
Gadget Creation for Personal Information Integration on Web Portals

Chia-Hui Chang, Shih-Feng Yang, Che-Min Liou
National Central University, Taiwan

chia@csie.ncu.edu.tw, {tomelf, chemin}@db.csie.ncu.edu.tw

Mohammed Kayed
Beni-Suef Universiy, Egypt

mskayed@yahoo.com

Abstract

Although the ever growing Web contain information to
virtually every user’s query, it does not guarantee effec-
tively accessing to those information. In many situations,
the users still have to do a lot of browsing in order to fuse
the information needed. In this paper, we propose the idea
of gadget creation such that extracted data can be imme-
diately reused on personal portals by existing presentation
components, like map, calendar, table and lists, etc. The
underlying technique is an unsupervised web data extrac-
tion approach, FivaTech, which has been proposed to wrap
data (usually in xml format). Despite the efforts to uti-
lize supervised web data extraction in RSS feed burning
like OpenKapow and Dapper, there’s no research on incor-
porating unsupervised extraction method for RSS feeds or
gadget creation. The advanced application in gadget cre-
ation allow immediate use by users and can be embedded
to any web sites, especially Web portals (personal desktop
on Web). This paper describes our initiatives in working
towards a personal information integration service where
light-weight software can be created without programming.

1 Introduction

Although the ever growing Web contain information to
virtually every user’s query, it does not guarantee effec-
tively accessing to those information. In many situations,
the users still have to do a lot of browsing in order to ac-
cess those information. For example, considering the ef-
forts one has to do everyday: email checking (yahoo, msn,
school/work mail), news reading (CNN, USA today, ESPN
sports), discussion boards monitoring (e.g. Google forums,
Yahoo groups), social communities (Facebook, Myspace),
online documents (Google Docs&Spreadsheet, Zoho.com),
calendar, investments and banks, etc. It surely takes a lot
of time browsing through all these Web sites. As another
example, querying the price for airline tickets with differ-
ent departure date or marking the locations on Google map

for the schools in your neighborhood. Both will take multi-
ple and repetitive operations for the users to accomplish the
task. In fact, there are a bunch of such special integration
applications since web sites can not predict in advance all
users’ need.

The first example presents the need to monitor Web sites,
a particular kind of information integration, while the sec-
ond one describes various information needs requested by
users, a more general information integration case. To keep
updated with the newest information, some maintain “fa-
vorite folders” to record all the URLs, some use email noti-
fications, while others use multiple starting URLs in their
browsers (e.g. Firefox) to check the newest information
simultaneously. However, bookmarks do not provide in-
stant update which is desirable for changing information,
especially on the Web. Using email notification can also in-
crease the cost of managing emails. Multiple starting URLs
may be a solution except that it loads the whole Web page
but only a portion of the Web page is targeted. Thus, some
researchers have proposed the idea of clipping a portion of
information from target web sites to incorporate it into the
end user site.

An alternative way to solve this problem is to have many
gadgets / widget / portlet / modules (i.e. lightweight soft-
ware) to retrieve the information from web sites on behalf
of users such that any update can be monitored. This idea
of integration for personal use has become more and more
popular in recent years and attracted many efforts in the de-
velopment of such platform, e.g. iGoogle, Netvibes, Page-
flakes, Protopage, MyAol, MyYahoo, ExciteMix, etc. Such
personal portal interface allows users to view their emails,
RSS feeds, and discussion forums in one place and disclose
the most updated content in a dashboard without visiting
all web sites, thus becoming the start page of many peo-
ple. Moreover, with most of the platforms open and free to
add any third party modules, it becomes even popular and
powerful since more and more tools are created.

In such personal web portals, users can assemble their
favorite gadgets, feeds, social networks, email, videos and
blogs on one fully-customizable page. One can also turn
any Web page into a dashboard component by clipping any



selected area (a segment of HTML source code) as a new
widget to their personal dashboard. In fact, the way it allows
users to add arbitrary modules makes such platforms perfect
for personal information center. Thus, gadgets and personal
web portals would be a form and platform where composite
services are delivered.

In this paper, we propose the idea to have gadgets per-
forming repetitive operations for users, e.g. marking all
addresses found on input Web pages on Google map, or
querying the ticket fare for different departure dates (and
show the result as a fare calendar), etc. To delegate such
repetitive operations, the user can specify the input, output
and the data between them for creating gadgets. The first
(input) step guides the gadget to fetch HTML pages from
the Web, then the second step extract the desired data to be
used in the output step. Finally, predefined display modules
like lists, tables, calendars and maps can be selected as the
presentation interface. Thus, a user not only has a copy of
some Web clip from the resource Web site but also assemble
the data by some operations imposed by the selected display
module.

The rest of the paper is organized as follows: Section 2
describes the system architecture and user interface demon-
stration. An example of gadget creation is illustrated in sec-
tion 3. Finally, conclusion and future work are summarized
in section 4.

2 System Architecture

We explain the system architecture using Figure 1. An
user can create new gadgets for his/her own information
need by specifying the input method, output module and
desired data to be displayed. The corresponding modules
will fetch pages specified by users, extract data embedded in
them via unsupervised wrapper technology, and display the
extracted data in spreadsheets for selection. Finally, gad-
gets can be generated based on the fetch plan, extraction
rules and selected output module. Once the gadget is cre-
ated, it can be added to Web portals like iGoogle or any web
site by copying the generated code.

For output, there are four predefined display modules:
list, table, calendar, and map, where the last two allow users
to compare data in time axis and space axis, respectively.
These will cover two of the most common scenarios when
the users would need help on his/her very own information
needs: the first one is monitoring task (e.g. check email,
library book loan, currency rate, etc.), the other is compar-
ing task that involves repetitive process to be carried using
current Web services. For example, mark a set of address
on map, query ticket fare for different departure date with
calendar display module, or compare the result for a list of
queries in a tabular way, etc.

For input, there are two input methods that users can start

Figure 1. The proposed system architecture
for Gadget Creation.

with: a user can specify either a set of static URLs, or a
starting URL which contains some query form with asso-
ciated queries. In practice, more specification is required
since the desired data may spread across several pages, es-
pecially for monitoring tasks. In the past works (like As-
Bye or Robomaker), this would require extraction of links
to be followed. However, as we will see later, other input
pages can be specified easily by selecting URL-type data
for fetching.

One of the key difference of this Gadget on Demand
(GoD for acronym) system to previous works (such as AS-
ByE [4] and Lixto [1]) is the adoption of unsupervised data
extraction technology such that dynamic information in a
set of similar pages can be automatically extracted without
users’ annotation. FiVaTech [3] as a page-level data extrac-
tion technique, can deduce the template of the input pages
and represent the data as a schema tree. Once the schema
and templates are detected, the users are presented with data
in several spreadsheets: one spreadsheet for each set and
a particular spreadsheet for all nonset data. Based on the
spreadsheets, users can select columns to be displayed or
for further page fetching and extraction.

In the following sections, we shall focus on how page
fetch plan is composed and the preparation of the selected
columns for final display. However, before we move on, we
shall explain how data from unsupervised extraction system
can be visualized to help input page specification.

2.1 Data Extraction and Visualization

For dynamic contents which are generated in response
to a submitted query or accessed only through a form, each
dynamic Web page is created by embedding a data instance

2



Figure 2. The schema (top-right) of two in-
put pages (left) from PPS web site and
spreadsheet-like data visualization (bottom-
right).

x (for the page schema) into a predefined template. As a
result, input pages generated from the same program are
similar in appearance, making detection of template and
schema possible. Generally speaking, templates, as a com-
mon model for all pages, occur quite fixed as opposed to
data values which vary across pages. Finding that common
template usually requires multiple pages (e.g. RoadRunner)
or a single page containing multiple records (e.g. IEPAD)
as input. There have been many researches on unsuper-
vised data extraction since then, especially for search result
records (e.g. DEPTA, ViPER, WSE). Meanwhile, alterna-
tive researches on page-level extraction can also be found
(e.g. RoadRunner, EXALG, FiVaTech). The comparison
of the various approaches can be found in [2]. In this pa-
per, we have adopted FiVaTech [3] as the data extraction
module. Given any number of pages as input, the output of
FiVaTech is a schema file and one XML file containing the
extracted data for the pages.

For the data embedded, we can model its schema by a
tree structure where the leaves are basic types and each in-
ternal node can be a type constructor of tuple, option, set
or disjunction (depending on the number of instances for
each instantiation). An example schema, detected from two
Web pages of HomePopular (www.homepopular.com), is
shown in Figure 2. The schema tells us, each Web page
from HomePopular is composed of a 4-tuple including one
basic data, two sets (one for sponsored links and the other
for search results), and one optional data.

Although tree representation is one way to understand
the structured data inside input pages, it is not easy to cap-
ture the meaning of each basic types without proper at-

Figure 3. Multiple run execution.

tribute names. Therefore, we choose to display the in-
stances for each basic type by grouping them into several
spreadsheets, that is by the set they belong. For example,
the structured data in Figure 2 are then presented by three
spreadsheets: two for set1 and set2, respectively and one for
non-set data (including the basic data and expanded option-
als. Note that all tuple, option and disjunction data types
can be expanded with the basic types in them producing a
flat structure view for each set and noset. For example, the
nonset part of the example schema contains a total of three
basic types where the last two come from the option type of
size 2. As for the case when sets occur inside a set, each
set will still be visualized through a separate spreadsheet.
Meanwhile, there will be links to subsets under the parent
set.

The incorporation of unsupervised data extraction tech-
nology holds the vantage of easier maintenance as wrap-
per can be deduced automatically from input pages without
users’ annotation. Thus, detection of schema or template
change can be conducted smoothly. When such an event is
detected, the gadget users can be warned and further schema
matching algorithm can be incorporated to fix the gadget.

2.2 Page Fetch Plan Specification

As mentioned above, there are two ways to to specify
the input pages: either a set of URLs or a set of queries to
a Web form. However, when there are links to be followed
inside the input pages, the system needs to know how to
extract those links. Thus, data extraction also plays an im-
portant part in page fetching. There have been works on
combining supervised data extraction technique in page ac-
quisition tool, e.g. Laender et al.’s DEByE (Data extraction
by example) environment and ASByE (Agent specification
by example) [4] for wrapper generation by example. How-
ever, no effort has been reported on how to use unsupervised
data extraction in fetch plan composition.

As shown in Figure 3, a fetch plan in the GoD system
consists of multiple runs. The first run can be specified by
a set of URLs or a set of queries, while other runs are de-

3



termined by URLs extracted from the fetched pages. The
system provides “Add URL” button for users to add URL
one by one, as well as “Get FORM” button for users to
choose a form in the specified URL and add query one by
one. Note that our system acts as a proxy between end users
and the target Web site that users just entered. Thus, ev-
ery added query is recorded immediately without waiting
the complete response from target Web server, saving the
unnecessary waiting time. Another advantage is to avoid
the challenging problem of client-side scripts which could
change the literal content input by users in an HTML form.

For the remaining runs, the URLs can be specified by
selecting part of the extracted data set (similar to select
columns of interest for display). Although it seems that the
subtask of data extraction is mixed with page fetch mod-
ule, there is no complicate training procedure (for extraction
rule) in between since we utilize unsupervised data extrac-
tion technique here. This design allows users to specify the
URLs that are embedded in pages without training the ex-
traction rules for desired URLs as in past work.

With the rendering of spreadsheet, the user can then
specify the desired columns for output or further fetch and
extraction for the following runs.

3 Case Study: PPS Map Gadget

In this section, we use an example to show how repet-
itive task could be carried by gadget creation. This case
study is from Pittsburgh Public Schools (PPS) web site.
The school directory in PPS allows users to find school ad-
dresses based on type (e.g. Early Childhood Center, K-5,
6-8, High School, All, etc.). To locate the position on the
map, users need to copy each address to online map such as
Google map and mark it one by one. Such operations may
need to be repeated for all schools. Thus, the desired output
for this task is a map display module with marked locations
for schools extracted from PPS. The following section de-
scribes how a non-expert users could interact with the sys-
tem to make such a widget and the user-interface design
principle and alternatives in details.

To automate such a repetitive task, the input pages
need to be collected first for further processing. As
each page usually shows a limited number of items,
the widget needs to know all the HTTP connections
to fetch input pages. For the PPS example, we can
specify a set of queries (from 1 to 3) for the third
form in the starting URL (http://www.pps.k12.pa.us
/14311012791719437/FlexBase/FlexBaseDisplay.asp?
DirectoryID=53&DisplayType=C&Field0=&Field7=K-5+
Schools&submit=submit) to fetch all the input pages.Next,
the data extraction procedure will be conducted to show
the spreadsheet containing the school list. We can then
add the columns of interest to display list. Suppose we are

also interested in the detail information of each school as
pointed by links, we may check the column containing the
links for fetch and extraction. This will then trigger the
page fetch and data extraction modules for working.

When the final step is completed, a light weight software
like gadget for iGoogle (or module for Netvibes) can then
be created with associated XML file containing an reference
to find rest of the data (extraction rules, fetch plans) at our
Web site and instructions on how to process and render the
gadget. The generated gadget. Another distribution method
is to provide the code for users to copy to their web site as
their wish.

4 Conclusions and Future Work

As more and more users are involved in content creation
on the Web, the necessity to assemble and reuse existing
data/module has become manifest. By choosing personal
portal as the platform and incorporating wrapper technol-
ogy in the creation of gadgets, users can do more integra-
tion based on their personal information needs. Although
we use iGoogle as our platform, similar modules on other
Web portals like Netvibes and Protopages can be produced.
By adopting wrapper technology, we are able to integrate
more Web sites with existing modules and help users inte-
grate their information.

Acknowledgement

This project is sponsored by National Science Council,
Taiwan under grant NSC96-2627-E-008-001.

References

[1] R. Baumbartner, S. Flesca, G.Gottlob. ”Visual Web
Information with Lixto,” Proceedings of the 27th In-
ternational Conference on Very Large Data Bases,
VLDB 2001. Pages: 119 - 128.

[2] C.H. Chang, M. Kayed, M.R. Girgis, K.F. Shaalan.
”A Survey of Web Information Extraction Systems,”
IEEE Transactions on Knowledge and Data Engineer-
ing, Vol. 18, No. 10, 2006. Pages: 1411 - 1428.

[3] M. Kayed, C.H. Chang, M.R. Girgis, K.F. Shaalan,
”FiVaTech: Page-Level Web Data Extraction from
Template Pages,” Workshops on Data Mining in
Web2.0 Environment, 2007.

[4] J. P. Lage, A. S. da Silva, P. B. Golgher, A. H. F.
Laender. ”Automatic generation of agents for collect-
ing hidden Web pages for data extraction,” Data &
Knowledge Engineering, Vol. 49, No. 2, 2004. Pages:
177-196.

4


