
SEMI-STRUCTURED INFORMATION EXTRACTION APPLYING

AUTOMATIC PATTERN DISCOVERY

Chia-Hui Chang, Shao-Chen Lui, and Yen-Chin Wu

Dept. of Computer Science and Information Engineering

National Central University, Chung-Li, 320, Taiwan

Email:chia@csie.ncu.edu.tw, fanyway, trisdang@db.csie.ncu.edu.tw

Abstract

Information extraction (IE) from semi-structured Web

documents is a critical issue for information integration

systems on the Internet. Previous work in wrapper in-

duction aim to solve this problem by applying machine

learning to automatically generate extractors. For ex-

ample, WIEN, Stalker, Softmealy, etc. However, this

approach still requires human intervention to provide

training examples. Hence, the other track to informa-

tion extraction tries to save human e�ort. For exam-

ple, Embley et. al. and Chang et al. present di�er-

ent approaches to record boundary identi�cation of a

single Web pages without any training example. Emb-

ley's work relies on the intra-page structure constructed

by HTML tags (the parse tree), while Chang's work

is motivated by repeated patterns formed by multiple

aligned records. This paper expands Chang's work to

IE and discuss the issues when applying pattern dis-

covery for record identi�cation, including the encoding

schemes of HTML and ranking criteria of patterns to

extract record boundary.

1 Introduction

Information extraction is a key enabling technology for

information integration systems on the Internet. To

integrate information from heterogeneous Web sites,

information mediators must interpret Web pages as

structured database-like knowledge sources. Contrast

to \traditional" information extraction [3], which roots

in natural language processing techniques such as lin-

guistic analysis, Internet information extraction rely on

syntactic structures identi�cation marked by HTML

tags. The di�erence is due to the nature of Web such

that the page contents have to be open-and-shut for

browsing. Thus, \itemized list" and \tabular format"

have been the main presentation style for Web pages on

the Internet. This is especially true for the e-commerce

era when all the pages are attached with myriads of ad-

vertisements for business consideration, while the query

results or main content that are intended for integra-

tion are structured regularly for easy browsing. Indeed,

semi-structured information or data that are presented

in regularity often constitutes a Web page's core se-

mantic content.

To automate the construction of extractors, recent

research has identi�ed important wrapper classes and

induction algorithms. For example, Kushmerick et al.

identi�ed a family of wrapper classes and the corre-

sponding induction algorithms which generalize from

labeled examples to extraction rules [12]. More ex-

pressive wrapper structure are introduced lately. Soft-

mealy by Hsu and Dung [8] uses a wrapper induction

algorithm to generate extractors that are expressed as

�nite-state transducers. Meanwhile, Muslea et al. [13]

proposed \STALKER" that generates wrappers based

on a set of disjunctive landmark automata organized

as a hierarchy.

In all this work, wrappers are induced from train-

ing examples such that landmarks or delimiters can be

generalized from common pre�xes or suÆxes. However,

labeling these training examples is sometimes time-

consuming. Hence, researchers are exploring new ap-

proaches to fully automate wrapper construction. For

example, Embley et. al. describe a heuristic approach

to discover record boundaries in Web documents by

identifying candidate separator tags using �ve indepen-

dent heuristics and selecting a consensus separator tag

based on a heuristic combination [5]. However, the

combination is based on the con�dence measure of the

given independent evidence; and one of the �ve heuris-

tics is the ontology matching which requires the speci�c

domain knowledge. Consequently, it is hard to say this

approach is one hundred percent automatic.

On the other hand, our work here attempts to elim-

inate human intervention by pattern discovery. As we

observe, the syntactic regularity often forms repeated

patterns which can be discovered by sequential pat-

tern mining technologies. To enable pattern discovery,

we utilizes a data structure called a PAT tree [6] in

which repeated patterns in a given input string can be

<HTML><TITLE><Text></TITLE><BODY>

Congo<I>242</I>

Egypt<I>20</I>

Belize<I>501</I>

Spain<I>34</I>

</BODY></HTML>

Figure 1: Sample HTML page

eÆciently identi�ed. A PAT tree is an eÆcient data

structure successfully used in the area of information

retrieval for indexing a continuous data stream. Using

this data structure to index an input string, all possible

character strings, including their frequency counts and

their positions in the original input string can be easily

retrieved.

In the next section, we give an example showing the

repeated pattern formed by multiple aligned records.

We then describe the data structures that are used for

pattern discovery and discuss what kind of patterns

can be discovered in section 3. In section 4, various is-

sues regarding pattern formulation are considered such

as encoding schemes of HTML and ranking criteria of

pattern validation. Section 5 describes the performance

measures for extraction and reports experimental re-

sults of pattern ranking and various HTML encoding.

The last section presents our conclusion and the direc-

tions of future work.

2 Motivation

One observation from Web pages is that the informa-

tion to be extracted is often placed in a particular or-

der such that repetitive patterns can be found in these

Web pages when multiple records aligned together. For

example, query-able or search-able Internet sites such

as Web search engines often produce Web pages with

large itemized matches which are displayed in a tem-

plate format. The template can be recognized when the

content of each match is ignored or replaced by some

�xed-length string. Therefore, repetitive patterns are

formed.

For instance, in the example given by Kushm-

erick in [12] (presented in Figure 1), the sequence

\Alph<I>Num</I>< BR>" is repeated

four times, when text strings \Congo", \Egypt", \Be-

lize" and \Spain" are replaced by token class Alph, and

number string \242", \20", \501" and \34" are replaced

by token class Num.

This is a simple example that demonstrates a re-

peated pattern formed by tag tokens in a Web page

following a simple translation convention. In practice,

many search-able Web sites also exhibit such repeated

patterns since they usually extract data from relational

database and produce dynamic Web pages with a pre-

de�ned format style. Therefore, what we ought to do

is kind of reverse engineering to discover the original

format style and the content we need to extract. Re-

member that HTML tags are the basic components for

data presentation and the text string between tags are

exactly what we see in the browsers. Hence, it is in-

tuitive to regard the text string between two tags as

one unit as well as each individual tag. This is a sim-

ple version of HTML translation that we will use in

the following paper where any text string between two

tags is translated to one unit called Text() and ev-

ery HTML tag is translated to a token Html(<tag>)

according to its tag name.

Such translation convention enable the show-up of

many repeated patterns. By repeated patterns, we mean

any substring that occurs twice in the encoded to-

ken string. Thus, not only the sequence \Html()

Text() Html() Html(<I>) Text() Html(</I>)

Html(
)" conforms to the de�nition of repeated

pattern but also the subsequence \Html() Text()

Html()," \Text() Html () Html(<I>)",

\HMLT(<I>)Text()Html(</I>)," etc. To distin-

guish from these repeats, we de�ne maximal repeats

to uniquely identify the longest pattern as follows.

De�nition Given an input string S, we de�ne max-

imal repeat � as a substring of S that occurs in

position p1, p2, . . . , pk in S such that pi 6= pj and

the (pi � 1)th character in S is di�erent from the

(pj�1)th character and the (pi+ j�j)th is di�erent
from the (pj + j�j)th character for at least one i,

j pair.

The de�nition of maximal repeats is necessary for

identifying the well-used and popular term, repeats.

Besides, it also captures all interesting repetitive struc-

tures in a clear way and avoids generating overwhelm-

ing outputs. In summary, we start from the observation

that search-able Internet sites often produce informa-

tion that are presented in an itemized style or tabu-

lar format such that the information to be extracted

forms certain kind of patterns after proper translation

of its text content. Meanwhile, we also �nd that re-

peats that occur regularly and closely in a Web page

usually correspond to segments of interesting informa-

tion that might be the core semantic content (or the

main information block as de�ned in [5]), i.e., the tar-

get block to be extracted. These observations motivate

us to look for an approach to discover repeated pat-

terns. If such patterns can be successfully identi�ed,

we can then use them as extraction rules to identify

the target information fragment.

3 Finding Repeated Patterns

In this section, we introduce a data structure called

PAT trees to recognize repeated patterns in a given

character string. The input character string here is

the translated Web pages and the output is maximal

repeats de�ned in the last section.

3.1 The PAT Tree

A PAT tree is a Patricia tree (Practical Algorithm

to Retrieve Information Coded in Alphanumeric) con-

structed over all the possible semi-in�nite strings

(called sistrings) [6]. A Patricia tree is a particular

implementation of a binary (0,1) digital tree (or trie

in short) such that the abstract data type sistring is

represented as a suÆx string that ends with a special

character not occurring anywhere in the input string.

Like a suÆx tree [7], the Patricia tree stores all its data

at the external nodes and keeps one integer, the bit-

index, in each internal nodes as an indication of which

bit of a query is to be used for branching. This avoids

empty subtrees and guarantees that every internal node

will have non-null descendants. For a character string

with n indexing point, there will be n external nodes

in the PAT tree and n� 1 internal nodes. This makes

the tree O(n) in size.

When a PAT tree is to index a sequence of characters

not just 0 or 1, the binary codes for the characters can

be used. For simplicity, each character is encoded as

�xed-length binary code. In this case, only those bit

positions that are the beginning of a character needs

to be indexed. For example, given a �nite alphabet �

of a �xed size, each character x 2 � is represented by

a binary code of length l = dlog2 j�je. For a sequence

S of n characters, the binary input B will have n � l
bits, and the i-th suÆx of S starts at [i � l + 1]th bit

to the end for i = 0; : : : ; n � 1. The constructed PAT

tree T will have n external nodes pointing to sistrings

numbered 1; : : : ; n.

Back to our application, the translated Web page in

our example is regarded as a sequence of tokens in-

cluding HTML tags and a special Text() token (which

denotes the text string between two tags). With a to-

tal of 35 tokens in our example in Figure 1, there will

be 35 corresponding sistrings to be indexed. Figure 3.1

shows the �rst six sistrings where each tag is replaced

by its corresponding tag class HTML(<tag name>).

Since the number of tag classes are counted up to 170

for now (including start tags and end tags), each token

class is encoded as 8-bit long binary code for future

extension.

It follows from the tree construction algorithm that

every subtree of a PAT tree has all its sistrings with a

common pre�x. Hence, it allows surprisingly eÆcient,

linear-time solutions to complex string search prob-

lems. For example, string pre�x searching, proximity

searching, range searching, longest repetition search-

ing, most frequent searching, etc. [6, 7]. Since every in-

ternal node in a PAT tree indicates a branch, it implies

a di�erent bit following the common pre�x between two

sistrings. Hence, the concatenation of the edge-labels

on the path from the root to an internal node represents

one repeated sequence in the input string. However,

not every path-label or repeated sequence represents

a maximal repeat. Let's call character (p1 � 1) of S

the left character of sistring p1. For a path-label of an

internal node v to be a maximal repeat, at least two

leaves in the v's subtree should have di�erent left char-

acters. Let's call such a node v left diverse. Followed

by de�nition, the property of being left diverse propa-

gates upward in T . Therefore all maximal repeats in

S can be found in linear time based on the following

lemma.

Lemma The path labels of an internal node v in a

PAT tree T is a maximal repeat if and only if v is

left diverse.

The essence of a PAT tree is a binary suÆx tree,

which has also been applied in several research �eld for

pattern discovery. For example, Kurtz and Schleierma-

cher have used suÆx trees in bioinformatics for �nd-

ing repeated substring in genomes [10]. Research in

sequential pattern mining, especially Web log mining,

have also utilized data structures similar to suÆx tree

for �nding user browsing patterns, [14, 15]. As for PAT

trees, they have been applied for indexing in the �eld

of information retrieval since a long time ago [6]. It has

also been used in Chinese keyword extraction [1] for its

simpler implementation than suÆx trees and its great

power for pattern discovery. However, in the applica-

tion of information extraction, we are not only inter-

ested in repeats but also repeats that appear regularly

in vicinity.

By recording the frequency counts and the reference

positions in the nodes of a PAT tree, we can easily know

how many times a pattern is repeated. However, there

could be more than one maximal repeat pattern in one

Web page and not every one corresponds to an inter-

esting text fragment to us. For example, patterns that

occur only twice in a Web page or patterns that occur

far across a Web page are less intriguing than patterns

that occur 10 times in vicinity. Practically, what we are

interested are repeats that occur regularly and closely

in a Web page. Hence, repeated patterns have to be

further validated or compared to �nd the best one that

corresponds to the information to be extracted.

sistring 1: Html(<HTML>)Html(<TITLE>)Text()Html(</TITLE>)Html(<BODY>)...

sistring 2: Html(<TITLE>)Text()Html(</TITLE>)Html(<BODY>)Html()...

sistring 3: Text()Html(</TITLE>)Html(<BODY>)Html()Text()Html()...

sistring 4: Html(</TITLE>)Html(<BODY>)Html()Text()Html()Html(<I>)...

sistring 5: Html(<BODY>)Html()Text()Html()Html(<I>)Text()Html(</I>)...

sistring 6: Html()Text()Html()Html(<I>)Text()Html(</I>)Html(
)...

...

sistring 13: Html()Text()Html()Html(<I>)Text()Html(</I>)Html(
)...

...

sistring 20: Html()Text()Html()Html(<I>)Text()Html(</I>)Html(
)...

...

Figure 2: The Sistrings of Figure 1 to be indexed.

4 Pattern Validation Criteria

In the above section, we discussed how to �nd maxi-

mal repeats in a PAT tree. Once the PAT tree is con-

structed, we can easily traverse the tree to �nd all max-

imal repeats given the expected pattern frequency and

length. However, this is not the end of the story. The

number of discovered maximal repeats may be more

than sixty, and which of them corresponds to the core

information block? What other characteristics of pat-

terns can be used to �lter or select maximal repeats?

Recall that maximal repeats only explain the idea of

repeat. The main property that wrappers rely on, i.e.,

regularity, has not yet been applied. In this section,

we quantify several criteria to measure the quality of

a maximal repeat. Let the sistrings of a maximal re-

peat � are ordered by its position such that sistrings

p1 < p2 < p3 : : : < pk, where pi denotes the position of

each sistring in the encoded token sequence. The cri-

teria include regularity, locality, vicinity, and coverage

as described below.

Regularity Regularity of a pattern is measured by

computing the standard deviation of the interval

between two adjacent occurrences (pi+1� pi). Let

�(�) returns the standard deviation of this interval

andM(�) returns the interval's mean for maximal

repeat �. The regularity of a maximal repeat � is

computed as follows:

R(�) =
�(�)

M(�)
(1)

Locality This property is required to avoid extracting

repeats that are scattered too far across the input.

We measure the degree of locality of a maximal

repeat through the computation of density:

D(�) =
k � j�j

pk � p1 + j�j
(2)

Vicinity Vicinity is a special criterion that is de-

signed to deal with \redundant" maximal repeats.

Consider the example we mentioned above where

sequence � = \Html()Text() Html()

Html(<I>) Text() Html(</I>) Html(
)" is

repeated four times (see Figure 1 for illustration).

In such cases, not only �, but also �� and ���

are quali�ed for regular maximal repeats. Hence,

we de�ne vicinity as

V(�) =
j�j

M(�)
(3)

Coverage Coverage measures the volume of content

a maximal repeat contains. Suppose the function

P(i) returns the position of the i-th sistring in the

original Web page, i.e. the HTML �le. We calcu-

lates coverage by the spread of a maximal repeat

in the page as follows:

C(�) =
P(pk + j�j) �P(p1)

jWebpagej
(4)

If all occurrences in the subtree of a maximal repeat

appear spaced at an interval of approximate equal dis-

tance, the regularity will be close to zero. If these oc-

currences are further aligned close, the density will be

close to one. However if there are overlaps between two

adjacent occurrences, the vicinity will be grater than

one. To avoid output multiple maximal repeats which

originate from the same pattern sequence, vicinity is re-

quired to be less than two. In addition to the above cri-

teria, we can also measure the pattern length (j�j) and
the occurrence frequency counts F(�) for each max-

imal repeat to predict whether it corresponds to the

core information block we would like to extract. For

each criteria, a threshold is set as a minimum require-

ment. If the threshold is set lower for regularity, then

only few maximal repeats with regularity smaller than

Web site sistrings maximal regularity vicinity locality

AltaVista 1535 127.6 44.8 11.4 6.8

Cora 799 75.1 31.6 24.5 10.3

Excite 1740 65.2 9.2 2.2 1.0

Galaxy 611 55.6 23.0 19.0 12.8

HotBot 1455 38.1 17.6 12.8 12.7

Infoseek 987 77.8 15.6 15.3 11.1

Lycos 629 121.0 10.8 10.1 7.4

Magellan 1375 26.0 9.3 4.3 1.0

MetaCrawler 382 142.9 31.5 25.7 15.4

NorthernLight 1144 46.9 16.0 5.5 4.2

OpenFind 1144 48.0 25.3 18.1 7.8

SavvySearch 1127 71.2 32.0 15.0 12.8

StptCom 1777 56.5 37.5 4.0 4.0

Webcrawler 1092 69.1 19.3 5.4 4.1

Average 1128 72.9 23.1 12.4 8.0

Table 1: No. of maximal repeats found for each Web site (averaged from 10 test pages). The right block shows

the number of maximal repeats which pass the validation criteria regularity, vicinity, locality in turn.

the threshold will be quali�ed for our selection. Sim-

ilarity, if the threshold is set higher for locality, then

only few maximal repeats with locality higher than the

threshold will be quali�ed for our selection. The upper

bound for Vicinity is two, while coverage is an index for

the richness of a pattern. Additionally, the quantita-

tive characteristics are then used to rank the maximal

repeats as discussed below.

5 Empirical Results

To demonstrate the e�ect of our extraction procedure,

we choose fourteen Web sites and use the returned

pages of 10 queries as the test pages for each Web site.

The system only output patterns with length at least

5 tokens long, occurring at least 4 times. This thresh-

olds are chosen because of the application domain we

are involved, that is, search engines where each query

contains ten or more matches in one page. Besides, we

do not want to miss any possible patterns.

Table 1 shows the the number of maximal repeats

identi�ed for each Web site applying the three vali-

dation criteria: regularity, vicinity and locality. The

\sistring" column shows the number of sistrings in-

dexed in the PAT tree. The \maximal" column repre-

sents the number of maximal repeats discovered from

the PAT tree. The following column shows the number

of maximal repeats remained after applying the crite-

ria for regularity, vicinity and locality in turn. Note

that the order of the application of these criteria does

not a�ect the �nal result. The thresholds for regular-

ity and locality are 0.5 and 0.25, respectively. Other

results with di�erent threshold setting can be found in

[2]. The thresholds are chosen because the number of

maximal repeats remained varies slightly for regularity

smaller than 0.5 and locality higher than 0.25.

From Table 1, we can see that regularity and local-

ity both play an important role in �ltering maximal

repeats. Vicinity and locality are coincident with each

other, thus can be combined. Of the fourteen search en-

gines, Magellan shows the simplest case when only one

maximal repeat remained after the validation proce-

dure; while the AltaVista example demonstrates a gen-

eral case that several maximal repeats remained after

the validation procedure. Generally speaking, search

engines require a \while loop" to output their results

in some template. However, they may use \if clauses"

inside the loop to decorate the content. For example,

the keywords that are submitted to search engines are

shown in bold face for Infoseek and MetaCrawler, thus,

breaking their \while loop" patterns. This is why there

are more than one maximal repeat found and the dif-

�culty of information extraction based on pattern dis-

covery. Hence, heuristic analysis is required to rank

among maximal repeats to �lter the good ones.

5.1 Evaluating Maximal Repeats

To evaluate the identi�ed maximal repeats, two met-

rics are proposed: the retrieval rate and the accuracy

rate. The retrieval rate of a maximal repeat is de�ned

by the ratio of the number of tuples enumerated by

a maximal repeat to the number of matches returned

by the query-able Web site, where a tuple is said to

be enumerated by a pattern if the overlapping percent-

age between the record and pattern is greater than �.

While the accuracy rate is de�ned as the ratio of the

number of enumerated tuples to the pattern's occur-

rence count. For example, suppose a query-able Web

site contains 10 matches in one response, and a pattern

enumerates 7 of the matches in the pattern's 8 occur-

rences with the given �. Then, the retrieval rate is 7/10

and the accuracy is 7/8. Because of the \if-e�ect" not

every record was displayed in the same way. If the enu-

meration threshold � is set higher, few records can be

enumerated thus retrieval rate is low. If the threshold

is set lower, each record is only partially matched thus

the accuracy rate is low.

To automate the computation of retrieval rate and

accurate rate, we use Softmealy to record the positions

of each tuple for all test pages and compare them to the

positions recognized by a pattern. Since PAT trees are

con�ned to discover exact match, it is not easy for the

main information block to be captured in a maximal

repeat unless a good encoding scheme is used. There-

fore, most maximal repeats discovered only enumerate

or overlap a part of the record to be extracted; and we

have to use both accuracy and retrieval rate to measure

the performance of a pattern. In addition to the binary

decision whether a record is enumerated, the overlap-

ping percentage of all records are averaged as matching

percentage for a pattern.

Take Webcrawler as an example, for each pattern we

compute the retrieval rate, accuracy rate and matching

percentage as the performance index. In Table 2, �ve

maximal repeats are validated with regularity thresh-

old 0.5 and locality threshold 0.25. The retrieval rate

and accuracy are computed using matching threshold

� = 0:5. Other measures such as regularity, local-

ity, vicinity, coverage, the pattern's length, occurrence

count are also shown for reference. Averaging the three

measures of the best patterns (with the highest match-

ing percentage) for each test page, the results are shown

in Table 3. The retrieval rate and accuracy are 0.73 and

0.81, respectively; while matching percentage is 0.60 in

average.

5.2 Ranking Among Patterns

Due to the semi-structured nature of Web pages and

hence not one hundred percent regular display format,

sometimes there is no perfect pattern can represent

the text fragment we want to extract; and the PAT-

tree based pattern extractor might output several pat-

terns for options. Examine these patterns, one typ-

ical situation is that the longer the maximal repeat

the less frequent it occurs. To a certain degree, this is

just like a tradeo� between retrieval rate and match-

ing percentages. Thus, we adopt a multi-parameter

ranking algorithm to choose the best maximal repeats.

The maximal repeats validated are sorted according to

three functions: f1 = coverage, f2 = regularity and

f3 = locality in turn.

Immediately after each sorting function, a thresh-

Retrieval Accuracy Matching

Web site Rate Rate Percentage

AltaVista 1.00 1.00 0.82

Cora 0.63 0.87 0.48

Excite 0.30 0.30 0.30

Galaxy 0.65 0.83 0.50

HotBot 0.90 0.91 0.61

Infoseek 0.81 0.91 0.58

Lycos 0.65 0.79 0.49

Magellan 1.00 1.00 0.76

Metacrawler 0.47 0.67 0.39

NorthernLight 0.94 0.96 0.87

OpenFind 0.21 0.48 0.26

SavvySearch 0.70 0.83 0.57

Stpt.com 0.99 1.00 0.70

Webcrawler 0.98 0.98 0.98

Average 0.73 0.81 0.60

Table 3: Retrieval rate and accuracy rate given match-

ing threshold 0.5.

Web site # Pattern Rank Matching

AltaVista 2.6 1.0 0.82

Cora 3.0 1.5 0.39

Excite 0.6 0.6 0.30

Galaxy 1.2 1.0 0.46

HotBot 1.0 1.0 0.60

Infoseek 2.0 1.0 0.59

Lycos 1.0 1.3 0.47

Magellan 1.0 1.0 0.76

MetaCrawler 1.4 1.1 0.42

NorthernLight 1.0 1.0 0.66

OpenFind 1.0 1.0 0.26

SavvySearch 1.1 1.4 0.52

Stpt.com 2.2 1.0 0.70

Webcrawler 1.0 1.0 0.98

Average 1.43 1.1 0.57

Table 4: The matching percentage for selected patterns

after ranking.

old ti is computed to divide the patterns into supe-

rior patterns and inferior patterns, where superior pat-

terns (denoted by Si) are those with function value fi
greater than ti, while inferior patterns (denoted by Ti)

are those with function value fi less than the threshold

(i = 1; 3). For f2, the superior patterns are those with

regularity f2 less than t2. Only superior patterns are

kept for sorting in the next run. The threshold is de-

cided dynamically by one of the function values which

maximize the di�erence of the corresponding average

function values between the superior set and those of

the inferior set.

Since the retrieval rate changes with the matching

threshold used, we use matching percentage for the fol-

lowing comparison. The extraction performance after

ranking are summarized in Table 4. The # Pattern

matching
pattern regularity vicinity locality coverage length count retrieval rate accuracy percentage

1 0.05 0.82 0.83 0.34 10 20 0.60 0.60 0.48

2 0.04 0.41 0.43 0.33 5 20 0.35 0.35 0.38
3 0.00 1.42 1.38 0.30 17 18 0.90 0.95 0.90
4 0.04 1.24 1.22 0.32 15 19 0.90 1.00 0.88

Table 2: The retrieval rate and accuracy of validated maximal repeats for a test page along with other measures.

column shows the number of patterns selected after

ranking. The \rank" column shows the best pattern's

position after our ranking scheme. Best matching per-

centage of the average 1.43 patterns are 0.57 which is

close to that of 8.0 patterns. From Table 4, we can see

that most of the best patterns after ranking are ranked

�rst (ranked at 1.1 in average).

5.3 Other Translation Convention

Since the results of any unsupervised technique will de-

pend tremendously on which features are used, in this

section, we try di�erent encoding schemes of HTML

�les to �nd better patterns. According to the HTML

structure tree (Figure 3) [16], the tags in the body

section of a document can be grouped in two distinct

groups: block level tags and text level tags [16]. The for-

mer make up the document's structure, and the latter

\dress up" the contents of a block. As shown in Fig-

ure 3, block-level tags include headings, lists, text con-

tainers, and others such as tables, forms etc; while text-

level tags include logical markups, physical markups,

and special markups that are used to mark up text

inside block-level tags.

%ORFN�OHYHO WDJV 7H[W�OHYHO WDJV

+HDGLQJV

7H[W FRQWDLQHUV

/LVWV

2WKHUV

+�a+�

3� 35(� %/2&.4827(�

$''5(66

8/� 2/� /,� '/� ',5�

0(18

',9� &(17(5�)250�

+5� 7$%/(� %5

/RJLFDO PDUNXS

3K\VLFDO PDUNXS

6SHFLDO PDUNXS

(0� 67521*� ')1� &2'(�

6$03� .%'� 9$5� &,7(

77� ,� %� 8� 675,.(� %,*�

60$//� 68%� 683�)217

$� %$6()217� ,0*� $33/(7�

3$5$0� 0$3� $5($

Figure 3: Block-level tags vs. text-level tags

The experiments in the above section present the en-

coding scheme when all tag classes are involved in the

translation (each tag is translated to their correspond-

ing token class). In this section, four encoding scheme

are conducted, which skip logical, physical, special and

all text-level tags respectively. For example, the sec-

ond encoding scheme skips physical markups, including

Retrieval Accuracy Matching string

Encoding Rate Rate Percentage length

Alltag 0.73 0.81 0.60 1128

NoSpecial 0.82 0.88 0.68 873

NoPhysical 0.84 0.88 0.70 796

Block-level 0.86 0.86 0.78 514

Table 5: Performance comparison for di�erent encod-

ing schemes.

<TT>, <I>, , and <U>, etc. Table 5 shows the

e�ect of the last three encoding schemes. The results of

the �rst encoding scheme are not shown because logical

markups are less used in HTML �les (only 0.4%) and

the di�erence is not obvious. For the second encoding

scheme, the performance are increased for Infoseek, Ly-

cos, MetaCrawler, and SavvySearch; while for the third

encoding scheme, the matching percentage increased

for AltaVista, Cora, and OpenFind. That is, the en-

coding scheme of skipping some markups/tags though

enables the display pattern for some search engines, it

may disables the patterns of other Web sites, especially

when the pattern gets shower than �ve tokens. How-

ever, high-level abstraction have better performance in

average. We conclude that the block-level encoding

scheme performs best among others. In addition, the

token string for block-level encoding scheme is only two

percent of the original HTML �le (average 22.7 KB).

6 Summary and Future Work

Information extraction from Web pages is a core

technology for comparison-shopping agents [4], which

Doorenbos et al. regard as improvement in the axe

of tolerating unstructured information. The three

measures regularity, navigation, uniformity, and verti-

cal separation, enable the possibility of learning and

Doorenbos et al. delineate the framework for such

agents. However, unsupervised learning in their pa-

per is realized through searching a space of possible

abstract formats and other assumptions such as every

tuple starts on a fresh logical line, etc. Later researches

focus on supervised learning approaches and coin the

term wrapper induction and systems such as WIEN

[12], Softmealy [8], Stalker [13].

In this paper, we present an unsupervised approach

to semi-structured information extraction. We remove

the limitations in Doorenbos's agents by recognizing

repeated patterns in the encoded HTML �les. To sum-

marize, the information extraction procedure can be

briefed by three steps: HTML translation, PAT tree

construction, and pattern validation. The necessity of

\HTML translation" is to protrude the repeat patterns,

while the PAT tree is the most appropriate data struc-

ture to facilitate the �nding of repeat patterns. Next,

the validation criteria: regularity, vicinity, and locality

are applied as validation of interesting patterns. Fi-

nally, ranking functions are used so that the best max-

imal repeat can be ranked �rst.

Currently, the block-level-tag encoding scheme can

achieve 0.86 retrieval rate and accuracy rate in average.

For nine of the fourteen Web sites, the retrieval rate are

greater than 0.95. In future work, since PAT trees are

con�ned to �nd exact patterns, the performance is lim-

ited for Web pages that involve exceptions in their dis-

play format. In such cases, other techniques are consid-

ered to further improve the performance. For example,

dynamically choosing an encoding scheme that best �ts

an input Web page or constructing patterns in regular

expression form from discovered patterns, etc.

Acknowledgements

We would like to thank Lee-Feng Chien, Ming-Jer Lee

and Jung-Liang Chen for providing their PAT tree code

for us.

References

[1] Chien, L.F. 1997. PAT-tree-based keyword extrac-

tion for Chinese information retrieval. In Proceed-

ings of the 20th annual international ACM SIGIR

conference on Research and development in infor-

mation retrieval. pp.50{58. 1997.

[2] Chang, C.-H.; and Hsu, C.-N. 1999. Automatic

extraction of information blocks using PAT trees.

In Proceedings of National Computer Symposium,

Taipei, Taiwan.

[3] Cowie, J. and Lehnert, W. 1996. Information ex-

traction. Communication of ACM 39(1):80{91.

[4] Doorenbos, R.B., Etzioni, O. and Weld, D. S. A

scalable comparison-shopping agent for the World-

Wide Web. In Proceedings of the �rst interna-

tional conference on Autonomous Agents. pp. 39{

48, NewYork, NY, 1997, ACM Press.

[5] Embley, D.; Jiang, Y.; and Ng. Y.-K. 1999.

Record-boundary discovery in Web documents. In

Proceedings of the 1999 ACM SIGMOD Interna-

tional Conference on Management of Data (SIG-

MOD'99). pp. 467{478, Philadelphia, Pennsylva-

nia.

[6] Gonnet, G.H.; Baeza-yates, R.A.; and Snider, T.

1992. New Indices for Text: Pat Trees and Pat Ar-

rays. Information Retrieval: Data Structures and

Algorithms, Prentice Hall.

[7] Gus�eld, D. 1997. Algorithms on strings, trees,

and sequences, Cambridge. 1997.

[8] Hsu, C.-N. and Dung, M.-T. 1998. Generating

�nite-state transducers for semistructured data

extraction from the Web. Information Systems.

23(8):521{538.

[9] Knoblock, A. et al., eds., 1998. Proc. 1998 Work-

shop on AI and Information Integration, Menlo

Park, California.: AAAI Press.

[10] Kurtz, S. and Schleiermacher, C. 1999. REPuter:

fast computation of maximal repeats in complete

genomes. Bioinformatics 15(5):426{427.

[11] Kushmerick, N. 1999. Gleaning the Web. IEEE In-

telligent Systems 14(2):20-22.

[12] Kushmerick, N.; Weld, D.; and Doorenbos, R.

1997 Wrapper induction for information extrac-

tion. In Proceedings of the 15th International Joint

Conference on Arti�cial Intelligence (IJCAI).

[13] Muslea, I.; Minton, S.; and Knoblock, C. 1999.

A hierarchical approach to wrapper induction. In

Proceedings of the 3rd International Conference on

Autonomous Agents (Agents'99), Seattle, WA.

[14] Pei, J.; Han, J.; Mortazavi-asl, B.; and Zhu. H.

2000. Mining access patterns eÆciently from Web

Logs. In Proceedings of 2000 Paci�c-Asia Confer-

ence on Knowledge Discovery and Data Mining

(PAKDD'00), Kyoto, Japan.

[15] Spiliopoulou. M.; and Faulstich. L. 1998. WUM:

A tool for Web utilization analysis. In Proceedings

of the 6th International Conference on Extending

Database Technology (EDBT'98), Valencia, Spain.

[16] Web Design Group. 1997. Wilbur { HTML 3.2

http://www.htmlhelp.com/refer-ence/wilbur/

