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Abstract

The World Wide Web is now undeniably the richest and most dense source of information; yet, its structure makes it difficult

to make use of that information in a systematic way. This paper proposes a pattern discovery approach to the rapid generation of

information extractors that can extract structured data from semi-structured Web documents. Previous work in wrapper

induction aims at learning extraction rules from user-labeled training examples, which, however, can be expensive in some

practical applications. In this paper, we introduce IEPAD (an acronym for Information Extraction based on PAttern Discovery),

a system that discovers extraction patterns from Web pages without user-labeled examples. IEPAD applies several pattern

discovery techniques, including PAT-trees, multiple string alignments and pattern matching algorithms. Extractors generated by

IEPAD can be generalized over unseen pages from the same Web data source. We empirically evaluate the performance of

IEPAD on an information extraction task from 14 real Web data sources. Experimental results show that with the extraction

rules discovered from a single page, IEPAD achieves 96% average retrieval rate, and with less than five example pages, IEPAD

achieves 100% retrieval rate for 10 of the sample Web data sources.
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1. Introduction

1.1. Information extraction and Web intelligence

The problem of information extraction is to trans-

form the contents of input documents into structured

data, and the problem of information extraction from a

Web page is to apply information extraction to Web

pages. Unlike information retrieval, which concerns

how to identify relevant documents from a collection,

information extraction produces structured data ready

for post-processing, which is crucial to many appli-

cations of text mining. Therefore, information extrac-

tion from Web pages is a crucial step enabling content

mining and many other intelligent applications of the

Web. Examples include meta-search engines [26],

which organize search results from multiple search

engines for users, and shopping agents [11], which

compare prices of the same product from multiple

Web merchants.

Fig. 1 illustrates an example of this problem. In this

example, we have a Web page containing the search

results of the keyword ‘‘genome’’ from a search engine.
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The goal is to extract the contents of this Web page into

structured data records, as shown in the box in Fig. 1. In

this example, there are four records in this Web page,

each contains three data attributes (or information

slots): Title, Content and URL. The structured data

can then be fed into other applications as input, such as

stored in a RDBMS database for data mining or

translated into WML (Wireless Markup Language)

for wireless Internet access.

Information extraction has been studied for years

(see, e.g., Ref. [10]), but mostly concentrated on

unstructured text (i.e., text expressed in natural lan-

guage sentences). In that case, linguistic knowledge

such as lexicons and grammars can be useful. How-

ever, a huge volume of information on the Web is

rendered in a semi-structured manner, that is, in

tables, itemized, enumerated lists, and the like, where

linguistic knowledge provides limited hints. We call

this type of Web pages as semi-structured Web pages

[17]. An important difference of semi-structured Web

pages and unstructured Web pages is that the layout

formats of semi-structured Web pages are unique for

different Web sites. Virtually no general grammar can

describe all possible layout formats so that we can

have one extractor for all semi-structured Web pages.

As a result, each format may require a specific

extractor, which makes it impractical to program

extractors by hand.

Previously, researchers proposed several wrapper

induction approaches for the rapid generation of extrac-

tors for Web pages [14,16,17,21,24,27]. Basically,

these approaches exploit machine learning techniques

to generate a specialized extractor for each Web data

source. Their work produce accurate extraction results,

but the generation of the extractors still requires

human-labeled/annotated Web pages as training exam-

ples, and for each new Web site a new set of labeled

training examples must be collected.

Fig. 1. Information extraction from a semi-structured Web page.
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A training example ‘‘teaches’’ a wrapper induction

program how to extract data from a given Web page

by providing examples of the following information:

1. how to partition a Web page (a long string of

HTML tags and text) into meaningful substrings,

and

2. how to group these substrings into attributes and

data records.

Usually, wrapper induction programs are supple-

mented by a GUI for users to click and highlight

strings on a rendered Web page to produce a training

example. This procedure of clicking and highlighting

is referred to as ‘‘labeling.’’ Since generating a correct

extractor may require many training examples, label-

ing can be tedious and labor intensive. As a result,

wrapper induction only solves the problem partially.

We need an approach that eliminates or minimizes the

need of labeling.

Our work attempts to eliminate the need of user-

labeled training examples. More precisely, users of

IEPAD do not need to provide labeled examples as

described above to tell IEPAD what information to

extract, but simply choose among patterns to see if the

pattern can extract the desired information. The idea is

based on the fact that data on a semi-structured Web

page is often rendered in some particular layout

format with a regular and contiguous pattern. By

discovering such patterns in target Web pages, an

extractor can be generated. We design a pattern

discovery algorithm that can be applied to any semi-

structured Web page without training examples. This

greatly reduces the cost of extractor construction. A

huge number of extractors can now be generated and

sophisticated Web intelligence applications become

practical.

1.2. The IEPAD architecture

Our approach to Web page information extraction

has been implemented into a system called IEPAD (an

acronym for Information Extraction based on PAttern

Discovery). Fig. 2 shows the component diagram of

IEPAD, which consists of three components:
. Pattern discoverer accepts an input Web page and

discovers potential patterns that contain the target data

to be extracted.

. Rule generator contains a graphical user inter-

face, called pattern viewer, which shows patterns

discovered. Users can then select the one that extracts

interesting data and then the rule generator will

‘‘remember’’ the pattern and save it as a extraction

rule for later applications. Users can also use pattern

viewer to assign attribute names of the extracted data.
. Extractor extracts desired information from sim-

ilar Web pages based on the designated extraction rule.

The key idea of IEPAD is to discover and use

patterns to extract data from target Web pages. A

pattern is a subclass of regular expressions over an

alphabet of tokens. Each pattern matches a set of

strings. A pattern may contain options and alterna-

tives. The simplest pattern is a string of tokens. An

example of the pattern is given below:

‘‘ < P >< A >< TEXT >< =A >< BR > ½< TEXT >�

< BR >< TEXT >< BR >< TEXT > ’’; ð1Þ

where <P>, <BR>, <TEXT>, etc., are tokens that
match HTML tags <p>, <br>, and text strings,

respectively. Options are denoted by [. . .]. In this

example, the sixth token <TEXT> is optional. The

following string matches this pattern:

< p >< a href ¼ ‘‘http : ==www:csie:ncu:edu:tw’’ >

NCU < =a >< br >

National Central University < br >

Chung � Li < br > Taiwan: ð2Þ

Fig. 2. The IEPAD architecture.
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The IEPAD extractor basically works as follows.

Given a pattern and a Web page, the extractor scans

the Web page to find all substrings that matches the

pattern, and outputs the substrings as data records. In

this case, the extractor will output (2) given the

example pattern (1). Removing the HTML tags, we

obtain a data record with the four text strings in (2) as

the attributes:

h‘‘NCU’’; ‘‘National Central University’’;

‘‘Chung � Li’’; ‘‘Taiwan’’i:

The IEPAD pattern discoverer reverses the task of

the extractor. The discovered patterns are usually

sufficient to extract structured data from a Web page.

The need of the rule generator is to enhance attribute

extraction in each record and improve the speed of

extraction by reusing the extraction rules for Web

pages from the same Web site, which usually returns

Web pages with the same pattern. There is no need to

rediscover the pattern for each extraction.

1.3. Organization

The remainder of this paper is organized as fol-

lows. In Section 2, we present the pattern discoverer.

In Section 3. we describe rule generator and the

extractor. Section 4 reports experimental results. Sec-

tion 5 compares our work with related work. Finally,

we draw the conclusion and discuss directions of

future work in Section 6.

2. Pattern discoverer

The pattern discoverer consists of a token en-

coder, a PAT-tree constructor, a pattern filter, and a

extraction rule composer. The output contains a set

of patterns discovered in the tokenized Web page.

The PAT-tree technique [[13,23]] is the key that

enables efficient and accurate discovery of the pat-

terns for data records in the Web page. As for

extraction of individual attribute values in each

record, the analysis is implemented in the pattern

viewer and the extractor to segment data records into

blocks of attribute values.

Fig. 3 gives the flowchart of the pattern discovery

process. Given a Web page, the token encoder will

tokenize the page into a string of abstract repre-

sentations, referred to as a token string. Each token

is represented by a binary code of fixed length. The

PAT tree constructor [13,23] takes the binary string

to construct a PAT tree. The pattern discoverer then

uses the PAT tree to discover patterns, called

maximal repeats. These maximal repeats will be

fed to a filter, which filters out undesired patterns

and produces candidate patterns. Finally, the rule

composer revises each candidate pattern to form an

extraction rule in regular expression. The following

subsections describe how these parts work.

2.1. Web page encoding

Since HTML tags are the basic components for

document presentation and the tags themselves

carry a certain structural information, it is intuitive

to examine the tag token string formed by HTML

tags and disregard other text content between two

tags to see the display template. Hence, the sim-

plest abstraction is as follows:

1. Each tag is encoded as a tag token HTML

(< tag_name>).

Fig. 3. Flow chart of the pattern discoverer.
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2. Any text between two tags are regarded as a special

token called < text>.

There are various ways to encode a Web document.

With different abstraction mechanisms, different pat-

terns can be produced. For example, HTML tags,

according to their functions, can be divided into two

distinct groups: block-level tags and text-level
tags. The former defines the structure of a document,

and the latter defines the characteristics (format and

style, etc.) of the text contents (see Fig. 4 for a

classification of block level tags and text level tags

[30]). Block level tags include headings, text contain-

ers, lists, and other classifications, such as tables and

forms. Text level tags are further divided into three

categories including logical tags, physical tags, and

special tags for marking up text in a text block. The

tag classifications allow different HTML translations

to be generated. Users can choose an encoding

scheme depending on the level of desired information

to be extracted. For example, skipping all text level

tags will result in higher abstraction (called block-

level encoding) from the input Web page than keeping

all tags. As shown in Fig. 5(a), the Congo code (an

example used in Ref. [22]) can be translated into a

string of 13 tokens using block-level encoding.

2.2. Constructing PAT trees for maximal repeats

This section describes how to apply the PAT-tree

technique to discover repeated patterns in a Web page.

Structured data are usually organized as entries in a

list or table in a Web page for clear presentation.

These entries form repeated patterns and therefore, to

extract the structured data from a Web page, an

important step is to discover the repeated patterns.

We define a repeat as any substring that occurs at least

twice in the long string. Suppose a Web page contains

k entries of data, we can extract these data entries by

discovering the patterns that occurs k times in the

target Web page.

Fig. 4. Tag classification.

Fig. 5. The Congo code and its PAT tree.
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To better capture the idea of repeats and also

reduce the number of candidate patterns, the concept

of maximal repeats is used to refer to the longest

patterns. We call a repeat left maximal (right maximal)

if extending the repeat to the left (right) will not result

in a new repeat for all repeat occurrences (see Ref.

[4]). We say that a repeat is maximal if it is both left

maximal and right maximal. A formal definition is

given as follows:

Definition. Given an input string S, we define

maximal repeat a as a substring of S that occurs in k

distinct positions p1, p2, . . ., pk in S, such that the

( pi� 1)th token in S is different from the ( pj� 1)th

token for at least one i, j pair, 1V i < jV k (called left

maximal), and the ( px+AaA)th token is different from

the ( py +AaA)th token for at least one x, y pair,

1V x < yV k (called right maximal).

Note that a is a string and AaA denotes its length. To

automatically discover patterns, a data structure called

PAT trees is used to index all suffixes in the encoded

token strings. A PAT tree is a Patricia tree (Practical

Algorithm to Retrieve Information Coded in Alphanu-

meric [23]) constructed over all the possible suffix

strings. A Patricia tree is a particular implementation of

a compressed binary (0,1) digital tree such that each

internal node in the tree shows the different bit between

suffix strings in the same subtree. Like a suffix tree

[15], the Patricia tree stores all its suffix strings at the

external nodes. For a token string with n indexing point

(or n suffixes), there will be n external nodes in the PAT

tree and n� 1 internal nodes. This makes the tree O(n)

in size. The essence of a PAT tree is a binary suffix tree,

which has also been applied in several research field

for pattern discovery. For example, Kurtz and Schleier-

macher [20] have used suffix trees in bioinformatics

for finding tandem repeats in genomes. It has also been

used in Chinese keyword extraction [9] for its simpler

implementation than suffix trees and its great power for

pattern discovery. PAT trees organize input in such a

way that all suffixes with the same prefix are stored in

the same subtree. Therefore, it has some nice character-

istics for pattern discovery:

	 First, all suffixes in a subtree share a common

prefix, which is the path label that leads from the

tree root to the subtree root.

	 Second, the number of leaves in the subtree is

exactly the number of occurrences of the path

label.
	 Third, each path label represents a right maximal

repeat in the input.

To build the encoded token string into a PAT tree,

each tag token is denoted by a fixed length binary

representation. Suppose three bits encode the tokens

in the Congo code as shown in Fig. 5(a). The encoded

binary string for the token string of the Congo code

will be a binary string ‘‘100110 101000 010110

010110 010110 010110 001’’ of 3
 13 bits. Referring

to Fig. 5(b), a PAT tree is constructed from the

encoded binary string of the sample example. The

tree is constructed from 13 bit sequences. Each leaf, or

external node, is represented by a square labeled by a

number that indicates the starting position of the

string. For example, leaf 2 corresponds to suffix 2

that starts from the second token in the token string.

Each internal node is represented by a circle, which is

labeled by a bit position in the encoded bit string

indicating the first different bit for suffix strings in the

subtree rooted at the internal node. For example, the

first different bit between suffix 5 and 9 is 14 as

indicating by the subtree root node e.

As shown in the PAT tree, all suffix strings with

the same prefix will be located in the same subtree.

Hence, it provides surprisingly efficient, linear-time

solutions to the problems of complex string search,

including string prefix searching, proximity searching,

range searching, longest repetition searching, most

frequent searching, etc. [15,23]. Since every internal

node in a PAT tree indicates a branch, it implies a

different bit following the common prefix between

two suffixes. Hence, the concatenation of the edge-

labels on the path from the root to an internal node

represents one right maximal repeat in the input

string. However, not every path label or repeated

string represents a maximal repeat. For example, in

Fig. 5(b), the path label for node j is not left maximal

since suffix 6, 8, 10 and 12 all have the same left

character HTML( < LI>). Let’s call the (pk� 1)th

character of the binary string pk the left character. For

a path label of an internal node v to be a maximal

repeat, at least two leaves (suffixes) in the v’s subtree

should have different left characters. Let’s call such a

node v left diverse. Followed by the definition, the
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property of being left diverse propagates upward in

the PAT tree. Therefore, all maximal repeats can be

found in linear time to the tree size.

Consequently, given the minimum repeat count k

and pattern length AaA, we can simply traverse the

PAT tree in postorder to enumerate all path labels to

discover all right maximal repeats. At each internal

node, we verify left maximality by checking the left

tokens of all leaves (suffixes). If all left tokens are the

same, then this repeat is not left maximal and can be

extended.

2.3. Sifting for regular and contiguous patterns

As described above, most information we want is

generated based on some predefined templates and is

commonly aligned regularly and contiguously. To

discover these display patterns, two measures, called

‘‘variance’’ and ‘‘density’’, are defined to evaluate

whether a maximal repeat is a promising extraction

pattern. Let the occurrences of a maximal repeat a be

ordered by its position such that p1 < p2 < p3 . . . < pk,

where pi denotes the position in the encoded token

string.

Variance of a pattern is computed by the coeffi-

cient of variance of the interval between two adjacent

occurrences ( pi + 1� pi). That is, the ratio of the

standard deviation of the interval and the mean length

of the interval:

varianceðaÞ ¼ rðfdi j 1Vi < k; di ¼ piþ1 � pigÞ
ðpk � p1Þ=ðk � 1Þ :

ð3Þ

Density is defined as the percentage of repeats in

the interval between the first and the last occurrences

of the repeat. That is,

densityðaÞ ¼ ðk � 1Þ 
 AaA
pk � p1

: ð4Þ

Generally speaking, machine-generated Web pages

often render the data in templates with small variances

and large densities. To sift candidate patterns, a simple

approach is to apply different thresholds for each of

these measures. Only patterns with variance less than

the variance threshold and density greater than the

density threshold are considered candidate patterns.

2.3.1. Occurrence clustering

The above approach can be implemented easily.

However, it may fail to extract some layout templates

if the variance threshold is not set properly. The

reason is that regular patterns can sometimes have

large variance coefficient. For example, the search

result pages of the search engine Lycos have adver-

tisement banners inserted between the search result

entries and divide the occurrences of the target pattern

into several groups. As a result, the maximal repeats

for Lycos’ output pages may have large variance.

To handle patterns with variance greater than the

specified threshold, the occurrences of a pattern are

carefully clustered to see if any partition of the

pattern’s occurrences can form a regular block in

which the pattern has a variance less than the thresh-

old. The idea here is to cluster the occurrences into

partitions so that the pattern discoverer can examine

each partition. A simple loop can accomplish this one-

dimension clustering. Let Ci,j denote the list of occur-

rences pi, pi + 1, . . ., pj in increasing order. Initialize i

and j to 1. For each pj + 1, if the variance coefficient of

Ci, j + 1 is less than a constant then pj + 1 is included as

part of the current partition; otherwise, Ci,j is exported

and starts a new partition by assigning j + 1 to i.

Once the occurrences are partitioned, we can then

compute the variance for each individual partition. If a

partition includes more than the minimum occurrence

count and has variance less than the threshold, the

pattern as well as the occurrences in this partition are

exported. To reduce the number of candidate patterns,

the threshold is set to a small value close to zero than

the variance threshold.

2.4. Composing extraction patterns

In addition to large variance, patterns with density

less than 1 cause another problem. Since PAT trees

compute only ‘‘exact match’’ patterns, templates with

exceptions cannot be discovered by PAT trees. There-

fore, we apply another technique called multiple string

alignment to handle inexact or approximate matching.

Suppose a candidate pattern has k occurrences, p1,

p2, . . ., pk in the encoded token string. Let string Pi

denote the string starting at pi and ending at pi + 1�1.

The problem is to find the alignment of the k� 1

stringsS ¼ fP1;P2; . . . ;Pk�1g so that the generalized
pattern can be used to extract all records we need. For
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example, suppose ‘‘adc’’ is the discovered pattern for

token string ‘‘adcbdadcxbadcxbdadc’’. Suppose we

have the following multiple alignment for strings

‘‘adcbd’’, ‘‘adcxb’’ and ‘‘adcxbd’’:

a d c � b d

a d c x b �

a d c x b d

The extraction pattern can be generalized as

‘‘adc[xj � ]b[dj � ]’’ to cover these three instances.

This regular expression of record patterns is able to

handle exceptions such as missing attributes, multiple

attribute values, and variant attribute permutations

that might occur in Web pages [17]. The last two

exceptions can be considered as the case of missing

attributes. For example, the context-based rule

‘‘[Uj � ]N[Aj � ][Mj � ]’’ can generalize over different

permutations of four attributes: (U, N, A, M), (U, N,

A), (U, N, M), (N, A).

Multiple string alignment is a generalization of the

alignment for two strings that can be solved in

O(n
m) in time by dynamic programming to
obtain optimal edit distance, where n and m are
string lengths. Extending dynamic programming
to multiple string alignment yields an O(nk)
algorithm. Alternatively, an approximation algo-
rithm with much less time complexity is available
such that the score of the multiple alignment is not
greater than twice the score of the optimal multiple
alignment [15]. The approximation algorithm
starts by computing the center string Sc in k
strings that minimizes consensus error. Once the
center string is found, each string is then iteratively
aligned to the center string to construct multiple
alignment, which is in turn used to construct the
extraction pattern.

For each pattern with density less than 1, the

center star approximation algorithm [15] for multiple

string alignment is applied to generalize the extrac-

tion pattern. Note that the success of this technique

lies in the assumption that extraction patterns often

occur contiguously together. If the alignment results

in extraction patterns with too many alternatives,

such a pattern is unlikely to be interesting. There-

fore, we set an upper bound of the most mismatches

allowed.

2.4.1. Pattern rotation

An additional step after the pattern composition is

pattern rotation. Let R be the alphabet of an encoding

scheme. Suppose a generalized pattern is expressed as

‘‘c1c2c3. . .cn’’, where each ci is either a symbol or a

subset of Rv{� } containing symbols that can

appear at position i. Since c1 might not be the

beginning of a record, we use a right rotating proce-

dure to compare the pattern with the left string of the

first occurrence p1 from right to left. The purpose is to

find the correct starting position cj and generate a new

pattern ‘‘cjcj + 1. . .cnc1. . .cj� 1’’. If the left character of

the first occurrence is the same as cn, we rotate the

pattern to ‘‘cnc1c2. . .cn � 1’’. The process will be

continued until the last token has alternative options

or the left character of the first occurrence is not the

same as the last token; and when the rotation stops,

the final pattern is the output. Similarly, we use a left

rotating procedure to compare the pattern with the

right string of the last occurrence pk from left to right.

If the first token is a token with no option, and the

right character of the last occurrence is the same as the

first token, we rotate the pattern into ‘‘c2c3. . .cnc1’’.
The process will be continued until the first token has

alternative options or the right character of the last

occurrence is not the same as the first token; and when

the rotation stops, the final pattern is the output. With

this pattern rotation, the correct record boundary can

be identified.

In summary, we can efficiently discover all max-

imal repeats (with pattern length and occurrence count

greater than default thresholds) in the encoded token

string through the constructed PAT tree T. Second,

with variance coefficient and density, we can sift the

maximal repeats for promising patterns. For patterns

with large variance, occurrence partition can cluster

records into partitions of interest. As for low-density

pattern, multiple string alignment is applied to pro-

duce more complete extraction pattern based on the

assumption of contiguous occurrences.

3. Rule generation and data extractor

The maximal repeats discovered automatically by

pattern discoverer correspond to data records appear-

ing in a semi-structured Web page. This discovery can

be completed without any prior knowledge from the
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user. Since there might be more than one useful

pattern, an interface is necessary for users to choose

a proper record extraction pattern. The purpose of the

pattern viewer is designed to provide a graphic user

interface so that the user can view the extracted

contents by different patterns and select the desired

pattern. Note that this selection is different from

labeling training examples since the users are not

asked to label examples for pattern discovery, but to

select one of the discovered patterns.

Another function of the pattern viewer is to allow

users to assign attribute names and information slots

in a record. Since record patterns only tell where the

records are located, there must be some way to

designate attributes in a record. Through pattern

viewer, users not only specify the record pattern but

also the attributes in a record. The saved extraction

rule will in turn be used to extract information from

other similar Web pages. The user can also adjust the

parameters (including the encoding scheme, the mini-

mum pattern length, the minimum occurrence count,

the variance and the density thresholds) to generate

good record patterns through pattern viewer. Hence,

the pattern viewer has at least four functions: adjust-

ing parameters, selecting patterns, specifying informa-

tion slots, and generating extraction rules. Once the

extraction rule is specified, users can then test the rule

on testing Web pages by data extractor.

Fig. 6 shows the snapshots of the pattern viewer.

The upper-left window shows the discovered record

patterns and the lower window shows the correspond-

ing extracted data. We can see that in Fig. 6(a), the

user chooses the sixth record pattern and the extracted

data are displayed in the lower window. Note that all

the records extracted are further divided into blocks

(or slots) and aligned for selection through the upper-

right window, where the users can type in the attribute

names and select the desired information blocks (see

the upper-right window of Fig. 6(b)) by clicking the

check boxes above each block. We will explain how

extracted data are aligned in the following section.

3.1. Information division

Given the user-specified record pattern, the pattern

viewer first matches it in the encoded token string to

find all occurrences of the pattern, then aligns each

occurrence to the pattern. This gives a straightforward

segmentation of the records where each token repre-

sents an attribute. Recall that we have recorded the

starting position of each token in the Web page

during the encoding phase. With this information,

we can always trace the corresponding data segment

in the Web page for any tokens. Since patterns are

composed of tag tokens and text tokens, and only text

tokens and some special tag tokens such as <A>
and < IMG> might contain data to be extracted, we

can show only the contents that are encoded as text

tokens and the hyperlinks that are embedded in <A>
or < IMG> tags accordingly. The procedure to

divide the set of all records that a pattern a can

match is outlined in Fig. 7. In summary, if there are m

text tokens and special tag tokens in a record

extraction pattern, all matched token strings can be

divided into m blocks. For example, as shown in Fig.

6(a), there are four text tokens in the fifth candidate

pattern,‘‘<P><TEXT><BR>[ <TEXT>] <BR>
<TEXT><BR><TEXT>’’. Each matched token

string of this pattern can be divided into four blocks.

Although the alignment can divide the record

information into several blocks, this may not be

sufficient. When higher level abstraction, say block-

level encoding, is used for pattern discovery, the

content in a block may contain not only text but also

text level tags. If we would like to extract ‘‘finer’’

information, a post-processing step must be conducted

for the content in each block. Sometimes, by applying

lower level encoding scheme, we can prevent the need

of post-processing. However, it becomes much diffi-

cult to discover and compose the record pattern since

the success of the pattern discovery approach depends

on good abstraction of the Web pages.

To extract finer contents, the idea of multiple string

alignment and block division are employed again. Let

the encoding for record boundary be the first-level

encoding scheme. We will apply a second-level

encoding scheme to the text contents in each block

and align these encoded token strings for further block

division as outlined in Fig. 8. In the multilevel align-

ment procedure, the contents in each column of the

block matrix are translated through a lower-level

encoding scheme. The center-star multiple string

alignment is then applied to compose a consensus

pattern. Finally, block division procedure can be used

to divide these contents according to the consensus

pattern.
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Fig. 6. The record patterns and the user interface (a) one-level alignment (b) two-level alignment.
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For example, the text contents that belong to the

third block in Fig. 6(a) can be further aligned to a

generalized pattern ‘‘[ < FONT>] < TEXT> < B>
< TEXT> < /B> < TEXT>[ < /FONT>]’’. With

three text tokens inside, the contents will be further

segmented into three subblocks, where the first text

token corresponds to ‘‘score’’, the second text token

corresponds to ‘‘date’’ and the third token corresponds

to page size and URL field. The same step can be

applied until the desired information can be success-

fully separated from others. As we shall see in next

section, two-level’s encoding can extract the target

information quite well for most Web data sources in

our experiments.

3.2. The extractor

It is easier to extract data from searchable data

sources than from hand-crafted static pages since

these Web pages are produced by programs with some

predefined templates. For these data sources, we can

select one page as the input to our system and choose

the proper pattern as the extraction rule. Once the

pattern viewer have successfully divided all records

into small information slots, the desired information

slots can be specified in an extraction rule that can

then be used to extract other Web pages fetched from

the same Web site.

The extraction procedure is as outlined in Fig. 9.

The procedure is pretty similar to that of the pattern

viewer. According to the input extraction rule, the

extractor first translates the Web pages into the token

string based on the first-level encoding scheme and

then match all occurrences of the record extraction

pattern in the encoded token string. The record extrac-

tion is achieved through a pattern-matching algorithm.

Standard pattern matching algorithms, like the

Knuth–Morris–Pratt’s algorithm [19] or Boyer–

Moore’s algorithm [2] are sufficient. Note that each

extraction rule composed by multiple string alignment

actually represents several patterns since the patterns

are expressed in regular expression with alternatives.

Fig. 8. Multilevel alignment.

Fig. 7. Block division procedure.
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In other words, there are alternative routes. Therefore,

several can apply when matching the rule against the

translated token sequence. Therefore, a token string

can match several patterns. In such cases, the longest

match is considered.

After applying the pattern matching procedure, the

block division procedure is applied to the extracted

data records and returns the resulting block matrix.

This is the first-level division. The deeper-level divi-

sion of the block matrix can be achieved through the

Fig. 9. Extractor procedure.

Fig. 10. Two-level attribute value extraction (test page: infoseek4.html).
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call of multilevel alignment procedure in the loop.

The above procedure is exactly the same as that for

pattern viewer, except for the final step where each

attribute value can be extracted according to the

information slots indicated in the extraction rule.

Fig. 10 shows that a test page (infoseek4.html)
is uploaded and the extraction results are shown in the

lower window.

4. Experimental results

The experiments here use two test data sets. The

first one contains Web pages from 10 popular search

engines. We collect 100 Web pages for each data

source. The data set can be downloaded from http://

www.csie.ncu.edu.tw/~chia/webiepad.html. The sec-

ond data set are Okra, IAF, BigBook, and Quote-

Server, taken from Kushmerick’s work [21]. These

four sources have also been used in Hsu and Chang

[16] and Muslea [24] for the purposes of performance

comparison. Table 1 shows the basic description of

each data source. The first four columns show the

number of records in each page, the number of

attributes in each record, the existence of missing

attribute in a record, and unordered exceptions such

as multiple values for one attribute or variant attribute

permutations, respectively. The next two columns

show the variance coefficient and density of the

correct pattern, which will be described below.

The average document size is 28 K bytes and 11 K

bytes for the above two data sets, respectively. The

search results of the first data set typically contain at

least 10 data records and advertisements, while the

test pages in the second data set contain less data

records and advertisements. In addition to block-level

encoding scheme, we also conduct experiments on

All-tag encoding scheme and three other encoding

schemes, which skip logical, physical, and special

tags, respectively. For example, the No-Physical

encoding scheme skips physical markups, including

<TT>, < I>, <B>, and <U>, etc. Table 2 shows

the comparison on the length of encoded token string.

The results of the No-Logical encoding scheme are

not shown because logical markups are less used in

HTML files (only 0.4%) and the difference is not

obvious from that of All-tag encoding scheme. Basi-

cally, the higher the abstraction level, the shorter the

length. Whichever the data set, the size of the encoded

token string is much smaller than the document size.

The number of tokens after translation is about 4% to

5% the page size for the lowest-level encoding

scheme when all tags are considered (see Table 2).

The number of tokens is even small when block-level

encoding is used. Therefore, the effort to build PAT

trees and the tree size can be kept small.

Table 1

Data description

Data source Number of Number of Missing Unordered Layout template

records attributes
Variance Density

AltaVista 10 4 Yes No 0.05 0.62

DirectHit 10 4 Yes No 0.04 0.20

Excite 10 4 Yes No 0.09 0.89

HotBot 10.2 4 Yes No 0.24 0.62

Infoseek 15 3 Yes No 0.12 0.46

MSN 10 3 No No 0.36 0.27

NorthernLight 10 3 Yes Yes 0.10 0.86

Sprinks 20 4 Yes No 0.18 0.30

Webcrawler 25 3 No No 0.14 0.97

Yahoo 20 4 Yes No 0.08 0.56

Okra 18.5 4 Yes No 0.05 1.00

Bigbook 14.2 6 No No 0.00 1.00

IAF 5.9 6 Yes Yes 0.00 0.80

QuoteServer 3.7 18 No No 0.00 1.00
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4.1. Parameters setup

The input parameters to pattern discoverer include

the encoding scheme, the minimum pattern length, the

minimum occurrence count k, and the thresholds for

variance and density. We choose block-level encoding

scheme to discover record pattern since it is the

highest level abstraction and perform the best in our

previous work [5]. The default value for the minimum

length of maximal repeats and the minimum occur-

rence count are set to three and five, respectively.

In order to set the parameters used for variance and

density, we have computed the variance of the layout

template for each data source. That is, the positions of

all records in the block-level encoded token string are

used to compute variance using Eq. (3). Similarly, we

can compute the density of the common prefix of the

layout template by Eq. (4). These two values are

shown in the last two columns of Table 1. The

variance coefficients are small for most data sources

as expected and the maximal value is 0.36. As for

density values, they vary from 0.20 to 1, which

indicates that the missing tags can occur far front in

the layout template.

The number of discovered record patterns depends

on the variance and density threshold. If the variance

threshold is set as the maximal variance (0.36) and the

density threshold is set as the minimal density (0.20),

the number of output maximal repeats remained is

about five as shown in the ‘‘fixed’’ column of Table 3.

If on the other hand, the variance and density thresh-

olds for each data source are set by the actual variance

and density of its layout template, the number of

output maximal repeats can be reduced to two (the

‘‘adaptive’’ column of Table 3). This shows that

filtering candidate patterns based on variance and

density thresholds is effective because without this

filtering process, the number of maximal repeats

discovered in a block-level encoded token string can

be too large. These maximal repeats, after multiple

string alignment and pattern rotation, constitute the

record patterns for final output. Note that the number

of record patterns may increase due to pattern rotation

procedure of the aligned pattern.

The extraction rule we used here extracts not only

record boundary, but also attribute values through

multilevel division. Comparing the extracted to the

correct number of attributes in Table 3 (the fifth

column) and Table 1 (the second column), we see

that one-level division along can extract the desired

information slots for eight data sources; while two-

level extraction, where the All-tag encoding scheme is

used in the second level, can extract all attributes for

all Web sites except for IAF. This is because IAF uses

a <pre> tag to separate the detailed information.

The second level extraction here using All-tag encod-

ing can only divide the record into three slots, which

needs finer text encoding for further extraction. Since

most attribute values are tag separable, attribute

extraction can become much easier.

To evaluate the performance of a pattern, two

measures: retrieval rate and accuracy rate are eval-

uated. Retrieval rate (in IR, this corresponds to recall)

is defined as the ratio of the number of desired data

Table 3

Performance

Data source Number of

maximal repeats

Performance Number of

attributes

Fixed Adaptive

Retrieval

(%)

Accuracy

(%) One

level

Two

levels

AltaVista 6 2 100 100 4 4

Direct Hit 1 1 100 100 3 4

Excite 3 1 100 100 4 4

HotBot 5 1 100 100 4 4

Infoseek 6 1 100 100 3 3

MSN 4 1 100 100 3 3

NorthernLight 8 3 100 100 3 4

Sprinks 3 1 100 100 3 4

Webcrawler 5 2 100 100 3 3

Yahoo 9 3 100 100 4 4

Okra 3 2 100 100 4 4

Bigbook 3 1 100 100 5 6

IAF 2 2 100 100 1 3

QuoteServer 5 2 100 100 3 18

Table 2

Data size with different encoding schemes

Data set Search engines

(Doc size = 28 K)

Okra, etc.

(Doc size = 11 K)Encoding

Number

of tokens

Percentage

(%)

Number

of tokens

Percentage

(%)

All-tag 1023 4.0 584 5.0

No-Physical 839 3.0 473 4.0

No-Special 835 3.0 447 3.9

Block-level 639 2.0 333 3.0
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records correctly extracted and the number of desired

data records contained in the input text. Likewise,

accuracy rate (corresponds to precision) is defined as

the ratio of the number of desired data records cor-

rectly extracted and the number of records extracted by

the rule. The performance of the generated pattern is

shown in the performance column of Fig. 3. In either

‘‘fixed’’ or ‘‘adaptive’’ setting, the best discovered

pattern can achieve 100% retrieval and accuracy. This

implies that pattern discoverer can always generate a

record pattern to extract all records in these pages.

4.2. Generalizing over unseen pages

Although the process for rule generation is not the

same as a typical machine learning process, the goal is

the same. That is, to generalize the extraction over

testing Web pages. Therefore, we design the following

experiments in a way similar to those usually con-

ducted in machine learning. For each Web site in the

first data set, we randomly select 30 pages as the

training pages (30%) and use the remaining (70 pages)

as the testing set. The rule generated using the training

set will be used to extract information from the testing

set.

In the training phase, one page from the training set

is fed to the system for the discovery of extraction

pattern. The user then choose one (that extracts only

correct records) as the record extraction rule and

specify the information block for attribute value

extraction. The extraction rule will then be applied to

other training pages to validate the performance. If the

rule cannot extract all the records for a page, this page

will then be fed to the system for the discovery of better

extraction rules. Existing extraction rule will then be

appended with the extraction rule for the second page

and form a set of new extraction rules and applied to

extract other pages in the training set. The process goes

on to extract as many records as possible. Finally, in

the testing phase, the extraction rule is applied to

testing set for performance evaluation.

For most Web sites (12 of the 14), IEPAD can

generate a best rule that can achieve both 100%

retrieval and accuracy. This might not be achieved

for only one training page. However, 30 training pages

are sufficient to present the diversity for the system to

generate alternative patterns. Note that not all 30

training pages are used to generate patterns. Only

pages that cannot be 100% extracted are used to

generate patterns. Choosing a conservative pattern

with 100% accuracy rate, Fig. 11 shows the retrieval

rate of the extraction patterns joined by different

numbers of training pages. The number of training

pages that are used to discover record patterns is 3 in

average and 10 at most. The retrieval rate reaches

96.28% on average using the first rule (discovered

from one training page). When the second rule (dis-

covered from the first misextracted page) is used, the

retrieval rate reaches 99.10% in the training set. With

five training pages, IEPAD achieves 100% retrieval

rate for 12 data sets except for HotBot and Northern-

Light.

The learning curves are much steeper than those

produced by machine learning based approaches since

the learning is based on all records in a page instead of

one training example. The retrieval rate is not only

high in the training set but also in the testing set,

which shows that 30% training pages have exhibited

enough variety in the display format for the system to

generalize. As we can see in Fig. 11, the retrieval rate

for the testing set reaches 96.35% for one training

page and 98.65% for two training pages. Of the 14

Web sites, IEPAD achieves 100% retrieval rate for 10

of them with less than five training pages in the testing

set. We can also plot learning curves with higher

retrieval rate if different pattern selection strategy is

used. For example, the retrieval rate can be tuned to

nearly 100% with the accuracy rate measured around

98.9%. This can be achieved if we choose an aligned

pattern that comprehend more variety in the records.

Fig. 11. Learning curve on training set and testing set.
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Of course, such patterns may sometimes extract extra

information because the patterns generalized from

multiple string alignment may comprehend more

patterns. There is a tradeoff. If retrieval rate is more

important, accuracy rate will have to be sacrificed, just

as the precision/recall trade-off in IR field.

We conduct another experiment to illustrate this

point. When applying the rule over testing pages,

some of these patterns can achieve higher retrieval

rate with less accuracy rate, while some can achieve

higher accuracy rate with less retrieval rate. Depend-

ing on the control of variance and density threshold,

the IEPAD may generate several record patterns for

users to choose from. While some patterns can

achieve higher accuracy rate with less retrieval rate,

others (more comprehensive patterns) can achieve

higher retrieval rate with less accuracy. For example,

two typical patterns can be found in a training page

for Northern Light: one shorter pattern with no alter-

natives and one longer pattern with more alternatives.

Sometimes, a compromised pattern can be found. As

shown in Fig. 12, the shorter pattern can extract

74.7% of the records with 100% accuracy, while the

longer pattern can extract 99% records with 99%

accuracy. Therefore, there is a tradeoff between

retrieval rate and accuracy rate.

5. Related work

The research on information extraction from semi-

structured Web pages can be traced to the research of

information agents that integrate data sources on the

World-Wide Web [6,7,11,18]. A critical problem that

must be addressed for these agents is how to extract

structured data from the Web. Some of the projects

rely on hand-coded extractors, others provide script

languages to express extraction rules (written by a

human expert) [6,7]. Since it is inappropriate to write

extractors for all the Web data source, machine

learning approaches are proposed to solve the prob-

lem.

Kushmerick, et al. [22] coin the term ‘‘wrapper

induction’’ and describe a machine learning

approach called WIEN [21,22]. Softmealy [16,17]

is a wrapper induction algorithm that generates

extraction rules expressed as finite-state transducers.

Softmealy’s extraction patterns are far more expres-

sive than those generated by WIEN. The main

limitation of both approaches is their inability to

use delimiters that do not immediately precede and

follow the data to be extracted. STALKER is a

wrapper induction system that performs hierarchical

information extraction [25], which introduces the

Embedded Catalog Tree (ECT) to describe the out-

put schema for the extraction task. With the ECT,

STALKER is said to extract data from documents

that contain arbitrarily complex combinations of

embedded lists and records. Note that ‘‘wrapper

induction’’ systems actually induce extraction rules

and generate rules that depends on syntactic similar-

ities instead of linguistic constrains.

Comparing the wrapper induction approaches with

IEPAD, IEPAD is different from those approaches in

many aspects. First, wrapper induction requires user-

labeled examples to learn the extraction rules, while

IEPAD only requires users to select record pattern and

information slots. Second, in terms of expressive

power, IEPAD can achieve the same performance

for the test data used by STALKER [25] and multipass

Softmealy [16]. Finally, a key difference between

IEPAD and wrapper induction is that our extraction

rules are based on context-based patterns while their

approaches are based on delimiters. More precisely,

their extraction rules use delimiters to determine

which string on the Web page corresponds to a data

attribute. For example, suppose we want to extract

prices of digital cameras from a Web merchant. Each

target data record to be extracted contains attributes

Brand, Model, and Price of a digital camera model

Fig. 12. Retrieval rate vs. accuracy rate for Northernlight.
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(e.g., h‘‘Canon’’,‘‘S40’’,129.99i). A delimiter-

based rule for extracting Price may state that:

Attribute price starts by a prefix string‘‘ < blink > $’’

and ends by a suffix string with a digit followed

by a HTML tag‘‘< =blink > ’’:

Then the string ‘‘<blink>$129.99< /blink>’’
in the input Web page will match this rule and

‘‘129.99’’ will be extracted as Price. In contrast,

our extraction rule for the same task simply states that:

The strings containing attribute Price have this
pattern : ‘‘< blink > $ < text >< =blink > ’’:

The reason we use context-based rule instead of delim-

iter-based rule is that the data to be extracted are often

generated based on some predefined HTML templates

(e.g. job postings, flight schedules, query results from

search engines, etc.). This naturally inspires the idea to

discover such templates since the occurrences of these

templates are usually aligned regularly and contigu-

ously to allow for easy comprehension. These charac-

teristics also allow for pattern discovery that automates

the generation of the extraction rules of these templates.

In other words, the task of extraction rule generation

can be solved by pattern discovery without user-labeled

training examples that are required for previous work in

wrapper induction.

More recently, Chidlovskii, et al. [8] presented an

approach to wrapper generation, which uses grammar

induction based on string alignment. The authors claim

that their system requires a small amount of labeling by

the user: labeling only one record suffices. Other re-

cords are found by iteratively aligned adjacent records.

However, this approach only achieve 73% accuracy

since it considers only two adjacent records at a time

while IEPAD takes all records into consideration.

Fully automatic approach to information extraction

is rare and often depends on some heuristics. For

example, Embley et al. [12] describe a heuristic

approach that discovers record boundaries in Web

documents by identifying candidate separator tags

using five independent heuristics and choosing a

consensus separator tag based on a heuristic combi-

nation [12]. However, one serious problem in this

one-tag separator approach is that their system cannot

be applied to Web pages where two or more separator

tags are the same within a record, because their system

cannot distinguish them and will fail to extract data

correctly. As a result, the applicability of their system

is seriously limited. Moreover, their system only

discovers record boundaries while IEPAD can cor-

rectly extract attribute values from a record.

Recently, efforts have been made to create ‘‘the

Semantic Web’’ [1] that offers a well-organized, wide-

open machine-comprehensible environment available

to all kinds of intelligent agents. Our work shares the

same vision but takes a different approach. The Seman-

tic Web takes a knowledge representation approach to

the problem and aims at building a huge standard

ontology of human knowledge in XML [28]. As stated

in Berners-Lee et al.’s article [1], ‘‘the Semantic Web

will enable machines to comprehend semantic docu-

ments and data, not human speech and writings.’’ Our

work here, instead, is to enable machines to compre-

hend the contents of semi-structured Web pages that

already prevail in theWorld WideWeb, which contains

a huge volume of information. A new term ‘‘the Deep

Web’’ has been coined [3,29] to refer to this huge mine

of knowledge that we are targeting. We think mining

the Deep Web and creating the Semantic Web are

complementary and information extraction research

can have critical impact on both efforts. After all,

XML markup only provides one of many possible

semantic interpretations of a document. When an

application needs to extract data at a different gran-

ularity, or to integrate data in different domains, we still

need a specialized information extractor to provide

other interpretations. Moreover, information extraction

can also help mark up legacy data.

6. Conclusion and future work

With the growing amount of online information, the

availability of robust, flexible information extraction

systems has become a stringent necessity. In this paper,

we presented an unsupervised pattern discovery

approach to semi-structured information extraction.

This approach generates extraction rules for given

Web pages. We also presented a multilevel alignment

technique to extract finer data from discovered data

records. Experimental results on real Web sites show
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that IEPAD performs well for diverse structuring

patterns.

The key features of this approach are as follows.

First, the discovery of record boundaries can be

completed automatically without user-labeled training

examples. We consider this as the main contribution

of this work, since labeling examples is the major

bottleneck that deters commercial adoption of the

wrapper induction approaches. Second, the discovered

patterns can be generalized over unseen Web pages

from the same Web data source regardless of various

query topics. This is realized by two pattern discovery

approaches: the PAT-tree technique that discovers

repeated patterns from a Web page, and the multi-

level alignment technique that partitions discovered

patterns into data attributes. Comparing IEPAD to

previous work, our approach performs equally well

in terms of extraction accuracy but requires much less

human intervention to produce an extractor. In terms

of the tolerance of layout irregularity, the extraction

rules generated by IEPAD can tolerate layout excep-

tions such as missing attributes in the input.

This pattern discovery-based approach, however,

still have several limitations. First, this approach

cannot be applied to Web pages that contain only

one data record. Second, the extraction rule for one

Web data source generalized poorly to other Web data

sources with different layout formats. Third, the

number of pattern increases dramatically when there

are too many layout exceptions since there will be too

many alternative alignments. This case, however, is

rare for script-generated Web pages.

The future work will follow two directions. The

first one concerns the implementation of text level

encoding to extract more delicate information. The

second is to improve the filtering process of redundant

patterns. We plan to incorporate semantic knowledge

such as lexicons of application domains to filter dis-

covered patterns. Finally, extending our work to help

creating the Semantic Web will be an interesting topic.
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