
ASYNCHRONOUS PERIODIC PATTERNS MINING IN TEMPORAL DATABASES

Kuo-Yu Huang and Chia-Hui Chang
Department of Computer Science and Information Engineering,

National Central University, Chung-Li, Taiwan 320
email: want@db.csie.ncu.edu.tw, chia@csie.ncu.edu.tw

ABSTRACT
Mining periodic patterns in temporal database is an impor-
tant data mining problem with many applications. Previ-
ous studies have considered synchronous periodic patterns
where misaligned occurrences are not allowed. However,
asynchronous periodic pattern mining has received less at-
tention and was only been discussed for a sequence of sym-
bols where each time point contains one event. In this
paper, we propose a more general model of asynchronous
periodic patterns from a sequence of symbol sets where a
time slot can contain multiple events. Three parameters
min rep, max dis, and global rep are employed to spec-
ify the minimum number of repetitions required for a valid
segment of non-disrupted pattern occurrences, the maxi-
mum allowed disturbance between two successive valid
segments, and the total repetitions required for a valid se-
quence. A four-phase algorithm is devised to discover peri-
odic patterns from a temporal database presented in vertical
format. The experiments demonstrate good performance
and scalability with large frequent patterns.

KEY WORDS
Temporal Databases, Data Mining, Knowledge Discovery,
Applications

1 Introduction

Pattern mining plays an important role in data mining
tasks, e.g. frequent pattern, sequential pattern[4], inter-
transaction pattern[5] and episode mining[2], etc. Periodic
pattern mining is the problem that regards temporal regu-
larity. For example transactional data, we may find that a
pattern, Beer and Diaper, occurs at every Friday night for
20 weeks continuously. This is what we call a cyclic asso-
ciation rule which can be applied in period predictions such
as stock data, web logs, weather data, as well as earthquake
and sales records.

The discovery of pattern with periodicity has been
studied in [1, 3]. However, these studies considered only
synchronous periodic patterns but did not recognize the
misaligned presence of patterns due to the intervention of
random noise. Therefore, in [6] Yang et al. extended the
periodic pattern by introducing a concept from information
theory to address noisy symbols. For example, assume that
a temporal database has a periodic pattern, “Beer and Dia-
per”, on Friday night, from January to March. However, in

April, the business has a big promotion for beer every Sat-
urday. Therefore, many customers would buy beer on Sat-
urday instead of Friday because of this promotion. There-
fore, it would be desirable if the pattern can still be rec-
ognized when the disturbance is within some reasonable
threshold.

Yang’s asynchronous periodic pattern problem aims
at mining the longest periodic subsequence which may con-
tain a disturbance of length up to a certain threshold. How-
ever, the model they built has some drawbacks. First, they
only focused on periodic patterns with single event. How-
ever, in transaction databases, we may find multiple events
at one time slot.We call such databases multi-event tem-
poral database. Second, they only focused on mining the
longest sequence of a pattern. In order to discover the
longest subsequence, a longer segment can be broken into
small segments when two segments overlap. Nonetheless,
the overall repetition of the sequence is not increased than
maintaining the longer segments. We argue that a segment
should be extended to its longest possibility and overlap-
ping of two segments should be considered as two separate
sequences. In this case, the longest subsequence is con-
nected by S1 and S3, and sequence S2 is simply ignored.
However, S2 can be another administrator’s behavior. In
other words, discovering the longest subsequence can only
capture part of the system’s behavior.

In this paper, we discuss asynchronous partial peri-
odic patterns in multi-event temporal database. Three pa-
rameters, namely min rep, global rep and max dis are
employed to qualify valid patterns and the subsequence
containing them, where this subsequent in turn can be
viewed as a list of valid segments of perfect repetitions
interleaved by a disturbance. Each valid segment is re-
quired to be of at least min rep contiguous repetitions of
the pattern and the distance of each piece of disturbance is
allowed only up to max dis. The overall number of repe-
titions of a sequence is equal to the sum of the repetitions
of its valid segments. A sequence is termed valid if and
only if the overall repetitions of the pattern are greater than
global rep. We propose a four-phase algorithm for mining
asynchronous periodic pattern. We first introduce a hash-
based validation mechanism to discover all single event
periodic patterns, named SPMiner (Single event pattern
validation). In order to generate the multi-event periodic
pattern, complex pattern and asynchronous sequences, we
employ depth first enumeration approach to develop MP-

419-094 43

debbie

Miner (Multiple event pattern validation), CPMiner (Com-
plex pattern validation) and APMiner (Asynchronous pat-
tern validation). In summary, we have the following con-
tributions in this paper:

• A more general model of asynchronous periodic pat-
terns is proposed to allow the mining of all patterns,
not only in a database of events, but also in a database
of eventsets.

• A valid segment can be represented in a compressive
representation by its pattern, period, repetition and
start position.

• A dynamic hash-based validation mechanism is de-
vised to discover all singular patterns using twice scan
of the temporal database.

• There is no candidate pattern generation, as required
for an Apriori-like algorithm in complex pattern gen-
eration.

• We also analyze the time and space complexity and
prove the correctness of the proposed algorithm.

The remaining parts of the paper are organized as fol-
lows. We summarize some related research in Section 2. In
Section 3, we define the problem of asynchronous periodic
pattern mining for temporal database. Section 4 presents
our algorithm for mining asynchronous periodic patterns
from temporal database. Experiments and performances of
the algorithm study are reported in Section 5. Finally, we
conclude our study in Section 6.

2 Related Work

There have been a number of recent studies in periodic pat-
tern mining. Ozden et al.[3] defined the problem of dis-
covering cyclic association rules as finding cyclic relation-
ships between the presence of items within transactions. In
their research, the input data was a set of transactions, in
which each transaction consisted of a set of items. In ad-
dition, each transaction was tagged with an execution time.
By studying the interaction between association rules and
time, they applied three heuristics: cycle pruning, cycle
skipping and cycle elimination to find cyclic association
rules in transactional databases.

Han et al.[1] presented several algorithms to effi-
ciently mine partial periodic patterns, by exploring some
interesting properties related to partial periodicity, such as
the Apriori property and the max-subpattern hit set prop-
erty, and by shared mining of multiple periods. In order to
tame the restriction cyclic association rule, Han, et al. used
confidence to measure how significant a periodic pattern is.
The confidence of a pattern was defined as the occurrence
count of the pattern over the maximum number of periods
of the pattern length in the temporal database. For exam-
ple, (a, ∗, b) is a partial pattern of period 3 (“*” is a “don’t
care” character, which can match any single set of events);

its occurrence count in the event series ”a{b,c}baebaced”
is 2; and its confidence is 2/3, where 3 is the maximum
number of periods of length 3. Nevertheless, the proposed
mining model works only for synchronous periodic pattern
mining.

Therefore, Yang et al. [6] proposed the model to mine
asynchronous periodic patterns that are significant using a
subsequence of symbols which may contain a disturbance
of length up to certain threshold. They propose three strate-
gies: distanced-based pruning, single pattern verification
and complex pattern verification. The discovery process
of single pattern verification contains three phase: seg-
ment validation (phase A), valid segment growth (phase
B) and sequence extension (phase C). For patterns satisfy-
ing min rep and max dis requirements, their model will
return the subsequence with the maximum overall repe-
titions. As argued above, this model considers only se-
quences of symbols, and the longest subsequences can only
capture part of the system behavior. In addition to the over-
lapped segments of two separate administrators described
above, non-overlapped segments can form individual se-
quences due to long disturbance. Mining the longest sub-
sequence can not present such differences. Therefore, a
more general model is proposed in this paper.

3 Problem Definition

In this section, we define the problem of asynchronous pe-
riodic mining. The problem definition is similar to [6], ex-
cept for the multi-event sequence input and sequence for-
mulation. Let E be a set of all events. An event set is a
non-empty subset of E. A temporal database D is a set
of time records where each time record is a tuple (tid,X)
for time instant tid and event set X . A multi-event tempo-
ral database stored in form of (tid,X) is called horizontal
format. We say that an event set Y is supported by a time
record (tid,X) iff Y ⊆ X . An event set with k events is
called a k-event set.

Definition 3.1 A pattern with period l is a nonempty se-
quence P = (p1, p2, . . . , pl) where p1 is an event set and
others are either an event set or *, i.e. pj in (2E −∅)∪{∗}
for 2 ≤ j ≤ l.

The symbol ”*” is introduced to allow partial peri-
odicy as in previous papers (the ”don’t care” position in a
pattern). Since a pattern can start anywhere in a sequence,
we only need to consider patterns that start with a non-”*”
symbol. A pattern P is called an i-pattern if exactly i posi-
tions in P contain event sets. Particularly, we call 1-pattern
(singular pattern), and i−pattern (complex pattern) for
i > 1. For example, (A, ∗, ∗) is a singular pattern; (A, C,
*) is a 2-pattern which is also called complex pattern. If
pattern P doesn’t have any ”*” symbol, we call it a full
pattern. Otherwise pattern P is called a partial pattern.

Definition 3.2 Given a pattern P = (p1, p2, . . . , pl)
with period l and a sequence of l event sets D′ =

44

�

Figure 1. An example of periodic pattern

(d1, d2, . . . , dl), we say that P matches D′ (or D′ supports
P) if an only if, for each position j (1 ≤ j ≤ l), either pj

= * or pj ⊆ dj is true. D′ is also called a match of P .

In general, given a sequence of event sets and a pat-
tern P , multiple matches of P may exist. In Figure1,
D1,D2, . . . , D10 are ten matches of (A, ∗, ∗). We say that
two matches of the same period are overlapped if and only
if they share some common subsequence, otherwise they
are disjoint. For example, D2 and D3 share a common
subsequence at time slots 5 and 6 so they overlap whereas
D1 and D2 are disjoint.

Definition 3.3 Given a pattern P with period l and a se-
quence of event sets D, a list of k (k > 0) disjoint matches
of P in D is called a segment with respect to P if and only
if it forms a contiguous subsequence of D. Here, k is re-
ferred to as the number of repetitions of this segment.

Definition 3.4 A segment is maximum if there is no other
contiguous matches at both ends. Note that the end of a
segment is defined as the position of the last occurrence for
non-“*” event set in P . Two segments are overlapped if
they share common subsequence.

In Figure1, D1, D2, D4 and D6 are continuous
and disjoint matches. Therefore, we can use S1 =
{(A, ∗, ∗), 3, 4, 1} to indicate a segment with period 3 start
from position 1 for 4 times. Note that D1, D2 and D4 also
form a segment but it is not maximum. The end position
of segment S1 is 10. Segment S1 and S2 are overlapped,
while segment S2 and S3 are not overlapped.

Definition 3.5 A maximum segment S with respect to a
pattern P is a valid segment if and only if the number of
repetitions of S (with respect to P) is at least the required
minimum repetitions (i.e., min rep).

Let M1 and Mf denote the first and the last match of
a maximal segment. The start (end) position of a maximal
segment for a pattern is the start position of of M1 (Mf).
Therefore, the start and end position of segment S1 are 1
and 10, respectively. The disturbance between two seg-
ments is the distance between the end position of the first
segment and the start position of the second segment. For
Figure 1, the disturbance between S1 and S3 is 5 (15−10).

�

Figure 2. SMCA model

Definition 3.6 Given a multi-event database D and a pat-
tern P , a sequence in D is a set of non-overlapping valid
segments, where the distance between any two successive
valid segments is less than a predefined parameter, called
maximum disturbance (max dis). The overall number of
repetitions of a sequence is equal to the sum of the rep-
etitions of its valid segments. A sequence is called valid
if and only if the overall number of repetitions of P is
greater than a predefined parameter, called global repe-
tition (global rep).

For Figure1, if we set min rep = 2, global rep = 6
and max dis = 6, there are two valid sequence (S1, S3) and
(S2, S3) returned. The problem is formulated as follows:
given a temporal database and three parameters, min rep ,
global rep and max dis, the problem is to find all valid
periodic patterns with significant periods between 1 and
Lmax specified by the user.

4 Algorithm Overview

In this section, we explore methods for mining asyn-
chronous periodic patterns in multi-event temporal
database, proceeding from mining valid periodic segments
for singular patterns to mining periodic segments for com-
plex patterns. One algorithm, SPMiner, is devised to dis-
cover all valid segments for each single event from tempo-
ral database in vertical format. Then, two other algorithms,
MPMiner and CPMiner are devised to discover valid seg-
ments for multi-event 1-pattern and complex patterns. Fi-
nally, all valid segments with respect to a pattern can be
combined to form an asynchronous sequence by APMiner.

Figure 2 shows the architecture of our algorithm (ab-
breviated as SMCA). The links between the four modules
show the flow of mining results. CPMiner receives the re-
sult of SPMiner and MPMiner as its input since it combines

45

Event TimeList
A 1, 3, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18
B 1, 2, 4, 7, 12, 18
C 1, 3, 5, 7, 9, 10, 12, 13, 14, 16, 18
D 2, 3, 6, 7, 9, 11, 12, 13, 15, 16, 18

Figure 3. Vertical format of temporal database D

both single event 1-patterns and multi-event 1-patterns to
form i-patterns. The last three modules, MPMiner, CP-
Miner and APMiner, are designed by depth first enumera-
tion, which uses the mining result of previous module as
input. Note that the first three modules discover valid seg-
ments which are synchronous patterns. Therefore, their
mining results can all be fed into the fourth module for
asynchronous sequence mining. Finally, the rectangular
block outside MPMiner and CPMiner indicates that the two
modules can be combined in one procedure as discussed
below. If the input is a sequence of symbols, MPMiner can
be ignored and the three modules SPMiner, CPMiner and
APMiner can be used to discover periodic patterns for the
problem defined in [6].

4.1 SPMiner: Segment Mining for Single
Event Pattern

In contrast to most previous research on pattern mining,
which assumes a horizontal database layout, we use ver-
tical database format. Figure 3 shows the vertical format
for database V D, where a timelist is maintained for each
event. By examining the variation of timelists, we devise
two mining strategies for mining periodic segments of sin-
gle events.

• Potential Cycle Detection (PCD): According to the
Definition 3.5, a valid pattern with period l valid im-
plies there exist at least min rep matches. There-
fore, we first use an array CheckSet[l] to accumu-
late the counts for each period l (1 ≤ l ≤ Lmax).
If the CheckSet[l] is greater than min rep, it is a
potential cycle. Take event D in Figure 3 for an
example. After scanning the timelist of event C,
we get CheckSet[1] = 3, CheckSet[2] = 8 and
CheckSet[3] = 4. With min rep = 5, only 2 is a
possible period for event C. This can be implemented
by scanning the timelist for an event once and main-
taining a sliding window of Lmax latest time instants.
At time instant Ti, if the difference between Ti and
Tj , denoted by p, is less than Lmax for time instant
Tj , j = i − 1, . . . , i − Lmax, then CheckSet[p] is
increased by one.

• Hash-Based Validation (HBV): For each potential cy-
cle p of an event E, this procedure scans the timelist
once and outputs valid segments with period p. Note

that segments represent synchronous periodic occur-
rences and can be overlapped as shown in Figure 1.
This is implemented by keeping tracks of p indepen-
dent (potentially overlaping) segments in a data struc-
ture called CSeg, where each CSeg records the last
position where the event occurs and the number of
repetitions for current segment. For each time instant
Ti in the timelist of an event, we compute the mod-
ulus pos = Ti%p. The possible segment is kept in
CSeg[pos]. If Ti − CSseg[pos].last is exactly p, it
implies that this event has occurred at (Ti−p)-th time
instant. In this case, we increase Cseg[pos].rep by
one and update CSeg[pos].last by Ti. If otherwise,
Ti − CSseg[pos].last is not p, it implies the last seg-
ment has been interrupted. In this case, output this
segment if CSeg[pos].rep is greater than min rep
and reset CSeg[pos].rep to 1 and CSeg[pos].last to
Ti. Finally, examine CSeg once and output valid
segments if the repetitions are greater than min rep.
Taking period 3 of event D for example, the pro-
cess of scanning D.timelist is shown in Figure 4.
Initialize each record of CSeg with rep = 1 and
last = −Max. With min rep = 3, The valid seg-
ment (D, p = 3, rep = 6, start = 3) is returned.

We analyze the time complexity and space complex-
ity of the SPMiner below. The overall time for processing
SPMiner for a given event e is 2 ∗ne (PCD + HBV), where
ne is the number of occurrences of event e. For a given pe-
riod length l, the time to find the singular periodic pattern
for all events is hence

∑
∀e 2∗ne which is equivalent to two

database scans. Let D denotes the number of time slots and
T be the average number of events in each time slot. The
database size can be represented by D ∗ T . Consequently,
the time complexity to discover all valid segments for all
periods is O(D ∗ T ∗ Lmax). The data structured used for
PCD and HBV when processing an event is CheckSet and
CSeg, respectively. The size of the data structure is a multi-
ple of Lmax, which can be reused for all events. Therefore,
the space complexity is O(Lmax).

4.2 Depth First Enumeration

Depth first enumeration is a popular concept used to enu-
merate all possible combinations. In this section, we will
show how DFS enumeration can be used to discover valid
segments for multi-event singular patterns and complex
patterns, and also the combination of segments with respect
to one pattern to form valid sequences.

4.2.1 MPMiner for multi-event pattern

With all valid segments discovered for single event 1-
patterns, we can compose multi-event singular patterns by
MPMiner as follows. Considers segments of the same
period. Recall that a valid segment, S, is a 4-tuple
(EvtSet, p, rep, start) describing the event set, period,

46

Figure 4. Execution process for event D with period 3

number of repetitions, and the start position of the seg-
ment. A segment discovered by SPMiner can also be con-
sidered as a 1-pattern of the form (E1, E2, . . . , Ep) where
Ei = EvtSet for i = start%p, and Ei = ∗ otherwise.
The index start%p is defined as the normalized offset.
Two overlapped segments with the same offsets can form 2-
event singular patterns if the repetition of the overlapping
area is greater than min rep. To discover i-event singu-
lar patterns, we can compose them from an (i − 1)-event
segment with 1-event segment. In other words, an i-event
singular pattern is composed of i segments discovered by
SPMiner.

For efficient combination, segments of the same pe-
riod are ordered by their start position. Two segments can
be combined if they have the same offsets and the over-
lapping area has repetitions greater than min rep. The
overlapped area is defined by the maximum start position
and the minimum end position of the two segments. Note
that the end position of the segment can be determined by
start + (rep − 1) ∗ p. The same criteria work for combi-
nation of an (i − 1)-event segment and a segment.

4.2.2 CPMiner for complex pattern

Discovering complex patterns from singular patterns has
procedure similar to MPMiner. We refer to this procedure
as CPMiner. CPMiner enumerates possible combinations
of valid segments of the same period in depth-first order
and check if a combination forms a complex pattern. For
two overlapping segments with different offsets, they can
form a 2-pattern if the repetition of the overlapping area is
greater than min rep. To discover i-pattern, we can com-
pose it from an (i − 1)-pattern with 1-patterns. In other
words, an i-pattern is composed of i segments discovered
by MPMiner. Note that two segments with the same offset
can only form a singular pattern and have been considered
in MPMiner.

Since a pattern (A, ∗, B,C) can also be represented
by (B,C,A, ∗) or (C,A, ∗, B), it is desirable to select one

representation to avoid duplication. The idea is to select the
one with the largest repetitions. Therefore, the first element
of the pattern is determined by the segment with the mini-
mum end position. Then, each 1-pattern, Si is placed in the
pattern with an offset determined by (Si.start−shift)%p,
where shift is the offset of the segment with the minimum
end position.

For an input of Sp segments with period p, there are

C
Sp

l l-patterns in the worst case. However, there are usu-
ally less combinations because of the min rep constraints
for the overlapped area. The correctness of CPMiner and
MPMiner can be shown as follows. At each node, each
element in the node’s tail is combined with the node’s
head and regarded as a possible 1-extension. If the over-
lap area is less than min rep, then we can stop any follow-
ing enumeration, since any combination from that possible
1-extension would have an invalid subset (anti-monotone
property).

Note that it is possible to enumerate all combinations
of segments discovered from SPMiner to form either multi-
event singular patterns or complex patterns. That is, MP-
Miner and CPMiner can be combined in one depth-first
enumeration, where offset criteria is lifted and only the
overlap criteria is enforced.

4.2.3 APMiner for asynchronous pattern

As noted in Definition 3.6, an asynchronous periodic pat-
tern is defined by the existence of a valid sequence which
is a set of non-overlapping valid segments with respect to
a pattern. Therefore, a depth-first algorithm is designed to
enumerate all combinations of segments with respect to a
pattern. Suppose segments are ordered by their start po-
sition. A single segment is itself a subsequence and po-
tentially valid if the number of repetition is greater than
global rep. For each enumeration, we try to extend current
subsequence by examining one more segment. The ,if the
start position of the segment is within max dis of the cur-
rent subsequence, the subsequence is extended. Once the
start position of a segment is greater than the end position
of current sequence by max dis, the remaining segments
can be ignored since segments are ordered by their start
position.

5 Experimental Results

For the purpose of performance evaluation, we use a syn-
thetically generated temporal data set consisting of |N | dis-
tinct symbols and |D| time instants. A set of periodic com-
plex patterns, C, is generated as follows. First, we decide
the period length from a normal distribution with average
length P . Then L (1 < L < P) positions are chosen
for non-empty event sets. The average number of events
for each singular pattern is set to |I|. The start position
of a segment is randomly chosen from 1 to D/4. The
number of repetitions of a segment follows a geometrical

47

distribution with mean Rep. Following each segment, a
disturbance is given, based on a geometrical distribution
with mean Dis. This process repeats until |D| time in-
stants are used. A total of |C| complex patterns are gen-
erated. With all periodic patterns generated, we then as-
sign events to each time instant. The number of events in
each time instant is picked from a Poisson distribution with
mean T . For each time instant, if the number of the event
in this time instant is less than T , the insufficient events
are picked at random from the symbol set N . The default
parameter is D50K-N1K-C5-L4-T10-I4-P20-Rep25-Dis50
(min rep = 15 and Lmax = 20).

We only report performance comparison of SPMiner
here due to space limitation. For comparison with SP-
Miner, we implement Yang et al.’s algorithm but omit phase
C for it is designed to find the longest subsequence [6].
In order to handle multi-event temporal data, phase A and
B are implemented using vertical format for each event.
The general performance, the effect of parameters, and the
scalability of our methods are considered here. The scal-
ability of SPMiner is shown in Figure 5(a). The scaling
with database size was linear and the running time for SP-
Miner is also better than LSI(A+B) (by a magnitude of 37
for |D| = 150K). The utility of PCD is demonstrated by
the dashed line SPMiner(HBV) where HBV is executed
without PCD. As we can see, even HBV itself has better
performance than LSI by a magnitude of 15. The upper
bound of SPMiner is close to SPMiner(HBV). Therefore,
PCD is powerful pruning technique in single event pattern
mining.

In Figure 5(b), the total running time for SP-
Miner(HBV) is linear to the average transaction size as an-
alyzed in Section 4.1; while the running time for LSI in-
creases dramatically since the distance-based pruning tech-
nique has comparatively less to prune. In summary, SP-
Miner is efficient and scalable in mining periodic pattern in
multi-event temporal database.

6 Conclusion

In this paper, a general model for asynchronous peri-
odic pattern mining is defined. A four-phase algorithm
which includes singular periodic pattern mining (SPMiner
for 1-event, MPMiner for i-event), complex periodic pat-
tern mining (CPMiner) and asynchronous sequence mining
(APMiner) are devised to solve the problem. The experi-
ments show that our algorithm is very efficient. Periodic
pattern mining can be used not only for data characteristics
summarization, it can also be applied for future periodic-
ity predication. More research will be reported in the near
future.

Acknowledgement

This work is sponsored by National Science Council, Tai-
wan under grant NSC92-2213-E-008-028.

�
�

�
�

��

��
��

��
�	

���

��

�	��

��
��

�
�
 �� ��

�

�	

�		

�			

�				

�� �	 �� �		 ��� ��	
��
���������

�
�
�
�
�
��
�
	

�
��
�

�
�
�
��

�������

��������

���������� �

(a)

� �
�

��

��

�� ��
	�

���

���

��
��

�� �� ��

�

��

���

����

�� �� �� �� ��

�
�
�
�
�
��
�
�
	

��
�
	�

�
�
��

�������

��	
��
�

�������
�
��

(b)

Figure 5. Performance comparison.

References

[1] J. Han, G. Dong, and Y. Yin. Efficient mining paritial
periodic patterns in time series database. In Proc. of the
15th International Conference on Data Engineering,,
pages 106–115, 1999.

[2] Heikki Mannila, Hannu Toivonen, and A. Inkeri
Verkamo. Discovering frequent episodes in sequences.

[3] B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic
association rules. In Proc. of the 14th International
Conference on Data Engineering,, pages 412–421,
1998.

[4] R. Srikant and R. Agrawal. Mining sequential patterns:
Generalizations and performance improvements. In
Proc. of the 5th International Conference on Extending
Database Technology,, volume 1057 of Lecture Notes
in Computer Science, pages 3–17. Springer, 1996.

[5] A. K. H. Tung, J. Han H. Lu, and L. Feng. Break-
ing the barrier of transactions: Mining inter-transaction
association rules,. In Proc. of the International Con-
ference on Knowledge Discovery and Data Mining,,
pages 297–301, 1999.

[6] J. Yang, W. Wang, and P.S. Yu. Mining asynchronous
periodic patterns in time series data. In Proc. of
the sixth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 275–
279, 2000.

48

