
FiVaTech: Page-Level Web Data Extraction from Template Pages

Mohammed Kayed
Department of Computer Science and

Information Engineering, National Central
University, Taiwan

kayed@db.csie.ncu.edu.tw

Khaled Shaalan
Institute of Informatics, the British

University in Dubai, United Arab Emirates
khaled.shaalan@buid.ac.ae

Chia-Hui Chang
Department of Computer Science and

Information Engineering, National Central
University, Taiwan

chia@csie.ncu.edu.tw

Moheb Ramzy Girgis
Department of Computer Science, Minia

University, El-Minia, Egypt
mrgirgis@mailer.eun.eg

Abstract

In this paper, we proposed a new approach, called
FiVaTech for the problem of Web data extraction.
FiVaTech is a page-level data extraction system which
deduces the data schema and templates for the input
pages generated from a CGI program. FiVaTech uses
tree templates to model the generation of dynamic Web
pages. FiVaTech can deduce the schema and templates
for each individual Deep Web site, which contains
either singleton or multiple data records in one Web
page. FiVaTech applies tree matching, tree alignment,
and mining techniques to achieve the challenging task.
The experiments show an encouraging result for the
test pages used in many state-of-the-art Web data
extraction works.

1. Introduction

Deep Web, as is known to everyone, contains
magnitudes more and valuable information than the
surface Web. However, making use of such
consolidated information requires substantial efforts
since the pages are generated for visualization not for
data exchange. Thus, extracting information from Web
pages for searchable Web sites has been a key step for
Web information integration. Generating an extraction
program for a given search form is equivalent to
wrapping a data source such that all extractor or
wrapper programs return data of the same format for
information integration.

An important characteristic of pages belonging to
the same site is that such pages share the same
template since they are generated with a predefined

template by plugging data values. The extraction
targets of these pages are almost equal to the data
values embedded during page generation. Thus, there
is no need to annotate the Web pages for extraction
targets as in non-template page information extraction
(e.g. Softmealy [3]) and the key to automatic extraction
depends on whether we can deduce the template
automatically. Finding that template requires multiple
pages (e.g. EXALG [1]) or a single page containing
multiple records as input (e.g. DEPTA [9]).

In this paper, we focus on page-level extraction
tasks and propose a new approach, called FiVaTech, to
automatically detect the schema of a Web site. The rest
of the paper is organized as follows. Section 2 defines
the data extraction problem. Section 3 provides the
system framework as well as the detail algorithm of
FiVaTech. Section 4 gives the detail of template and
schema deduction. Section 5 describes our experiments.
Finally, section 6 concludes our work.

2. Problem formulation

In this section, we formulate the model for page
creation which describes how data is embedded using a
template. As we know, a Web page is created by
embedding a data instance x (taken from the database)
into a predefined template. Usually a CGI program
executes the encoding function which combines a data
instance with the template to form the Web page,
where all data instances of the database conform to a
common schema which can be defined as follows.
Definition 2.1: (Structured data) A data schema can
be of the following types.
1. A basic type (β) represents a string of tokens

where a token is some basic units of text.
2. If 1, 2, …, n are types, then their ordered list

=<1, 2, …, n> is also a type. We say the
type  is constructed from the types 1, 2, …,
n using a type constructor of order n. An
instance of the n-type is of the form <x1, x2, …,
xn> where x1, x2, …, xn are instances of types 1,
2, …, n, respectively. A type is called
a. a tuple, denoted by <>, if the cardinality is 1

for every instantiation.
b. an optional, denoted by ()?, if the cardinality

is either 0 or 1 for every instantiation.
c. a set, denoted by {}, if the cardinality is

greater than 1 for some instantiation.

3. We say a k-tuple =<1, 2, ..., k> is a
disjunction of 1, 2, …, k if the cardinality sum
of 1 to k equal to 1 for every instantiation of .

Example 2.1: Figure 1(a) shows an example schema
that contains 4 basic types (β), an optional type (4),
two set types (1 and 5), and two tuple types (2 and
3). A data instance of this schema is shown in Figure
1(c). The data instance contains a list of products (an
instance of 1) where each product is described by its
name, a price, a discount percent, and a list of features.

Instead of dealing with a Web page as a sequence of
strings as in EXALG, we consider a page as a DOM
tree since both data schema and Web pages themselves
are tree-like structures. Therefore, our contribution is
to consider the template T as tree structures. In such a
tree generation model, we should consider the insertion
positions since there is more than one point to append a
subtree to the right most path of an existing tree. Let T1

and T2 be two trees constructed from some template
and data. We define the operation T1iT2 as a new tree
by appending T2 to the ith node from the leaf node on
the right most path of T1.
Definition 2.2: We define the template for a type
constructor as well as the encoding of its instance x
(in terms of encoding of subvalues of x) as follows.
1. If is of a basic type, β, then the encoding (T, x)

is defined to be a node containing the string x
itself.

2. If is a type constructor of order n, then the
template includes a parent template, n+1 child
templates and n insertion positions: T()=[P,
(C1, …,Cn+1), (i1,…, in)].
a. For single instance x of the form (x1, …, xn),
(T, x) is the tree produced by concatenating the
n+1 ordered subtrees, C1i1(T,x1),
C2i2(T,x2), …,Cnin(T,xn), and Cn+1 at the
leaf on the right most path of template P.

b. For multiple instances e1, e2, ..., em where each ei

is an instance of type , the encoding (T, { e1,
e2, ..., em}) is the tree by inserting the m subtrees
(T, e1), (T, e2), ..., (T, em) as siblings at the
leaf node on the right most path of P, where
each subtree (T, ei) is produced by encoding
each ei using the child template and insertion
positions of T() with a null parent template.

Example 2.2: Suppose we have the template in Figure
1(b) for the schema in Figure 1(a) as defined above, the
resulting page will look like that in Figure 1(d).

Figure 1: An example of a schema (a), its template
(b), a data instance (c), and the resulted page (d).

As we can see, basic type data always reside at the
leaf nodes of the generated trees. If basic type data can
be identified, tuple constructors can be recognized
accordingly. Thus, we shall focus on identifying
“variant”leaf nodes which correspond to basic data
types. Meanwhile, we should also recognize text nodes
which are part of the template. However, we will not
go into details inside text nodes (such as separate
words inside the“now $3.79”text nodes) in this paper.
Definition 2.3: (Problem Formulation) Given a set of
n DOM trees, DOMi = (T, xi) (1≤i≤n), created from
some unknown template T and values {x1,. . .,xn},
deduce the template and values, from the set of DOM
trees alone. We call this problem a page-level
information extraction. If one single page (n=1) which
contains tuple constructors is given as input, the
problem is to deduce the template for the schema
inside the tuple constructors. We call this problem a
record-level information extraction task.

3. The FiVaTech approach

Given a set of training pages from a Web site, we
use DOM trees of the Web pages as input to detect the
schema of this site. We try to merge all DOM trees at
the same time into a single tree called a fixed/variant

pattern tree. From this pattern tree, we can recognize
variant leaf nodes for basic-typed data and mine
repetitive nodes for set-typed data. The resulting
pattern tree is then used to detect the template and the
schema of the Web site. The key challenge here is how
to merge multiple trees at the same time. Our solution
is to break down the multiple trees merging problem
from a tree level to a string level and design a new
algorithm for multiple string alignment that considers
both missing data and multiple-value data.

Assume all input DOM trees have the same root
node, the system starts by taking R=<html> as the root
node for the pattern tree and tries to expand the pattern
tree from the root downward in a depth-first fashion.
At each internal node n, the system collects all
first-level child nodes of the input trees (subtrees
matched with the subtree from n) in a peer matrix M
where each column keeps the child nodes for every tree.
Every node in the peer matrix actually denotes a
subtree. The system then enters four important steps
for peer nodes recognition, peer matrix alignment,
pattern mining, and optional nodes merging:
- In the peer node recognition step, two nodes with

the same tag name are compared to check if they
are peer subtrees. All peer subtrees will be denoted
with the same symbol.

- In the peer matrix alignment step, the system tries
to align nodes (symbols) in the peer matrix to get a
list of aligned nodes childList. Additionaly, this
step will recognize variant leaf nodes which
correspond to basic-typed data.

- In the pattern mining step, the system takes the
aligned childList as input to detect every repetitive
pattern in this list. For each pattern, all
occurrences of this pattern except for the first one
are deleted and the pattern is marked as set-typed.
The result of this mining step is a modified list of
nodes without any repetitive patterns.

- In the last step, the system shall recognize optional
nodes if a node disappears in some columns of the
matrix and group nodes according to their
occurrence vector in the matrix.

Finally, the system inserts the nodes in the modified
childList as children for the node n. For non-leaf child
node c, the algorithm recursively calls the tree merging
algorithm with the peer subtrees of c to build the
pattern tree. The next four subsections will discuss in
details these four steps.

3.1. Peer node recognition
We can compare whether two subtrees (with the

same root tags) are similar based on tree edit distance
[5, 6]. We use the algorithm proposed by Yang [8] to
calculate the maximum matching of two trees through

dynamic programming and modify it to consider node
replacement on the leaves instead of the roots of the
two trees. Meanwhile, the matching is normalized from
0 to 1 based on the consideration of set type data.
However, due to space limitation, we didn’t present the
detailed algorithm here.

3.2. Peer matrix alignment
As mentioned above, every node in the peer matrix

M actually represents a subtree. Thus, two nodes with
the same tag are denoted by the same symbol if their
matching score is greater than a threshold δ. For leaf
nodes, two text () nodes take the same symbol
when they have the same text (SRC attribute,
respectively) values (otherwise, they take different
symbols). The alignment algorithm (shown in Figure 2)
tries to align nodes in the matrix M, row by row, to
convert M into an aligned peer matrix, where each row
has (except for empty columns) either the same symbol
for every column or leaf nodes of different symbols,
which will be marked as basic-typed. From the aligned
matrix M, we get a list of nodes where each node
corresponds to a row in the aligned peer matrix.

Figure 2: The alignment algorithm.
At each row, the function alignedRow checks if the

row is aligned or not (line 4). If it is aligned (either
when the row nodes have the same symbol or when
they are leaf nodes of different symbols and each one
of these symbols appears only in its residing column;
these nodes are identified as variant), the algorithm
will go to the next row (line 8). If not, the algorithm
iteratively tries to align this row (lines 4-7). In each
iteration step, a column (a node) shiftColumn is
selected from the current row and all of the nodes in
this column are shifted downward a distance
shiftLength in the matrix M (at line 6 by calling the
function makeShift) and patch the empty spaces with a
null node. The function makeShift is straightforward.
Now, we shall discuss the function getShiftedColumn
in details.

The selection of a node nrc located at column c from
current row r to be shifted depends on two values:
span(nrc) and checkSpanr(nrc). The first value is
defined as the maximum number of different nodes
(without repetition) between any two consecutive
occurrences of nrc in each column c plus one. In other
words, this value represents the maximum possible

cycle length of the node. If nrc occurs at most once in
each column c, then we consider it as a free node and
its span will be 0. Meanwhile, the value checkSpanr of
a node nrc at row r depends on whether there exists a
node with the same symbol at row rup and column c′,
such that rup < r, i.e. M[r][c]=M[rup][c′]=nrc, then

 
 
 
 

















rcup

rcup

rcup

rcr

nspanrr

nspanrr

nspanrr

ncheckSpan

)(if,1

)(if,0

)(if,1
;

otherwise, checkSpanr(nrc) will equal to 1.
The function getShiftedColumn selects a column to

be shifted from the current row r (shiftColumn) and
identifies the required shifted distance (shiftLength) by
applying the following rules in order:
R1. Select, from left to right, a column c where the

node nrc (=M[r][c]) has a checkSpanr(nrc) value
equal to -1 to be shifted to the next row of r; i.e.,
shiftColumn equal to c and shiftLength equal to 1.

R2. Select, a column c, where the node nrc has a
checkSpanr(nrc) value equal to 1 and there exists
the same symbol at the nearest row rdown from r
(rdown > r) and column c′, (i.e.
M[r][c]=M[rdown][c′]), cc′. Then, shiftColumn
will equal to c and shiftLength will be (rdown -r).

R3. If both rule R1 and R2 fail, we then align the
current row individually by dividing it into 2 parts:
P1 and P2 (such that at least one of them is aligned).
In this divide-and-conquer process, we should
decide which part comes first in the aligned matrix.
The principle is that a part which contains nodes
with checkSpan value equal to 0 (the aligned part)
should come first.

Figure 3 shows an example that describes how the
algorithm proceeds. The span values of the nodes a, b,
c, d, and e in M1 are 0, 3, 3, 3, and 0, respectively. The
first 3 rows of M1 are aligned, so there are any changes
on them. For the 4th row, according to R1, node b (at
M1[4][3]) is selected to be shifted to the next row,
because checkSpan4(b) has value -1. Hence matrix M2

is obtained. According to rule R2 (R1 doesn’t apply),
node e has a nearest occurrence at the 8th row with
checkSpan value equal to 1. Therefore, ShiftColumn=2
and ShiftLength=8-5=3. Similarly, we can follow the
selection rule at each row to get the aligned peer matrix
M6. Here, dashes mean null nodes. A node to be shifted
at each row is shaded in the matrices of Figure 3.b.

3.3. Repetitive pattern mining
This step is designed to handle set-typed data where

multiple-values occur, thus a naïve approach is to
discover repetitive patterns in the input. However,
there can be many repetitive patterns discovered and a
pattern can be embedded in another pattern, which

makes the deduction of the template difficult. The good
news is that we can neglect the effect of missing
(optional) data since they are handled in the previous
step. Thus, we should focus on how repetitive patterns
are merged to deduce the data structure. We detect
every consecutive repetitive pattern (tandem repeat)
and merge them (by deleting all occurrences except for
the first one) from small length to large length. This is
because the structured data defined here are nested and
if we neglect the effect of optional, every instance of a
set-type should occur immediately to each other
according to the problem definition. Due to space
limitation, we didn’t present the detailed algorithm in
this paper. Finally, we shall add in the pattern tree a
virtual node for every set type with size greater than 1.

Figure 3: An example of peer matrix alignment.

3.4. Optional node merging
After the mining step, we are able to detect optional

nodes based on the occurrence vectors. The occurrence
vector of a node c is defined as the vector (b1, b2, ...,
bu), where bi is 1 if c occurs in the ith occurrence, or 0
otherwise. If c is not part of a set type, u will be the
number of input pages. If c is part of a set type, then u
will be the summation of repeats in all pages. For
example, the occurrence vector of nodes a and e in
Figure 3.a is (1,1,1). For nodes b (c) and d, the
occurrence vectors are (1,1,1,1,1,1) and (1,0,1,1,0,1),
respectively. We shall detect node d as optional for it
disappears in some occurrences of the pattern.

With the occurrence vector defined above, we then
group optional nodes based on two rules and add to the
pattern tree one virtual node for the group.

Rule 1. If a set of adjacent optional nodes ci, ci+1, ...,
ck (i<k) have the same occurrence vectors or
complement (disjunctive type) occurrence vectors,
we shall group them.
Rule 2. If an optional node ci is a fixed
node/template subtree, we shall group ci, ci+1, ..., ck,
where ck is the non fixed template tree nearest to ci.

Table 1. The evaluation of FiVaTech extracted schema and its comparison with EXALG schema.
Dataset: 9 Web sites on EXALG home page.

Manual EXALG FiVaTech
Incorr. Incorr.site N

Am Om {} Ae Oe {} c
i n

Ae Oe {} c
i n

Amazon (Cars) 21 13 0 5 15 0 5 11 4 2 8 1 4 8 0 0
Amazon (Pop) 19 5 0 1 5 0 1 5 0 0 5 0 1 5 0 0
MLB 10 7 0 4 7 0 4 7 0 0 6 0 1 6 0 1
RPM 20 6 1 3 6 1 3 6 0 0 5 0 3 5 0 1
UEFA (Teams) 20 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0
UEFA (Play) 20 2 0 1 4 2 1 2 2 0 2 0 0 2 0 0
E-Bay 50 22 3 0 28 2 0 18 10 4 20 5 0 19 1 3
Netflix 50 29 9 6 37 2 1 25 12 4 34 12 7 29 5 0
US Open 32 35 13 10 42 4 10 33 9 2 33 14 11 33 0 2

Total 242 128 26 25 153 11 23 116 37 12 122 32 20 116 6 7
Recall 90.6% 90.6%

Precision 75.8% 95.1%

4. Data schema detection

With the fixed/variant pattern tree, the schema of
the input pages should be easily deduced by simply
removing nodes having single child and without types
and preserving all basic leaf nodes. We then mark the
order of a node with k children as k. If an internal node
is not a virtual node and not labeled as set type, it is
marked as a tuple.

To identify the template for every type in the
schema S, we define the reference node r in the
fixed/variant pattern tree as follows:

- r is a node of a tuple type,
- the next (right) node of r, in a preorder traversing

of the pattern tree, is a node of type , where is a
basic type nodeβ, a set type {}, or a virtual node,

- r is a leaf node on the right most path of a k-tuple
or k-order set and is not of any type.
Now, templates can be identified by segmenting the

pre-order traversing of the trees (skipping basic type
nodes) at every reference node. We say a template is
under a node P if the first node of the template is a
child of P. Now, we can fill in the templates for each
type as follows. For any k-tuple or k-order set <1,
2, …, k> at node n, where every type i is located at a
node ni, then the parent template P will be the null
template or the one containing its reference node if is
the first data type in the schema tree. If i is a tuple
type, then Ci will be the template that includes node ni

and the respective insertion position will be 0. If i is of
set type or basic type, then Ci will be the template that
is under n and includes the reference node of ni or null
if no such templates exist. If Ci is not null, the
respective insertion position will be the distance of ni

to the rightmost path of Ci. Template Ci+1 will be the
one that has the rightmost reference node inside n or
null otherwise.

5. Experiments

We conduct two experiments. The first one
compares FiVaTech with EXALG, while the second
experiment is conducted to evaluate the extraction of
search result records (SRRs) and compare FiVaTech
with three state-of-the-art approaches: Depta, ViPER
[4] and MSE [10]. Unless otherwise specified, we
usually take 2-3 Web pages as input.

5.1. FiVaTech as a schema extractor
Given the detected schema Se and the manually

constructed schema Sm for a Web site, Table 1 shows
the evaluation for the schema Se resulted by our system
and the comparison with EXALG schema. We use the
9 sites at http://infolab.stanford.edu/~arvind/extract/
without any changes of its manual schema Sm.
Columns 1 and 2 show the 9 sites and the number of
pages N in each site. Columns 3-5 show the details of
the manual schema Sm, the total number of attributes
(basic types) Am, the number of attributes that are
optional Om, and the number of attributes that are part
of set type {}.

Columns 6-8 (12-14) show the details of the schema
resulted by EXALG (FiVaTech). Columns 9 and 15
show the number of attributes in Se that correspond to
an attribute in Sm and its extracted values are correct
(partially correct). Columns 10 and 16 show the
number of incorrect attributes. Columns 11 and 17
show the number of attributes that are not extracted.

Of the 128 manually labeled attributes, 116 are
correctly extracted by both EXALG and FiVaTech.
However, EXALG produced a total of 153 basic types
while FiVaTech produced 122 basic types. Thus, the
precision of FiVaTech is much higher than EXALG.
One of the reasons why EXALG produces so many
basic types is because the first record of a set type is
usually recognized as part of a tuple. On the other hand,

FiVaTech usually produced less number of attributes
since we do not analyze the contents inside text nodes.

5.2. FiVaTech as a SRRs extractor
Of the popular approaches that extract SRRs from a

Web page, the main problem is to detect record
boundary. The minor problem is to align data inside
these data records. However, most approaches concern
with the main problem except for Depta, which applies
partial tree alignment for the second problem.
Therefore, we compare FiVaTech with Depta in both
steps and focus on the first step when comparing with
ViPER and MSE.

To recognize data sections of a Web site, FiVaTech
identifies a set of nodes nSRRs that is the outer most set
type node, i.e. the path from this node to the root of the
schema tree has no other nodes of set type.

Table 2: Comparison results with Depta.
Data set: 11 Web site from Testbed Ver. 1.02.

Step 1: SRRs Extraction Step 2: Alignment
#Actual SRRs: 419 #Actual attributes: 92

Depta FiVaTech Depta FiVaTech
#Extracted 248 409 93 91
#Correct 226 401 45 82
Recall 53.9% 95.7% 48.9% 89.1%

Precision 91.1% 98.0% 48.4% 90.1%

Table 3: Comparison results with ViPER and MSE
Dataset TBDW MSE [10]

#Actual SRRs 693 1242
System ViPER FiVaTech MSE FiVaTech

#Extracted 686 690 1281 1260
#Correct 676 672 1193 1186
Recall 97.6% 97.0% 96.1% 95.5%

Precision 98.5% 97.4% 93.1% 94.1%

In the second experiment, we get the system demo
from the author and run Depta on the manually labeled
Testbed TBDW Ver. 1.02 [7]. Unfortunately, Depta
gives a result only for 11 Web sites, and could not
produce any output for the remaining 40 sites. Table 2
shows the results for these 11 sites. For SRRs
extraction (columns 2 and 3), we just use Web pages
that have multiple data records.

For the second step (columns 3 and 4), by the help
of the manually labeled data in Testbed, we count the
number of attributes inside data records of each data
section (92 attributes). An attribute is considered
extracted correctly if 60% of its instances (data items)
are extracted correctly and aligned together in one
column. In summary, the recall and precision is below
50% for Depta, while FiVaTech has a nearly 90%
performance for both precision and recall. We shall
analyze the reasons in the next section.

The last experiment compares FiVaTech with
ViPER and MSE. We use the 51 Web sites of Testbed
to compare FiVaTech with ViPER, and the 38 multiple
sections Web sites used in MSE to compare our system
with MSE. The results in Table 3 show that, all of the

current data extraction systems perform well in
detecting data record boundaries inside one or more
data sections of a Web page. FiVaTech fails to extract
SRRs when the peer node recognition algorithm
incorrectly measures the similarities among SRRs.

6. Conclusion
In this paper, we proposed a new Web data

extraction approach, called FiVaTech to merge
multiple DOM trees simultaneously. We design a new
algorithm for multiple string alignment which takes
optional and set-type data into consideration. With the
constructed fixed/variant pattern tree, we can easily
deduce the schema and template for the input Web site.

Although many unsupervised approaches have been
proposed for Web data extraction (see [2] for a survey),
very few works (RoadRunner and EXALG [1]) solve
this problem at a page-level. The proposed page
generation model with tree-based template matches the
nature of Web pages. Meanwhile, the merged pattern
tree gives very good result for schema and template
deduction. For efficiency’s sake, we only use 2 or 3
pages as input. Whether more input pages can improve
the performance requires further study.

Acknowledgement
Our thanks to Yanhong Zhai and Bing Liu for

providing simple tree matching code for us. This work
is sponsored by National Science Council under grant
NSC96-2221-E-008-091-MY2.

References
[1] Arasu, A. and Garcia-Molina, H., Extracting structured
data from Web pages. SIGMOD-03, pp. 337-348, 2003.
[2] Chang, C.-H., Kayed, M., Girgis, M. R., Shaalan, K., A
Survey of Web Information Extraction Systems, IEEE TKDE
(SCI, EI), Vol. 18, No. 10, pp. 1411-1428, Oct. 2006.
[3] Hsu, C.-N. and Dung, M., Generating finite­state
transducers for semi­structured data extraction from the web.
Journal of Information Systems 23(8): 521-538, 1998.
[4] Simon, K. and Lausen, G. ViPER: Augmenting
Automatic Information Extraction with Visual Perceptions.
CIKM 2005.
[5] Tai, K. The tree-to-tree correction problem. J. ACM,
(3):422–433, 1979.
[6] Valiente, G. Tree edit distance and common subtrees.
Research Report LSI-02-20-R, Universitat Politecnica de
Catalunya, Barcelona, Spain, 2002.
[7] Yamada, Y., Craswell, N. , Nakatoh, T., and Hirokawa, S.
Testbed for information extraction from deep web. WWW-13,
pp. 346–347, New York, NY, USA, 2004.
[8] Yang, W. Identifying syntactic differences between two
programs. Softw. Pract. Exper., 21(7):739–755, 1991.
[9] Zhai, Y. and Liu, B. Web Data Extraction Based on
Partial Tree Alignment. WWW-14, Japan, pp. 76-85, 2005.
[10] Zhao, H., Meng, W. and Yu, C. Automatic Extraction of
Dynamic Record Sections From Search Engine Result Pages.
VLDB, pp.989-1000, 2006.

