
56 1541-1672/04/$20.00 © 2004 IEEE IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

M i n i n g  t h e  W e b

OLERA: Semisupervised
Web-Data Extraction
with Visual Support
Chia-Hui Chang, National Central University, Taiwan

Shih-Chien Kuo, Trend Micro, Taiwan

The World Wide Web’s explosive growth and popularity has resulted in countless

information sources on the Internet. However, due to the heterogeneity and lack

of structure in Web information sources, information-integration systems and software

agents—and sometimes humans as well—must expend a great deal of effort when 

OLERA is a

semisupervised

information-extraction

system that produces

extraction rules from

semistructured Web

documents without

requiring detailed

annotation of the

training documents. 

It performs well for

program-generated

Web pages with few

training pages and

limited user

intervention.

manipulating various data formats. The problem of
translating the content of input documents into struc-
tured data is called information extraction. 

An IE task is defined by its extraction target and
input. Its extraction target is generally considered a
relation of k-tuple, where k is the number of attrib-
utes in a record of the (desired, expected) data. An
attribute may have zero (missing) or multiple instan-
tiations in a record, and the extraction task will fill
either a single slot (where k equals 1) or multiple
slots. Programs that perform IE tasks are referred to
as extractors or wrappers. A wrapper is generally a
pattern-matching procedure that relies on a set of
extraction rules. The simplest way to produce extrac-
tors is to have a human observe the input documents
and write extraction rules, but this requires a certain
degree of programming expertise. It’s also time con-
suming, error prone, and not scalable.

IE systems can generate wrappers that can receive
input documents and convert them into structured
data. We can categorize most IE systems (such as
WIEN (Wrapper Induction Environment),1 Soft-
mealy,2 and Stalker3) as supervised machine learn-
ing, because they require “labeled training examples”
to tell the IE system what constitutes a record. By
comparing the preceding and succeeding strings of
several extraction examples, IE systems can learn the
common landmarks as extraction patterns for each
attribute and the record boundary. However, the
labeled training examples require users to annotate
the input documents, which can be tedious even for
a small corpus of training documents. IE systems that
use unlabeled training examples are comparatively

interesting but can only accept specific kinds of input
such as program-generated pages under certain
assumptions.. (See the sidebar for a more detailed
comparison of these approaches.) We propose a semi-
supervised IE system—On-Line Extraction Rule
Analysis—that lets users, with minimal effort, train
extraction rules from Web pages. OLERA offers visual
interaction by displaying discovered records in a
spreadsheet-like table for schema assignment. 

System framework
We introduce OLERA from the users’ viewpoint—

that is, we explain how users interact with OLERA to
generate extraction rules for their interested targets.
Instead of labeling training pages, users enclose an
information block of interest and then specify rele-
vant information slots for each field in the record
(see Figure 1).

Enclosing a data block
Given a set of training pages, an OLERA user first

encloses a block that’s large enough to contain one
record of interest as an example. The user doesn’t
need to label the block’s detailed subsegments to
indicate the locations of titles, authors, or prices. The
labeling work is delayed until OLERA generates the
extraction pattern. In addition, the user needn’t
enclose every record of interest in the training page.
The system can automatically discover other records
that resemble the enclosed example and present the
data in a spreadsheet for attribute designation.

To illustrate, suppose we’re interested in the main
search result for Christmas songs. We can enclose



one record block and add it as an example
(see the highlighted area in Figure 2a). Then
the system discovers 10 records from the
training pages and presents them in rows in
a spreadsheet such that it aligns similar infor-
mation—such as shipping information and
list price—in the same column (see Figure
2b). For CDs with no in-store pickups, null
strings are presented.

Enclosing a data block for extraction-rule
analysis works not only for Web pages but also
for non-HTML semistructured documents
such as those from dbEST (Expressed Se-
quence Tags database—one of the Genbank
databases hosted by the National Center for
Biotechnology Information). Figure 3a shows
an example of the dbEST files, which are pure
text files formulated by delimiters such as tabs
and new lines. Figure 3b shows the result of
enclosing one whole file for analysis. As we
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Figure 1. The OLERA framework. Ovals denote the operations that users perform during
training; rectangles denote OLERA’s actions in response to the users’ operations.

Web information extraction is an important problem for
information integration, and many approaches have been pro-
posed. We can categorize these approaches based on the IE task
that various IE systems address or according to the techniques
they use.1 In this article, we compare the approaches from users’
viewpoints and explore what background knowledge different
IE systems require.

One category refers to IE systems that require users who
have programming expertise. These include languages or
toolkits designed for wrapper development—for example,
W4F and XWrap. Researchers proposed such languages or
toolkits as alternatives to general-purpose languages because
users could concentrate on formulating the extraction rules
without concerning the input string’s process. In other words,
users of these IE systems must be trained to understand the
language and be able to generalize extraction rules by inspect-
ing and writing them using the designed languages or tools.

Another category refers to IE systems that require users to
label extraction targets as examples for IE systems to construct
extraction rules. Therefore, such IE systems don’t require any
programming. Many IE systems—including WIEN, Softmealy,
and Stalker—belong to this category. Compared to the first cat-
egory, these IE systems are preferable because general users,
instead of programmers, can be trained to use the IE systems
for wrapper construction.

A third category refers to IE systems that don’t require users
to preprocess the input documents. We call them annotation-
free IE systems. Developing such systems is based on one impor-
tant characteristic—that these input pages are generated using
a common template by “plugging in” values from an underly-
ing structured source such as a relational database (for exam-
ple, an advertisements database or book database). Example
systems include IEPAD,2 RoadRunner,3 and EXALG.4 Because users
don’t specify extraction targets, these systems make presump-
tions about the data to be extracted. For example, IEPAD assumes

the existence of multiple tuples to be extracted in one page, so
its approach is to discover repeated patterns with regularity
and vicinity. With such an assumption, IEPAD can only process
multirecord pages. RoadRunner and EXALG assume that any
plug-in values are the extraction targets. However, because
commercial Web pages often contain multiple topics where a
great deal of information is embedded for navigation, interac-
tion, and advertisement, irrelevant information as well as rele-
vant information will be extracted. In other words, it’s difficult
to judge whether a token (or a piece of information) is a data
value or template. The same problem has caused the interven-
tion of IEPAD users for selecting relevant patterns. After all,
what’s relevant or of interest is quite subjective. So, annotation-
free IE systems, although they remove the labeling work before
training, require postprocessing because their assumptions
might not sustain for all cases.
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can see, the training pages can contain a sin-
gle record or multiple records (a page con-
taining one tuple of interest is a single-record
page and a page containing a list of tuples is a
multirecord page). As long as the user supplies
one example record, OLERA can find other sim-
ilar records through approximate occurrence
matching in the training page.

Specifying relevant information
slots

Spreadsheet presentation helps users give

attribute names to relevant slots in a record.
Two additional operations, drill down and roll
up, let users manipulate this information, pro-
viding a summarized or detailed view of the
data. For example, Figure 4 demonstrates a
drill-down operation where a user-specified
comma delimiter divides the text strings
under column 18 (see Figure 4a) and aligns
them so that the first two text strings (“Paper-
back, 1000pp.” and “Paperback, 750pp.”) are
divided into two text segments and “Hard-
cover, 1st ed., 488pp.” is divided into three

text segments (see Figure 4b). This aligns
information of the same kind for attribute des-
ignation. You implement roll up, the inverse
of drill down, by simply concatenating strings
from selected columns. 

Finally, the user can then specify infor-
mation slots of interest using the checkbox
above each column (see Figure 4b), saving
it for later use by OLERA extractors.

The algorithms
The procedures for enclosing a block com-

prise three steps (see Figure 1):

1. Translate the training page using an encod-
ing scheme in the encoding hierarchy. 

2. Match the pattern of the enclosed block
to discover similar records in training
pages by approximate matching. 

3. Align matched records through multiple
string alignment and present the results
in a spreadsheet with m rows (records)
and n columns (slots). 

These steps are the main procedures needed
in OLERA’s training process because drill-
down operations also use encoding and mul-
tiple string alignment. Here, we describe the
algorithms for these three steps. 

Translating the page
OLERA’s core technique is a well-known

technique called string alignment. However,
aligning different book titles, for example, in
the same column requires more than com-
paring characters with other characters. To
align HTML documents, the system first
translates the pages, regarding each HTML
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Figure 3. (a) Three non-HTML documents (dbEST files) and (b) OLERA’s alignment result.

Figure 2. (a) Enclosing one record for analysis; (b) OLERA finds 10 records and aligns them in a spreadsheet (only the top four are shown).
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tag as an individual delimiter token. It repre-
sents any text between two delimiter tokens as
a special token called <TEXT>. Formally,
given a set of delimiters, the encoding proce-
dure translates each delimiter X in the input
page as a delimiter token X and translates any
text string between two delimiters as a spe-
cial token <TEXT>. A <TEXT> token’s orig-
inal text string is called its primitive data.

For example, suppose the user encloses
block B1 in Figure 5. Using HTML tags as
delimiters, OLERA will encode block B1 into
a token string of 18 tokens (13 tag tokens and
five <TEXT> tokens) like the following:
<B>T</B><BR><FONT>T<A>T</A>
<BR></FONT><SPAN><B>T</B>T<BR>
</SPAN>, where each T represents a <TEXT>
token. This encoding scheme converts the
training page into a better format for pattern
discovery and alignment. However, pattern
discovery often requires a high level of
abstraction, which might not be appropriate
for extracting finer information. So, we intro-
duce the drill-down operation by incorporat-
ing an encoding hierarchy, such as that for
multidimensional models in OLAP (online
analytical processing).

The concept hierarchy for OLERA’s drill-
down operation comprises a set of encoding
schemes classified into three layers: markup-
level encoding > text-level encoding > word-
level encoding. The greater-than sign indi-
cates that each encoding is a higher-level
abstraction of the encoding to the right. Each
level of the encoding hierarchy contains finer
classification of several encoding schemes.
For example, the markup-level encoding con-
tains both the block-level encoding scheme
and text-level (tag) encoding scheme.4 Word-

level encoding schemes focus on the elements
of sentences: phrases separated by quotation
marks, parentheses, and brackets; words sep-
arated by blank spaces; and other symbols
such as dollar signs, dashes, slashes, and so
forth. 

Users can also specify an encoding scheme
(or delimiters) as shown in Figure 4a, where
the first two strings are encoded into token
string “<TEXT>,<TEXT>” and the third is
encoded into “<TEXT>,<TEXT>,<TEXT>.”
In addition to delimiter-based encoding
schemes, users can also apply language-
specific information such as part-of-speech
tagging, semantic-class information, and so
forth. For instance, OLERA can parse sentences
into proper grammatical notations such as
<subject><verb><dobj>. It can also recog-
nize date-related strings, such as “2002/9/1”
or “Apr. 4, 2002,” as a <DATE> token. Some-
times, you can use a tag’s level information
in the parse tree in the encoding to avoid mis-
aligning the same tags in different levels. 

In the context of semistructured Web IE,

we focus on simpler text data segmented from
Web pages using delimiter-based encoding
schemes. Unless noted otherwise, all the fol-
lowing algorithms operate on the encoded
token strings.

Using approximate matching
Given the encoded token string P of the

enclosed example, OLERA will discover other
similar records in the training set. Let T
denote a training page’s encoded token
string. We say a substring T� of T is similar to
P if their similarity is greater than a given
threshold. In this article, we use two string
alignments to define the similarity between
two strings.

We can align two strings S1 and S2 by
inserting chosen spaces either into or at the
ends of S1 and S2, such that the resulting
strings S1� and S2� are of equal length. We
define the value of such an alignment as

, where l denotes the (equal)
length of the two strings S1� and S2� in the
alignment, and s(x, y) denotes the value

s S i S i
i

l
( [ ], [ ])1 21

′ ′
=∑
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Figure 4. Analyzing Barnes & Noble pages with three training pages, each containing one record to be extracted: (a) a drill-down
operation on the 18th column with a user-specified delimiter (a comma) and (b) attribute name assignment.

B1
The Java Maid
by John Brooks
List price: $21.45

B2
Java Black Book
by Steven Holzer
Buy now: $41.99
List price: $59.99

B2
Discover Visual Cafe
by Dave Wall
Arthur Griffith,
David A. Wall

<b class=sans>The Java Maid</b><br>
<font size=–1>by  <a href=link>John  Brooks</a><br</font>
<span class=small><B>List  Price:</B>$21.45<BR></span>

<b class=sans>Java Black Book</b><br>
<font size=–1>by  <a href=link>Steven Holzer</a><br</font>
<span class=small><B>Buy  now:</B>$41.99<BR>
<B>List  Price:</B>$59.99<br></span>

<b class=sans>Discover Visual Cafe<b><br>
<font size=–1>by  <a href=link>Dave Wall</a>,
<a>Arthur Griffith<a/>, <a href=link>David A. Wall
<a/><br></font><span class+small><be></span>

Figure 5. Example HTML sources used in block enclosing. 

(a) (b)



obtained by aligning two characters x and y.
Traditionally, a match (x = y) of two charac-
ters is assigned a value of s (> 0), a mismatch
(x � y) is assigned a value of s, and an align-
ment against spaces is assigned a value of d.

We define the similarity score, sim(S1, S2),
of two strings S1 and S2 as the optimal value
of all alignments between S1 and S2. We can
compute the optimal alignment of two
strings, S1 and S2, using dynamic program-
ming with base conditions

V(i, 0) = – i * d;   i = 0, 1, …, |S1|
V(0, j) = – j * d;   j = 0, 1, …, |S2|

and general recurrence

where V(i, j) denotes the value of the optimal
alignment of prefixes S1[1...i] and S2[1...j].

With the definition of two strings’ simi-
larity, we can now use approximate match-
ing, a variant of two-string alignment, to dis-
cover all similar records of P in T. Given a
threshold � (0 < � < 1), we say a substring T�
of T is an approximate of P if and only if the
similarity ratio of P and T� is greater than �.
In other words, the optimal alignment of T�
with P has a value greater than � * s * |P|,
where s * |P| denotes the largest value match-
ing P. We can solve the problem of deter-
mining if there’s an approximate occurrence
of P in T using the same recurrences as for
two-string (global) alignment between P and
T and change only the base condition for V(0,
j) to V(0, j) = 0 for all j. 

For example, block B2 in Figure 6a is an
approximate matching of block B1 within

threshold 0.5 because the alignment of the
encoded token strings for B1 and B2 shown
in Figure 6a has a value of 18 * s – 5 (18
matches and five missing) greater than 0.5 *
s * 19, for s = 3. Similarly, B3 is an approx-
imate occurrence of B1, with 14 matches and
12 mismatches with spaces.

To discover all approximate occurrences
of P in T, we first identify the position j� in
T such that V(|P|, j�) has the largest value
among all V(|P|, j), and V(|P|, j� ) is greater
than � * s * |P|. For this j�, we can output the
approximate occurrence T[k�, j� ] by back-
tracking from (m, j� ) until we reach a cell in
row zero (0, k� ). We then apply this proce-
dure to T[1, k� – 1] and T[j� + 1, |T|] recur-
sively to find all approximate occurrences of
P in T.

Using approximate matching, we can dis-
cover records similar (with at least � ) to the

V i j

V i j match S i S j

( , ) max

( , ) ( [ ], { });

=
− − +1 1 1 2

V i j d( , ) ;− −1

V i j d( , ) ;− −1

⎧

⎨
⎪

⎩
⎪
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(a)

B1:
B2:

The Java Maid

Java:

<B>T</B><BR><FONT>T<A>T</A><BR></FONT><SPAN>                           <B>T</B>T<BR><SPAN>
<B>T</B><BR><FONT>T<A>T</A><BR></FONT><SPAN><B>T</B>T<BR><B>T</B>T<BR></SPAN>

by     John Brooks List Price:   $21.45

by      Steven... Buy now:   $41.99 List...      $59.99

by   Steven... Buy now:  $41.99 List...      $59.99

B1
  1 2 3 4    5 6 7 8  9  10     11  12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

B2
<B>T</B><BR><FONT>T<A>T</A>      <BR><FONT><SPAN>

     <BR><FONT><SPAN><B>T</B>T<BR><B>T</B>T<BR></SPAN>
       <B>T</B>T<BR></SPAN>

B3
<B>T</B><BR><FONT>T<A>T</A>
<B>T</B><BR><FONT>T<A>T</A>T<A>T</A>T<A>T</A><BR><FONT><SPAN>

(c)

(d)

B1&B2:
B3:

The Java...

Discover...

<B>T</B><BR><FONT>T<A>T</A>                                   <BR></FONT><SPAN><B>T</B>T<BR><B>T</B>T<BR><SPAN>
<B>T</B><BR><FONT>T<A>T</A>T<A>T</A>T<A>T</A><BR></FONT><SPAN>

by John...

  by  Dave   ,     Arthur    ,       David

Buy now:  $41.99 List...   $55.99

                 <BR><SPAN>

(b)

B1:
B2:

The  Java Maid

Java:

<B>T</B><BR><FONT>T<A>T</A><BR></FONT><SPAN><B>T</B>T<BR>                          </SPAN>
<B>T</B><BR><FONT>T<A>T</A><BR></FONT><SPAN><B>T</B>T<BR><B>T</B>T<BR></SPAN>

by    John Brooks List Price:    $21.45

        <BR></SPAN>

Figure 6. Aligning the encoded token strings from Figure 5: (a) the optimal alignment of B1 and B2 (with 18 matched tokens and five
mismatches with spaces); (b) Another alignment of B1 and B2; (c) the alignment of B3 with the alignment result of B1 and B2; (d) the
multiple alignment of B1, B2, and B3. 



enclosed example in the training set. If the
system doesn’t discover all desired records,
the user can decrease the threshold � to dis-
cover more records. For some cases, one
enclosed example can’t approximate all
records in the training set with reasonable
threshold. For example, a CGI script can
have several display templates to enhance
visualization for different products. OLERA

allows multiple enclosing to solve this prob-
lem. For each enclosed example, the system
identifies its approximate occurrences in the
training example. If a text segment resem-
bles several enclosed examples, the system
will choose the most similar one. Similarly,
if two enclosed examples match two over-
lapping text segments, the system considers
such text segments to be the same and applies
the most similar rule or example.

Using multiple-string alignment
For those records identified by approxi-

mate matching, we need a generalization
over these instances. Let’s say we discover k
token strings after approximate matching.
We’ll apply multiple-string alignment to the
k token strings to generalize the record
extraction rule. Multiple-string alignment of
k (> 2) strings S1, S2, …, Sk is a natural gen-
eralization of alignment for two strings. Cho-
sen spaces are inserted into or at either end of
each of the k strings so that the resulting
strings have the same length, defined as l.
Then, the strings are arrayed in a matrix M
with k rows of l columns so that each token
and space of each string is in a unique col-
umn. For example, Figure 6d shows the
alignment of the three blocks arranged in a
matrix of three rows and 31 columns. 

With multiple-string alignment, we can rep-
resent a set of records in a spreadsheet.
Because only <TEXT> and some special tag
tokens contain the data to be extracted, we can
show only the contents encoded as <TEXT>
tokens and the hyperlinks embedded in <A>
and <IMG> tags for visualization. Addition-
ally, we can represent a set of records in pro-
file representation or signature representation,
which we can then use for extraction in the
test phase. In this article, we adopt signature
representation for extraction rules. For exam-
ple, we can represent the alignment of Figure
6d in signature representation as <B>T</B>
<BR><FONT>T<A>T</A>[T][<A>][T]
[</A>][T][<A>] ..., with brackets denoting
optional occurrences.

We can estimate the effectiveness of a mul-
tiple alignment using an extension from two-

string alignment, the sum-of-pairs (SP) objec-
tive function. The SP score of a multiple
alignment M is the sum of the similarity
scores of pair-wise global alignments induced
by M.4 We can solve the SP problem using
dynamic programming for a small number of
strings with O(nk) time for k strings of length
n. A bounded-error approximation algorithm
for large numbers of strings is also available.
For example, the center-star alignment algo-
rithm was developed as a bounded-error
heuristic by iteratively aligning a new string
to the growing multiple-string alignment. For
example, Figure 6c shows the alignment of
B3’s token string to the already aligned result
for B1 and B2.

Notably, the system must modify the
match function for aligning <TEXT> tokens.

Because encoding schemes translate text
strings into single <TEXT> tokens, several
alignments might have the same optimal sim-
ilarity score. For example, Figure 6c shows
another alignment of B1 and B2 where “List
Price:” is aligned against “Buy now:” but
with the same 18 matches and five mis-
matches with spaces as Figure 6a. To distin-
guish the alignments, we enforce the com-
parison of the primitive data for <TEXT>
tokens. The following equation shows the
function match(x, y) for three cases, x � y,
x = y � <TEXT>, and x = y = <TEXT>:

where x.prim denotes the primitive data of a
<TEXT> token x and simR(s1, s2) is the value
of the optimal global alignment of s1 and s2

over the longer length of the strings. There-

fore, the function simR returns a value
between 0 and s.

Note that the score function can affect two
strings’ optimal alignment. For example, if s
is greater than 2 * d, we prefer an alignment
with spaces to aligning two different charac-
ters. OLERA gives s a value greater than 2 * d
to prevent an alignment of two different
tokens. In other words, we purposely exclude
the disjunction of different tokens because it’s
not convenient for attribute name assignment. 

Experiments
We’ve tested OLERA on a set of 25 real-

world Web sites (see Table 1). Sites 1 through
15 are multirecord pages and sites 16–25 are
single-record pages. Some of the informa-
tion sources have been used elsewhere (sites
1–145 and 11–163). We collected a total of
2,906 pages for experiments. Table 1 lists the
Web sites we tested and their schema, and
Table 2 lists our experimental results.

Procedure
To wrap a data source, we start with one

randomly chosen page (two for single-record
data sources) and enclose one example
record to approximate other records in the
training set. If the system doesn’t discover
all records in the training set, we can reduce
the similarity threshold to approximate more
records. (We can adjust the similarity thresh-
old by double-clicking “Enclosing thresh-
old” as shown in the black box in Figure 2b.)
If the discovered records are misaligned due
to attribute permutation, we’ll enclose one
misaligned record as another example. 

When all records in the training set are cor-
rectly extracted, the system applies the extrac-
tion rule to other unseen pages for testing. If the
system doesn’t extract all records in the testing
pages, we add another page that contains such
records to the training set. (Another way is to
add all misextracted pages into the training set,
which speeds up the training process. However,
to identify the least number of pages needed for
one site, we add pages to the training set one
page at a time.) We repeat the same procedure
for the training pages until the system success-
fully extracts all testing records. 

We repeated this procedure three times
and averaged the numbers of training pages
for each data source (see Table 2). Table 2
also compares the number of operations for
enclosing/drill-down/roll-up operations, the
retrieval performance (precision and recall),
the threshold set for the training, and the final
extraction rule’s pattern length.

match x y

s if x y

s if x y TEXT

simR x prim

( , )

( .

=

≠
− = ≠ < >

,, . )y prim if x y TEXT= = < >

⎧

⎨
⎪

⎩
⎪

,
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To wrap a data source, we start

with one randomly chosen page

(two for single-record data

sources) and enclose one example

record to approximate other

records in the training set.



Results
The first thing we notice in Table 2 is that

the number of training pages needed for mul-
tirecord pages is comparably less than for
single pages. One reason for this is that each
multirecord page contains several records
where variations can occur. Another reason is
that the number of attributes in a record for
multirecord pages is comparably smaller
than for singular pages, so fewer variations
exist. This can also be seen from pattern
length—the average length of a record is 21
tokens for multirecord pages and 121 tokens
for single pages. Longer patterns often pre-
sent more changes in the data structure,
which is why singular pages usually require
more training pages than multirecord pages.

Next, we compare the number of opera-
tions and the parameter adjustment during
the training process. We found that 0.5
(default) is a good similarity threshold for

most data sources because it can approximate
most records we want to extract. For cases
when 0.5 is too low—the system discovers
additional segments—we can use the simi-
larity between each discovered record and
the example to increase the threshold. On the
other hand, when 0.5 is too high—the sys-
tem doesn’t discover some records—we can
use the highest similarity of the segment
that’s not displayed to increase the threshold.
Therefore, threshold adjustment is usually
done quickly.

For the number of enclosing operations,
usually one suffices for generating extraction
rules. We only need multiple enclosing oper-
ations when the discovered records can’t be
aligned properly due to the various order of
attributes in one data record (sites 18 and 25)
or different formats used for pages (site 19
and 21). Drill-down operations can separate
text strings such as “Retail Price: $89.99,”

which contains no delimiters of the encoding
scheme for the enclosing operation. We only
apply roll-up operation once (site 24) for con-
catenating small fragments of the book
description, which are generated during the
enclosing operation. In other words, the de-
fault encoding scheme, text-level tag, is
sometimes too coarse and other times too fine
for the enclosing operations. In fact, sites 1,
3, 7, and 10 would have required roll-up oper-
ations if we’d used a text-level-tag encoding
scheme. For a better alignment result, we use
a block-level-tag encoding scheme for these
four Web sites, so no roll-up operation is used.

Three Web sites require special mention.
Although OLERA identified all of IAF (site 12)
and LAWeekly’s (site 15) records, it couldn’t
completely recognize some of the attributes
through drill-down operations due to incor-
rect alignment. Also, PMIBook has consid-
erable attribute permutations (43 permuta-
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Table 1. The set of 25 real-world Web sites used to test OLERA. 

Total no. of Records to Total no. of Missing Permuted List
Web site pages be extracted attributes attributes attributes attributes

1. AltaVista 100 2,000 4 Yes No No

2. DirectHit 100 1,000 4 Yes No No

3. Excite 100 1,000 4 Yes No No

4. HotBot 100 1,000 4 Yes No No

5. Infoseek 100 1,500 3 Yes No No

6. MSN 100 1,500 3 No No No

7. NorthernLight 100 1,000 4 Yes No No

8. Sprinks 100 2,000 4 Yes No No

9. Webcrawler 100 2,500 3 No No No

10. Yahoo 100 2,000 4 Yes No No

11. BigBook 235 4,299 6 No No No

12. IAF (Internet Address Finder) 200 1,156 6 Yes Yes No

13. OKRA 252 3,335 4 No No No

14. Quote Server 200 743 18 Yes No No

15. LA Weekly 28 159 5 Yes No No

16. Zagat’s Guide 91 91 4 No No Yes

17. A1Books 100 100 10 Yes No Yes

18. Amazon 100 100 10 Yes Yes Yes

19. Barnes & Noble 100 100 13 Yes No Yes

20. BookPool 100 100 12 Yes No Yes

21. ByuBook 100 100 6 Yes No No

22. Ebay 100 100 11 Yes No No

23. iUniverse 100 100 8 No No Yes

24. JuilliardBook 100 100 6 Yes No No

25. PMIBook 100 100 10 Yes Yes No
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tions in total), where most of the 10 attributes
can occur in any unrestricted order. In this
example, we enclose 10 tag-value pairs and
use the multipass architecture for OLERA.

To compare our results with those of
related work, we focus on sites 11 through 16
(which have been used in other research3,5–8).
Table 3 shows the accuracy and the number of
examples used for three annotation-based
approaches. For annotation-free approaches
(IEPAD, RoadRunner, and EXALG), we record
the number of attributes that can be correctly
identified and the number of attributes con-
sidered in a record (see Table 4). This is
because the other papers don’t report accu-
racy (or they use a different definition of
accuracy) for some of the approaches.
Among these Web sites, IAF is the most chal-
lenging because most of the six attributes 
can be missing. Although annotation-free
approaches have no a priori knowledge about
the attributes to be extracted, OLERA and
IEPAD can recognize four of the six attributes,
while EXALG can only identify one of them.
Comparatively, it’s easier to wrap IAF with
OLERA, because only one enclosing operation
is required. LA Weekly is another Web site
that OLERA can’t perfectly wrap because one
of the attributes (credit card) was misaligned
during the drill-down operation.

Limitations
OLERA has two limitations. First, it’s sen-

sitive to the ordering of input information
because it uses a string-alignment technique.
Most annotation-free IE systems have this
problem. One solution is to incorporate a
multipass mechanism such as Stalker or Soft-
mealy and modify the extractor architecture. 

Second, extraction failure could occur
when the templates for each attribute are sim-
ilar. For example, the repetitive attribute-
value pairs in a record could cause errors in
alignment or boundary extraction. To solve
this problem, users usually need to specify
their own encoding scheme such as by using
attribute tags as delimiters or including the
DOM tree-level information for HTML tags.

We designed OLERA to fill a gap such
that users can select data of inter-

est before the training process and name the
extracted data after the system generalizes
the extraction rules. We call this approach
semisupervised because the user gives a

rough example—rather than an “exact and
perfect” labeling—of a record. Compared to
supervised approaches, the enclosing opera-
tion is one of the many steps to label a train-
ing example. In addition, OLERA further
reduces the number of examples by auto-

matically discovering other similar examples
for generalizing extraction rules. We propose
the enclosing, drilling down, and attributing
operations because Web pages are often
embedded with data for various purposes, so
relevant and irrelevant data are mixed and the
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Table 3. The accuracy and number of examples used 
for three annotation-based approaches.

Site
11 12 13 14

WIEN
Accuracy (%) 100 0 100 0
No. of examples used 274 Infinite 46 Infinite

Stalker
Accuracy (%) 97 85–100 97 79
No. of examples used 8 10 1 10

Softmealy
Accuracy (%) 100 42–56 100 85–97
No. of examples used 6 10 1 10

Table 2. Experimental results from testing 25 real-world Web sites. 

No. of Enclosing/drill
Site training pages down/roll up Precision Recall Threshold Length

1 2 *1/0/0 100 100 .60 19

2 3 1/0/0 100 100 .45 11

3 1 *1/0/0 100 100 .50 10

4 7 1/0/0 100 100 .45 17

5 4 1/0/0 100 99 .50 27

6 1 1/0/0 100 100 .50 9

7 1 *1/0/0 100 100 .50 34

8 4 1/0/0 100 99 .45 16

9 1 1/0/0 100 100 .75 13

10 1 *1/0/0 100 97 .50 12

11 1 1/2/0 100 100 .50 30

12 4 1/2/0 85.6 85.6 .50 9

13 1 1/0/0 100 100 .50 35

14 3 1/0/0 100 100 .50 53

15 1 1/1/1 85.6 85.6 .50 16

16 5 1/1/0 100 100 .50 44

17 3.3 1/0/0 95.7 100 .50 158

18 12 2/4/0 100 100 .50 168

19 17 3/1/0 100 100 .45 116

20 6 1/2/0 100 100 .50 61

21 4.3 3/0/0 100 100 .70 36

22 10.7 1/0/0 100 100 .50 466

23 1.7 1/2/0 100 100 .50 85

24 6.3 1/3/1 100 100 .50 72

25 1 10/0/0 100 100 .50 4

* Block-level encoding scheme used



desired granularity of data varies from appli-
cation to application.

Several research directions exist for further
study. For supervised or semisupervised IE sys-
tems, is it possible to maintain high recall when
high precision is pursued using more exam-
ples? For example, although some generaliza-
tion methods, such as Olera’s string alignment,
achieve high extraction recall given a small
number of examples, their recall decreases
when we try to improve their precision using
more examples. Such a phenomenon exists
when the generalization moves to higher lev-
els too quickly. For unsupervised IE systems,
we still must ask to what level of granularity a
system can differentiate a token’s roles (tem-
plate or data). For example, RoadRunner incor-
porates a markup-level encoding scheme for
input-page tokenization, while Exalg uses a
word-level encoding scheme. Does the granu-

larity of tokenization affect the template’s
induction for a set of input pages? Ambiguity
rises in the presence of nullable data attributes,9

owing partly to incomplete sampling of the data
source to be wrapped and partly to the gram-
mar used to generate the pages for the data
source. Further research is also necessary to
determine when grammars can be induced and
what kind of grammars can be induced.
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Table 4. Correctly identified attributes and attributes considered in a record for four annotation-free approaches.

Site
11 12 13 14 15 16

IEPAD

No. of attributes that could be correctly identified 6 4 4 18 Not tested Not tested
No. of attributes considered 6 6 4 18 Not tested Not tested

RoadRunner
No. of attributes that could be correctly identified 6 0 4 Not tested 4 Not tested
No. of attributes considered 6 6 4 Not tested 5 Not tested

EXALG

No. of attributes that could be correctly identified 5 1 8 16 1 4
No. of attributes considered 5 7 8 16 4 6

OLERA

No. of attributes that could be correctly identified 6 4 4 18 4 4
No. of attributes considered 6 6 4 18 5 4
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