0j� such that te0j � tsiomaxwin, and
te0j4tei for some j ð1pjpmÞ.

To deal with complex sequences, we also need
equal join in addition to temporal join. The
operation equal join of P and f which computes
the bound list for a new serial episode P2 ¼

hp1; . . . ; pk [ f i (denoted by P� f ) is defined as
the set of intervals ½tsi; tei� such that tei ¼ ts0j for
some j ð1pjpmÞ. This concept of temporal joins
and equal joins in episodes is similar to the
sequence-extension and item-extension in sequential
patterns.

Example 4.1. Let maxwin ¼ 4, we use the matching
bound lists hAi:boundlist ¼ f½1; 1�; ½4; 4�; ½7; 7�; ½8; 8�;
½11; 11�; ½14; 14�g; hBi:boundlist ¼ f½3; 3�; ½6; 6�; ½9; 9�;
½12; 12�; ½16; 16�g, and hCi:boundlist ¼ f½1; 1�; ½4; 4�;
½8; 8�; ½11; 11�; ½14; 14�; ½15; 15�g as an example. The
matching bound list of equal join ðhAi � hCiÞ and
temporal join ðhBi � hAiÞ are hACi:boundlist ¼ f½1; 1�;
½4; 4�; ½8; 8�; ½11; 11�; ½14; 14�g and hB;Ai:boundlist ¼

f½3; 4�; ½6; 7�; ½6; 8�; ½9; 11�; ½12; 14�g, respectively.

With the boundlist for each episode, it is easy to
find the support count. Continuing the above
example, the serial episode hB;Ai is matched by
four sliding windows since ½6; 7� and ½6; 8� refer to
the same sliding window.

Lemma 4.1. The support count of a serial episode P

equals the number of distinct starting positions of the

bound list for P, denoted by EntityCount(P.boundlist).

Different from MINEPI, we apply depth-first
enumeration to pattern generation for memory
saving. This is because breadth-first enumeration
must keep track of records for all episodes in two
consecutive levels, while depth-first enumeration
needs only to keep intermediate records for episodes
generated along a single path. Fig. 2 outlines the
proposed MINEPIþ algorithm. We call our algo-
rithm as MINEPIþ since the vertical-based opera-
tion in MINEPIþ is similar to MINEPI. The input
to MINEPIþ is a temporal database, minimum
support threshold minsup and maximum window
bound maxwin. According to Definition 2.5, the
frequent episode is generated by frequent itemsets.
Therefore, before applying depth-first enumeration,
we scan the temporal database TDB once, find
frequent 1-items F1 and the boundlists (line 1).
Frequent episodes are then generated by joining the
boundlists of an existing episode (lines 2–3) and an
f j in F1 (line 4) through procedure call to Serial-

Joins. To avoid duplicate enumeration for equal
joins, we define an order (e.g., alphanumerical
order) in the events E. If the order of f j is greater
than the order of the lastItem in the episode, we
apply equal join (lines 5–6) and check if the new
serial episode a � f j is frequent or not (line 7, where
EntityCount returns the number of distinct starting
positions in the bound list). If the result is true, all
frequent episodes which have prefix a� f j (line 8)
will be enumerated by recursive call to subprocedure
SerialJoins. Similarly, we apply temporal join to the
existing serial episode and the f js in F 1 to get a � f j

in lines 10–12. We illustrate the MINEPIþ algo-
rithm using the following example.

Example 4.2. Given minsup ¼ 30% (d16 � 30%e ¼
5 times) and maxwin ¼ 4, the frequent 1-items F 1

for Fig. 1(a) include hAi, hBi, hCi, hDi and hFi.
Owing space limitation, we only use F1 ¼ fhAi; hCig
as an example. The execution process is shown in
Fig. 3. In the beginning, we try to join hAi with hAi,
the first element in F1. Since they have the same
order, we only apply the temporal join for them.
The entity count for temporalJoinðhAi; hAiÞ ¼
f½1; 4�; ½4; 7�; ½7; 8�; ½8; 11�; ½11; 14�g is 5. Thus, we
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Fig. 2. MINEPIþ: Vertical-based Frequent Serial Episode Mining Algorithm.

Fig. 3. Flowchart for prefix hAi (only events A and C are demonstrated).
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recursively call SerialJoins for generating serial
episodes which have prefix hA;Ai. Next, we check
serial episodes hA;A;Ai, hA; fA;Cgi and hA;A;Ci.
In this layer, all of them are infrequent. The re-
cursive call stops and returns to the prior procedure.
Next, we compute the matching bound list for serial
episode hfA;Cgi by equalJoin, which returns the
matching bounds of hfA;Cgi as f½1; 1�; ½4; 4�; ½8; 8�;
½11; 11�; ½14; 14�g. The recursive call of SerialJoins

then enumerates hfA;Cg;Ai and hfA;Cg;Ci (see
Fig. 3). Finally, only five serial episodes hAi,
hA;Ai, hA;Ci, and hA;Ci are outputted in this
example.

Though the extension of MINEPI discover all
frequent serial episodes, MINEPIþ has the follow-
ing drawbacks.
�
 A huge amount of combinations/computations: Let
jI j be the number of frequent 1-episodes, WINEPI
+ needs jI j2 and ðjI j2 � jI jÞ=2 checking for tem-
poral joins and equal joins, respectively. For
example, if there are 1000 frequent 1-episodes,
there are approximately 1.5 million combina-
tions. Moreover, when the number of matching
bounds increases, MINEPIþ requires more time
in computation.

�
 Unnecessary joins: Since long episodes are gener-

ated from shorter ones, sometimes MINEPIþ
makes some unnecessary checking. Take the
bound list of serial episode hA;Ai in Example
4.2 as an example. In this case, only the time
bound ½7; 8� can be extended by temporal join to
generate long episode since other bounds already
reach the limits of maximum windows. Since the
number of the extendable matching bounds for
serial episode hA;Ai is less than minsup � jTDBj,
we can skip all temporal joins for this prefix. We
will discuss a pruning strategy in the following
section.
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�
 Duplicate joins: Furthermore, MINEPIþ also
performs some duplicate checking. For example,
to find serial episode hABCD;ABCD;ABCDi,
MINEPIþ needs nine of equal joins (e.g.,
equalJoinðhAi; hBiÞ, equalJoinðhABi; hCiÞ and
equalJoinðhABCi; hDiÞ, etc.) and two temporal
joins (e.g., temporalJoinðhABCDi; hAiÞ and
temporalJoinðhABCD;ABCDi; hAiÞ). However, if
we maintain the bound list for hABCDi, we only
needs two temporal joins.

4.2. EMMA

In this section, we propose an algorithm, EMMA
(Episode Mining using Memory Anchor), that
overcomes the drawbacks of the MINEPIþ algo-
rithm described in the previous section. First, to
avoid duplicate equal joins or intra-transaction
joins, we can find all frequent itemsets first and then
use temporal joins for inter-transaction patterns.
The idea comes from FITI (First-Intra-Then-Inter)
for frequent continuity mining [22]. The set of
frequent itemsets are actually length 1 frequent
serial episodes. With the boundlists for all frequent
1-tuple episode, we can use temporal joins to
discover longer serial episodes. This approach has
shown to perform well for frequent continuity
mining in efficiency improvement. However, the
problem is that the set of all frequent itemsets is
much larger than the set of frequent items. If we
apply traditional candidate-generation-and-test
procedure as MINEPIþ, it will cost a lot of
computation. Luckily, there is already known solu-
tion to mining sequential patterns without candidate
generations [32]. The idea is to grow a frequent
pattern by adding locally frequent items from its
projected database (vs. from global frequent items
F1). Thus, the cost will depend on how we implement
the projected database. In this paper, we should see
the combination of vertical-based data representation
with horizontal-based data representation to achieve
pseudoprojection, where vertical-based format re-
cords the anchors to horizontal data representation.
We will apply this technique both in frequent itemset
mining as well as serial episode mining. In summary,
EMMA is divided into the following three phases.
(1)
 Frequent itemset mining: Mining frequent item-
sets in the complex sequence.
(2)
 Database encoding: Encode each frequent item-
set with a unique ID and construct them into an
encoded horizontal database.
(3)
 Frequent serial episode mining: Mining frequent
serial episodes in the encoded database.
4.2.1. Frequent itemset mining

There are already a lot of frequent itemset mining
algorithms. Since the third phase of serial episode
mining requires the time lists of each frequent
itemset, we prefer using a vertical-based mining
algorithm, e.g., Eclat [33]. However, similar to the
drawbacks of MINEPIþ, unnecessary candidates
are generated in the computation of Eclat. There-
fore, we devise a more efficient algorithm FIMA
(Frequent Itemset mining using Memory Anchor)
which validates local frequent items to reduce
unnecessary combinations of existing frequent item-
sets with nonlocal frequent items. To accelerate the
validation of local frequent items, a flat format of
the database is introduced, which records the items
as well as their Tids.

As shown in Fig. 4(a), the flat data representation
of frequent items is an array of 2-tuples, (Tid, I),
which is consistent with the relational data repre-
sentation of the database. To implement pseudo-
projection of a frequent item, we record the indexes
of the frequent items in the array, as shown in
Fig. 4(b). For example, frequent item A occurs at 1,
6, 12, 14, 19, 25. With this LocList, the projected
database can be easily known since the flat
representation is sorted by transaction ID and item.
For example, the projected database for pattern A

includes those tuples at f2; 3; 7; 8; 13; 15; 16; 20;
21; 26; 27g since these tuples have the same Tid as
A. By examining the items in these tuples, we can find
local frequent items, e.g., C occurs at f2; 7; 15; 20; 26g,
and F occurs at f3; 8; 13; 16; 21; 27g, which are exactly
the LocList for frequent itemset fA;Cg and fA;Fg,
respectively. Formally, the projected database of a
pattern is defined as follows.

Definition 4.2 (Projected location list). Given the
location list (vertical format) of an itemset I,
I :LocList ¼ ft1; t2; . . . ; tng in the flat (horizontal)
database IndexDB (see Fig. 4), the projected List

(PList) of I is defined as I :PList ¼ ft01; t
0
2; . . . ; t

0
mg,

where t0j :TID ¼ ti:TID for some ti and tiotjp
tjIndexTDj.

The main frame of the FIMA is outlined in Fig. 5.
First of all, we scan database once and find frequent
1-items F1 (line 1). Next, we transform the database
into an array of 2-tuple ðItem;TidÞ sorted by Tid

and then Item. Then, we maintain the LocList of
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Fig. 4. Bi-format implementation of pseudoprojection for Fig. 1(a): a flat format sorted by Tid and Item (horizontal format), (b) the

location lists of frequent items (vertical format).

Fig. 5. FIMA: Frequent Itemset mining using Memory Anchor.
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each item in F 1 as searching anchors. For each f i in
F1, we call subprocedure fimajoin to extend longer
itemsets with prefix f i (lines 3–4). In the subproce-
dure fimajoin, we find all local frequent 1-items lf j

by examining the projected list of input pattern
(line 5). As an example, if we want to extend input
pattern fA;Cg with LocList f2; 7; 15; 20; 26g, we will
examine those tuples at f3; 8; 16; 21; 27g since these
tuples have the same Tid as fA;Cg. The local
frequent 1-items in this list (called the projected list)
are fFg with counts 5. Thus, new frequent itemsets
are generated by uniting fA;Cg with fFg (lines 6–7),
and its LocList are exactly f3; 8; 16; 21; 27g where F

occurs.
The subprocedure fimajoin is applied recursively
to enumerate all frequent itemsets with known
frequent itemsets as their prefixes. For example, the
projected list for pattern fA;C;Fg is ;. The recursive
call stops when no more frequent itemsets are
generated. Finally, we output the TidList for each
frequent itemsets (instead of LocList) by examining
the locations recorded in locList. (We show the
LocList for each frequent itemsets in Fig. 6(a) as a
reference.) With local frequent items, we reduce a
lot of unnecessary joins of the existing frequent
itemset with any frequent 1-items. The gain in time
is a tradeoff of the cost in space as in many
algorithms. We will see how such tradeoffs are
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Fig. 6. Location list and encoding table: (a) encoding table of the frequent itemsets for Fig. 1(a), (b) encoded horizontal database EDB.
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applied in serial episode mining in the following
sections.

4.2.2. Encoded database construction

In the second phase, we associate each frequent
itemset with a unique ID and construct a horizontal
database EDB composed of these IDs. As shown in
Fig. 6(b), EDB records the set of frequent itemsets
(IDs) that occur at each time slot. Recall that we have
output the TidList for each frequent itemset at Phase I,
which can be easily transformed to boundLists for each
frequent 1-tuple episode (see Fig. 6(a)). Using these the
boundLists of frequent 1-tuple episode and the encoded
database constructed from Phase II, pseudoproject can
be easily implemented as presented below.

4.2.3. Frequent serial episode mining

Different from sequential pattern mining where
the projected database is defined as the collection of
suffixes of sequences with regards to a prefix a, there
is no such concepts as sequence suffixes in serial
episode mining. Instead, the mining of frequent
serial episodes is guarded by the maximum window
size maxwin, which is what we can use to define the
projected database for an episode pattern.
Definition 4.3 (Projected bound list). Given the
bound list of a serial episode P, P:boundlist ¼

f½ts1; te1�; . . . ; ½tsn; ten�g in the encoded database ED,
the projected bound list (PBL) of P is defined as
P:PBL ¼ f½ts01; te

0
1�; . . . ; ½ts

0
n; te

0
n�g where ts0i ¼ tei þ 1

and te0i ¼ minðtsi þmaxwin� 1; jTDBjÞ. Discard the
last bound ts0n if it is greater than jTDBj.

For example, given 1-episode h#7i ¼ hfA;C;Fgi
with boundlist {[1,1], [4,4], [8,8], [11,11], [14,14]} and
maxwin ¼ 4, the projected database is a set of
bounds including ½2; 4�, ½5; 7�, ½9; 11�, ½12; 14�, and
½15; 16�. As another example, 1-episode h#9i ¼
hfB;Dgi with boundlist f½3; 3�; ½6; 6�; ½9; 9�; ½12; 12�;
½16; 16�g has the projected bound list ½4; 7�, ½7; 9�,
½10; 12�, ½13; 15�, ½17; 16�, where the last bound
should be discarded.

With projected database, we should be able to
find local frequent IDs by counting the number of
bounds an ID occurs. For example, in the projected
list of episode h#7i, #2, #4 and #9 occur at all
five bounds, #6 and #7 occur at only three bounds,
while others occur at four bounds. Given minsup ¼ 5,
only #2, #4 and #9 are frequent. These local frequent
IDs, with respective boundlists, form new episode
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by temporal joins with episode h#7i. For example, the
boundlist for ID #2 is f½3; 3�; ½6; 6�; ½9; 9�; ½12; 12�;
½16; 16�g, while the boundlist for ID #4 is f½3; 3�;
½5; 5�; ½6; 6�; ½9; 9�; ½12; 12�; ½13; 13�; ½16; 16�g. By tem-
poral joins with the boundlist of episode h#7i, we
have the boundlist for episode h#7;#2i as f½1; 3�;
½4; 6�; ½8; 9�; ½11; 12�; ½14; 16�g, and the boundlist for
episode h#7;#4i as f½1; 3�; ½4; 5�; ½4; 6�; ½8; 9�; ½11; 12�;
½11; 13�; ½14; 16�g. The bound list is the same as the
temporal join of #7 and #4 in MINEPIþ, where the
support count is defined as the number of distinct
bounds. Although we count the number of bounds
for all IDs in this example, the number of IDs in an
episode’s projected boundlist is much less in real
situations.

The complete algorithm of EMMA is outlined in
Fig. 7. Lines 1 and 2 represent Phases I and II,
respectively. Similar to FIMA, it adopts depth-first
enumeration to generate longer serial episodes (lines
4–6, 9–12) by joining an existing serial episode with
local frequent IDs (line 9). This is accomplished by
examining those transactions following the match-
ing bounds of current serial episodes, i.e., the
projected database as described above. The proce-
dure emmajoin is called recursively until no more
new serial episodes can be extended.

As with sequential pattern mining, if the number
of sequences in the projected database is less than
the minimum support, it is impossible to grow
patterns. Similarly, if the number of bounds in the
projected database (called extendable bounds) for a
serial episode P is less than the minimum support,
then we can skip all extensions of the prefix P (line 5
and 11). For example, 1-episode h#9i with boundlist
f½3; 3�; ½6; 6�; ½9; 9�; ½12; 12�; ½16; 16�g has only four
Fig. 7. EMMA: Frequent Serial Episod
bounds in its projected boundlist, i.e., f½4; 6�; ½7; 9�;
½10; 12�; ½13; 15�g, thus, there is no need to extend this
prefix if the minsup is 5. This strategy further avoids
some unnecessary checking spent in MINEPIþ.

Definition 4.4 (Extendable bounds). The extendable

bounds is defined as the number of bounds in the
projected bound list of a serial episode P, denoted
by ExtCount(P).

Example 4.3. Let minsup and maxwin be 5 and 4 as
before. We should illustrate the operation of Phase
III for EMMA by completing the example with
episode h#7i. By examining the transactions in its
projected boundlist, we find ID #2, #4, and #7 to be
frequent as described above. For each local frequent
ID, we use temporal join (line 10) to compute the
boundlist for new episode h#7;#2i, which is f½1; 3�;
½4; 6�; ½8; 9�; ½11; 12�; ½14; 16�g. Since the number of
extendable bounds is four (including ½4; 4�, ½7; 7�,
½10; 12�, ½13; 14�), there is no need to extend this
prefix. We then proceed with next ID #4, which has
boundlist f½1; 3�; ½4; 5�; ½4; 6�; ½8; 9�; ½11; 12�; ½11; 13�;
½14; 16�g. With extendable counts 6, we recursively
call emmejoin to extend prefix h#7;#4i. However,
there is no frequent IDs in h#7;#4i:PBL ðf½4; 4�;
½6; 7�; ½7; 7�; ½10; 11�; ½13; 14�; ½14; 14�gÞ. Thus, no new
episodes are generated. Finally, we compute the
boundlist for episode h#7;#9i as f½1; 3�; ½4; 6�; ½8; 9�;
½11; 12�; ½14; 16�g, which has extendable counts less
than 5 (since the projected boundlist is f½4; 4�;
½7; 7�; ½10; 11�; ½13; 14�g), thus, complete the proce-
dure call. Other episodes can be mined by applying
the above process recursively to each 1-tuple
episode, h#1i, h#2i, etc.
e Mining Using Memory Anchor.
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Table 2

Meanings of symbols

Sym Definition Default

jDj # of time instants 100K

N # of events 1000

T Average transaction size 6

jCj # of candidate pattern 2

L Average episode tuple size 3

I Average itemset length 3

W Average window length 5

Sup Average support 4%

K.-Y. Huang, C.-H. Chang / Information Systems 33 (2008) 96–114108
4.3. Discussion

One of the reason that pattern growth is designed
is to avoid generating candidate patterns for
checking, which can also be applied to other mining
tasks. However, the pseduoprojection actually
requires both a horizontal-based encoded database
and vertical-based boundlists for each frequent
itemset. Therefore, the memory requirement for
EMMA is greater than that for MINEPIþ. When
the number of frequent itemsets grows too large, it
is unrealistic to maintain all patterns in the main
memory. Fortunately, there is solution to memory
shortage. First, we can maintain the boundlists of
frequent itemsets in disk, then read them sequentially
for episode extension. Theoretically, the disk-based
EMMA can reduce half the memory requirement
than the original EMMA. On the other hand, if the
horizontal-based encoded database is still too large to
fit the memory, then partition can be used to divide
the problem to find local frequent episodes, with a
final scan to the whole horizontal database for
validation.

5. Experiments

In this section, we report the performance study
of the proposed algorithms on both synthetic data
and real-world data. All the experiments are
performed on a 3.2GHz Pentium PC, running
Microsoft Windows XP. All the programs are
written in Microsoft/Visual C++ 6.0.

5.1. Synthetic data

For performance evaluation, we use synthetically
generated temporal data, D, consisting of N distinct
symbols and jDj time instants. A set of candidate
patterns, C, is generated as follows. First, we decide
the window length using geometrical distribution
with mean W . This motivation is based on the
observation that the shorter episode pattern is more
frequent than longer. Again, the number of episode
pattern increases as length decreases sharply. There-
fore, we use geometrical distribution to simulate this
observation. Then L ð1oLoW Þ positions are
chosen for nonempty event sets. The average
number of frequent events for each time slot is set
to I. The number of occurrences of a candidate
episode follows a geometrical distribution with
mean Sup � jDj. A total of jCj candidate patterns
are generated. Next, we assign events to each time
slot in D. The number of events in each time instant
is picked from a Poisson distribution with mean T.
For each time instant, if the number of events at this
time instant is less than T, the insufficient events are
picked randomly from the symbol set N. Table 2
shows the notations used and their default values.

Fig. 8 depicts the comparison results between
MINEPIþ and EMMA for synthetic data with
default parameter minsup ¼ 4% and maxwin ¼ 5.
From Fig. 8(a), we can see that when the data size
increases, the gap between MINEPIþ and EMMA
in the running time becomes more substantial.
EMMA is faster than MINEPIþ (by a magnitude
of 150 for jDj ¼ 250K). However, EMMA requires
more memory as shown in Fig. 8(b). We also record
the memory requirement of EMMA at Phase I,
denoted by EMMA(I). If the timelists of frequent
itemsets are maintained in the disk, the memory
requirement will be EMMA� EMMAðIÞ. There-
fore, EMMA(disk) needs approximately 27MB at
jDj ¼ 250K.

The runtime of MINEPIþ and EMMA on the
default data set with varying minimum support
threshold, minsup, from 2% to 6% is shown in
Fig. 8(c). Clearly, EMMA is faster and more
scalable than MINEPIþ, since the number of
combinations in MINEPIþ grows rapidly as the
minsup decreases, while EMMA only considers the
local frequent patterns in the projected bound
lists. Again, the memory requirement for EMMA
increases as minsup decreases, since the number of
frequent itemsets increases as minsup decreases (see
Fig. 8(d)).

Fig. 8(e) shows the scalability of the algorithms
with varying maximum window. Both curves in
Fig. 8(e) go upwards because the number of
frequent episodes increases exponentially as maxwin

increases. However, EMMA still outperforms
MINEPIþ with varying maxwin. In Fig. 8(f ), the
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memory requirement is steady for both MINEPIþ
and EMMA. Thus, the maximum window threshold
does not affect the memory requirement a lot. In
Fig. 8(g), the total running time for MINEPIþ and
EMMA are linear to the average transaction size T.
However, for large transaction size, MINEPIþ
requires significantly more time in equal join. In
short, the performance study shows that the
EMMA algorithm is efficient and scalable for
frequent episode mining, and is about an order of
magnitude faster than MINEPIþ. However,
MINEPIþ requires smaller and stable memory
space than EMMA.

5.2. Real-world data

We also run our algorithms on a variety of
different real-world data sets to get a better view of
the usefulness of frequent episodes in a sequence.

5.2.1. Stock data

First, we apply MINEPIþ and EMMA to a data
set composed of 10 stocks (electronics industry) in
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Fig. 9. Performance comparison using real data: (a) running time vs. m

(d) memory usage vs. maxwin.
the Taiwan Stock Exchange Daily Official list
for 2618 trading days from September 5, 1994
to June 21, 2004. We discretize the stock price of
go-up/go-down into five levels: upward-high
(UH): X3:5%, upward-low (UL): o3:5% and
40%, changeless (CL): 0%, downward-low (DL):
4� 3:5% and o0%, downward-high (DH):
p� 3:5%. In this case, the number of events in
each time slot is 10, and the number of events is 50
(10*5). Fig. 9(a) shows the running time with an
increasing support threshold, minsup, from 10% to
30%. Fig. 9(c) shows the same measures with
varying maxwin. As the maxwin/minsup threshold
increases/decreases, the gap between MINEPIþ and
EMMA in the running time becomes more sub-
stantial. Figs. 9(b) and (d) show the memory
requirements and the number of frequent episodes
with varying minsup and maxwin. As the maxwin

threshold increases or minsup threshold decreases,
the number of frequent episodes also increases. The
memory requirement in MINEPIþ is steady. How-
ever, EMMA needs to maintain more frequent
itemsets as the minsup decreases; whereas the
25

20

15

10

5

0
30 25 10

0

2

4

6

M
e
m

o
ry

 R
e
q
u
ir
e
m

e
n
t 
(M

b
)

1520

minsup(%)

1

2

1

2

0.084 0.412

1

2

3

4

0.489
1 6.646

1

19.567

9.091

4.135

2.2

1 1

2.2
2

1

0.489

1

2 2

1

0.426 0.21

1

2

0.023

EMMA

MINEPI+

# of frequent episodes

EMMA

MINEPI+

# of frequent episodes

6

4

2

0

M
e
m

o
ry

 R
e
q
u
ir
e
m

e
n
t 
(M

b
)

234567

maxmin

10

8

6

4

2

0

insup, (b) memory usage vs. minsup, (c) running time vs. maxwin,



ARTICLE IN PRESS
K.-Y. Huang, C.-H. Chang / Information Systems 33 (2008) 96–114 111
memory requirement with varying maxwin in
EMMA is changed slightly. MINEPIþ is better
than EMMA in memory saving (by a magnitude of
4 for minsup ¼ 10%).

We list some of the episode rules regarding the
temporal relationship between TSMC (http://
www.tsmc.com) and UMC (http://www.umc.com)
under minsup ¼ 5% and maxwin ¼ 3 (sorted by
confidence, then support) in Table 3. Since these
two companies are both semiconductor manufac-
turing companies, there should have a close
relationship among them. As shown in the table,
top episodes rules usually have less constraints, thus
it is less possible to use them for prediction.
However, precedents and consequents often change
in the same direction. Precedents with more
constraints are much easier to understand. When-
ever one of the companies goes down in a row, the
other either goes down or rebounds.

5.2.2. UNIX log

Next, we employ our algorithms to mine the
user’s behaviors from usage logs. The data sets are
taken from the UNIX user usage logs in UCI
Machine Learning Database Repository. The
UNIX user usage logs contains nine subsets of
sanitized user data drawn from the command
histories of eight UNIX computer users at Purdue
over the course of up to 2 years. USER0 and
USER1 were generated by the same person, working
Table 3

Some episode rules for UMC and TSMC (two semiconductor manufac

ID Rule

1 hUMC-CLi�!hTSMC-ULi

2 hTSMC-CLi�!hUMC-ULi

3 hTSMC-CLi�!hTSMC-ULi

4 hUMC-DLi�!hUMC-ULi

5 hTSMC-DLi�!hTSMC-ULi

6 hUMC-DHi�!hUMC-ULi

7 hfUMC-DL,TSMC-DLgi�!hTSMC-ULi

8 hfUMC-DL,TSMC-DLgi�!hUMC-ULi

y

13 hfUMC-UL,TSMC-ULgi�!hUMC-ULi

15 hfUMC-UL,TSMC-ULgi�!hTSMC-ULi

20 hfUMC-UL,TSMC-ULgi�!hTSMC-DLi

30 hfUMC-DL,TSMC-DLgi�!hUMC-DLi

34 hfUMC-DL,TSMC-DLgi�!hTSMC-DLi

37 hfUMC-UL,TSMC-ULgi�!hUMC-DLi

40 hTSMC-UL,TSMC-ULi�!hTSMC-ULi

y

on different platforms and different projects. The
description of the data used and the running time of
our algorithms are presented in Table 4. Since the
User6 and User8 have a lot of events, they cause a
huge of combinations in MINEPIþ. Besides, by
mining frequent serial episodes in the usage logs, we
can discover some users’ usage behaviors. For
example, we find an interesting serial episode
h��SOF��; elm; exit;��EOF��i in USER0’s usage
log. It means that USER0 always login only for
sending/receiveing e-mail.

5.2.3. Protein sequence

Finally, we apply our algorithms on protein
sequences to discover repeated subsequence, which
is an important problem in bioinformatics. We used
data from the PROSITE database of the ExPASy
Molecular Biology Server (http://www.expasy.org/).
The purpose of our experiment is to evaluate
frequent serial episode can find all previous known
repeated subsequences. We selected a protein
sequence P13813 (110K_PLAKN) with a known
tandem repeats hE;E;T ;Q;K ;T ;V ;E;P;E;Q;Ti,
minsup ¼ 10 and maxwin ¼ 12. The total length of
this sequence is 296 events, with an alphabet of 22
event types. As expected, several frequent serial
episodes which are related to the known tandem
repeat are discovered. With this problem, we are
only interested in the maximal frequent serial
episodes. For example, we found six frequent serial
turing companies)

Support (%) Confidence (%)

7.91 67.0

6.04 64.5

6.04 64.5

20.9 64.1

21.9 63.7

6.68 63.6

12.6 63.4

12.6 63.2

14.63 61.4

14.40 60.4

13.87 58.2

11.27 56.5

11.08 55.6

12.41 52.1

6.34 27.9

http://www.tsmc.com
http://www.tsmc.com
http://www.umc.com
http://www.expasy.org/
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Table 4

UNIX user usage log (min ¼ 5% and maxwin ¼ 10)

Data set Events Event types # of serial episodes MINEPIþ (s) EMMA (s)

UNIX User0 8974 197 361 6.5 0.3

UNIX User1 19881 288 464 93.7 1.2

UNIX User2 18738 310 385 43.3 0.6

UNIX User3 16966 273 295 13.2 0.4

UNIX User4 37817 479 368 165.3 1.3

UNIX User5 34821 563 245 4.8 0.3

UNIX User6 64152 609 482 2853.3 14.6

UNIX User7 17329 449 192 0.6 0.2

UNIX User8 54042 706 246 1362.3 9.8
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episodes with length 12. However, only one serial
episode hE;E;T ;Q;K ;T ;V ;E;P;E;Q;Ti is the
tandem repeats, the others are tandem repeats with
some varying shifts. This indicates that frequent
episode mining can be used in finding repeated
subsequences over biological sequence.

6. Conclusion and future work

In this paper, we discuss the problem of mining
frequent episodes in a complex sequence and
propose two algorithms to solve this problem. First,
we modify previous vertical-based MINEPI [9] to
MINEPIþ as the baseline for mining episodes in a
complex sequence. To avoid the huge amount of
combinations/computations and unnecessary/dupli-
cate checking, we utilize memory to propose a
brand-new memory-anchored algorithm, EMMA.
(The extensions of the algorithms for parallel
episode mining are given in the Appendix A.)
The experiments show that EMMA is more
efficient than MINEPIþ for both synthetic and real
data set.

For future work, we can mine closed frequent
episodes instead of all frequent episodes since the
number of closed frequent itemsets is usually less
than the number of frequent itemsets. We can mine
frequent itemsets in Phase I and generate com-
pressed frequent episodes or devise new algorithms
for mining closed frequent episodes as suggested in
[20]. So far we have only discussed serial and
parallel episodes. The combination of serial and
parallel episodes remains to be solved. As suggested
in [10], the recognition of an arbitrary episode can
be reduced to the recognition of a hierarchical
combination of serial and parallel episodes. How-
ever, there are some complications one has to take
into account. Thus, further researches are required.
Appendix A

In this section, we define the problem of frequent
parallel episodes mining and discuss how to modify
our algorithms for this problem.

Definition A.1. A parallel episode I ¼ fi1; . . . ; ikg

ðij 2 EÞ is a set of events that occur within a window
with length less than maxwin. We say that parallel
episode I is also a k-event parallel episode.

Definition A.2. Given a parallel episode I ¼

fi1; . . . ; ikg and the window bound win, we say that
the sliding window W i ¼ ðX ti

;X tiþ1
; . . . ;X tiþwin�1Þ

in TDB supports I if and only if, I � Ui where

Ui ¼
[win�1

j¼0

X tiþj.

The number of sliding windows that match episode
I is called the window count of I in the temporal
database TDB.

Take parallel episode I1 ¼ fA;Dg in Fig. 1(a) for
example. We find that I1 is supported by 12 sliding
windows (from W 1 to W 12). Thus, the parallel
episode I1 has 12 matches. Note that the number of
windows that support an event can be as large as
win times the number of occurrences for the event,
since every event, except for those in the last win� 1
intervals, is counted by win windows. For example,
E, although has only three appearances in Fig. 1(a),
is supported by eight sliding windows. Thus, the
minimum support for window counts should not be
set too low, or there will be too many frequent
1-event parallel episodes.

Definition A.3. Given a minsup, we say an event x is
window frequent if and only if it occurs more that
minsup sliding windows.



ARTICLE IN PRESS

Fig. 10. MINEPI2: Vertical-based Frequent Parallel Episode Mining Algorithm.

Fig. 11. EMMA2: Frequent Parallel Episode Mining Using Memory Anchor.
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The problem of frequent parallel episode mining
is defined as discovering all parallel episodes that
have at least minsup support count within the
maximum window bound win. Using vertical format
representation, we shall maintain the sliding win-
dows that support each window frequent parallel
episodes (called matching window lists). For exam-
ple, fAg:windowlist ¼ f1; 4; 7; 8; 11; 14g. Since we do
not consider the order of events within a sliding
window, we only need to check the common parts
(i.e., via intersection) of two known window lists
when extending a short frequent episode.

The modified MINEPIþ for frequent parallel
episode mining proceeds as follows. Given a
parallel episode I ¼ fi1; . . . ; ikg, a window frequent
1-pattern wf and their matching window lists,
e.g., I :windowlist¼fIW 1; . . . ; IW ng and wf :
windowlist ¼ fFW 1; . . . ;FW mg. The operation
windowJoin of I and f which computes the window
list for a new parallel episode I 0 ¼ fi1; . . . ; ik; f g
(denoted by I [ f ) is defined as the intersection of
the two window lists, I :windowlist \ wf :windowlist.
The modified MINEPIþ for parallel episodes is
illustrated in Fig. 10. To avoid the duplicate
enumeration, we use alphabetical order to generate
long parallel episodes (line 4). Starting from each
window frequent event wf i, all frequent parallel
episodes with prefix wf i can be enumerated by
recursive calls to ParallelJoins.

As for the parallel episode version of EMMA, the
detailed modified algorithm is illustrated in Fig. 11.
We shall see more clearly how EMMA differs from
MINEPI in parallel episode mining. Instead of doing
windowJoin directly in MINEPI, we will examine
local frequent items from the memory anchors, i.e.,
the window list of the current episode. Conceptually,
this algorithm is similar to the combination of FIMA
algorithm and EMMA algorithm. However, instead
of examine those transactions in FIMA, we need to
check in those windows instead. More importantly,
the support of an item is counted in terms of windows
instead of transactions. For example, in the window
list of parallel episode {A}, B has six occurrences
instead of five. As usual, we shall need more memory
space to facilitate quick checking as discussed in
Section 4.3.
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