
Sequential Pattern Mining for Web Extraction Rule Generalization�

Chia-Hui Chang

Dept. of Computer Science and Information Engineering

National Central University, Chung-Li 320, Taiwan

chia@csie.ncu.edu.tw

ABSTRACT

Information extraction (IE) is an important problem for

information integration with broad applications. It is an

attractive application for machine learning. The core of

this problem is to learn extraction rules from given input.

This paper extends a pattern discovery approach called

IEPAD to the rapid generation of information extractors

that can extract structured data from semi-structuredWeb

documents. IEPAD is proposed to automate wrapper gen-

eration from a multiple-record Web page without user-

labeled examples. In this paper, we consider another sit-

uation when multiple Web pages are available but each

input Web page contains only one record (called singular

page). To solve this problem, a hierarchical multiple string

alignment approached is proposed to generate the extrac-

tion rules from multiple singular pages. In addition, the

same method can be applied to IEPAD for �ner feature

extraction.

Keywords: information extraction, IEPAD, alignment,

singular pages, encoding hierarchy

1. INTRODUCTION

Information integration systems often require a lot of ef-

forts for manipulation among various data formats. Some-

times the data format are not even meant for application

programs. For example, information collected from Web is

usually expressed in HTML which is intended for display

on Web browsers. Hence, there presents a special need for

wrappers to extract relevant information from machine-

generated Web pages. Contrast to free-text information

extraction which roots from linguistic analysis [11], Web

IE relies on structure identi�cation marked by HTML tags

(see [7] for a survey). The markups in Web pages together

with the multiple tuples to be extracted contribute the so

called semi-structured documents.

Previously, several research e�orts have focused on

wrapper generation for Web-based sources, for example,

WIEN, Softmealy, and STALKER, etc. [12, 6, 8]. Basi-

cally, the wrapper induction systems generate a specialized

extractor for each Web data source. Their work produce

accurate extraction results, but the generation of the ex-

tractors still requires human-labeled/annotatedWeb pages

as training examples to "tell" a wrapper induction pro-

gram how to extract data from a given Web page by pro-

viding examples on how to partition a Web page, and how

to group sub-strings into attributes and data records.
�This work is sponsored by National Science Council, Taiwan

under grant NSC90-2213-E-008-042.

IEPAD (an acronym for information extraction based on

pattern discovery) [2] is a novel IE system which attempts

to eliminate the need of user-labeled examples. The user

does not need to tell IEPAD what information to extract,

but simply choose among patterns (discovered by IEPAD)

to see if the pattern can extract the desired information.

This amazing feature is based on the assumption that

the input is a multiple-record Web page so that sequen-

tial pattern mining can be applied to discover the repeats.

However, there are two major problems regarding this ap-

proach. First, IEPAD's assumption motivates the mining

of all patterns that occur k-fold for relevant information

with k-records (k > 2). If the input page contains many k-

fold patterns, a lot of patterns will be discovered and make

users hard to choose from. Or if the relevant information

contains only one record, IEPAD fails. Second, IEPAD's

approach solves only the extraction of the record bound-

ary not the extraction of individual features. If one wants

to extract �ner information, post processing is required.

In this paper, we extend IEPAD to solve the above prob-

lems. The remainder of the paper is organized as follows.

Section 2 presents background material on IE and IEPAD.

We describe the system framework in Section 3. Section

4 presents the applications of our approach to multiple-

record page extraction and one-record page (singular) ex-

traction; and �nally Section 5 concludes the paper.

2. BACKGROUND

IE from Semi-structured Data

Information Extraction (IE) is concerned with extracting

the relevant data from a collection of documents. The

goal is not necessarily to produce a general-purpose IE

system, but to create tools that would allow users to build

customized IE system quickly. A key component of any

IE system is its set of extraction patterns (or extraction

rules) that is used to extract information relevant to a

particular extraction task. Therefore, research e�orts have

focused on the work to induce useful extraction patterns

from training examples.

Information extraction from free text has been a sub�eld

of Natural Language Processing (NLP) that is concerned

with identifying prede�ned types of information from text

[3]. Semi-structured data such as product description in

prede�ned HTML templates is however an attractive ap-

plication for machine learning [7]. IE can be useful in a va-

riety of domains. Free text IE from MUC (Message Under-

standing Conference) series have focused on domains such

as Latin American terrorism, joint ventures and company



management changes. Web information extraction, on the

other hand, arises from the need for information integra-

tion on several applications such as comparison-shopping

agents [4], job �nding, etc.

There are three factors when designing an IE system.

First, whether the training examples are annotated may

inuence the design of an IE system. Most machine learn-

ing based approaches rely on user-annotated training ex-

amples [9, 1, 12, 6, 8], very few systems generate extraction

rules based on unlabeled text [10, 2]. Second, depend-

ing on the characteristics of the application domains, IE

systems use extraction patterns based on one of he fol-

lowing approaches: context-based constraints, delimiter-

based constraints, or a combination of both. For example,

wrapper induction systems such as WIEN [12], Softmealy

[6], Stalker [8] generate delimiter-based extraction rules,

while some generate context-based rules [10, 2]. Finally,

some IE systems may rely on background knowledge for

pattern generalization. For example, RAPIER [1] imposes

constraints based on the WordNet semantic classes. Soft-

mealy [6] de�nes token classes such as word and nonword

token classes.

The IEPAD System

IEPAD [2] is an IE system that does not require user-

annotated training example. It applies several pattern

discovery techniques including PAT-trees, multiple string

alignment and pattern matching algorithms. The key idea

of IEPAD is to discover and use patterns to extract data

from target Web pages. A pattern in IEPAD is a subclass

of regular expressions over an alphabet of tokens. Each

pattern matches a set of strings. A pattern may contain

options and alternatives. An example of a pattern is given

below:

<P><A><TEXT></A><BR>[<TEXT>]<BR><TEXT>

<BR><TEXT> (1)

where <P>, <BR>, <TEXT> etc. are tokens that match

HTML tags <p>, <br>, and text strings, respectively. Op-

tions are denoted by [: : :]. In this example, the sixth token

<TEXT> is optional. The following string matches this pat-

tern:

<p><a href="http://www.csie.ncu.edu.tw">

NCU</a><br>National Central University<br>

Chung-Li<br>Taiwan. (2)

The IEPAD extractor basically works as follows. Given

a pattern and a Web page, the extractor translates the

Web page into a token string and scans the token string

to �nd all substrings that matches the pattern. It then

outputs the substrings as data records. In this case, the

extractor will output (3) given the example (2) and pattern

(1). Removing the HTML tags, we obtain a data record

with the four text strings in (2) as the attributes:

h"NCU","National Central University",
"Chung-Li","Taiwan"i. (3)

The IEPAD pattern discoverer reverses the task of the

extractor. To discover extraction patterns, IEPAD relies

on the use of an encoding scheme to abstract the input

pages such that potential patterns can be discovered. For

example, the above encoding scheme considers only tags

that de�nes the structure of a document and encodes all

other information between any two tags as a special token

<TEXT>. IEPAD then discovers all patterns that occur k

times in the token string by pattern mining techniques

such as PAT tree and multiple string alignment. In other

words, IEPAD presents rules which reect the contextual

structure of the data. This is why IEPAD also features the

use of unlabeled data and in instead provides users with

discovered patterns for selection. In this paper, we further

devise a compromise approach for the user to specify the

relevant information.

3. SYSTEM FRAMEWORK

In this section, we present the framework of our approach.

In view of the problems incurred by the assumption of

k-fold patterns, the system provides an interface for the

user to mark the relevant information block that he/she is

interested in. Meanwhile, to spare post processing for �ner

information extraction, the system o�ers a drill-down and

roll-up operation to manipulate information slots. Detail

description of these operations are given below:

� Enclosing relevant information block

Users can mark a block and use the \Ctrl+C" hot

key to assign the block as relevant information block.

In comparison to previous work by WIEN, Stalker,

Softmealy, etc. which require users to annotate the

record boundary and the beginning and ending of each

slot, IEPAD only requires users to mark the global

scope of relevant information.

� Drilling down an information slot

Drill-down operation allows users to navigate from

current less detailed data to more detailed data. It

is realized by an encoding hierarchy based on markup

language syntax and general string custom. We bor-

rowed this term from OLAP data cube operations [5].

� Specifying relevant information slots

The result of the enclose and drill-down operations is

presented by a spread sheet with multiple slots de-

composed from the enclosed information block. Users

can then specify relevant slots by mark them for ex-

traction or further expansion.

Encoding Hierarchy

The drill-down operation in OLAP data cube is real-

ized by stepping down a concept hierarchy. For example,

we might de�ne a concept hierarchy year > quarter >

month > day for time. The concept hierarchy for the

drill-down operation in IEPAD is composed of a set of

encoding schemes: markup-level encoding scheme > text-

level encoding scheme > word-level encoding scheme, etc.

The greater-than sign indicates that the left encoding is

a higher level abstraction of the right one. For example,

IEPAD introduced block-tag encoding scheme which con-

cerns the structure of Web pages represented by HTML

tags. In this encoding scheme, IEPAD sees only block-

level tags where each block-level tag X is encoded as a tag



token <X>; any other text between two block-level tags is

encoded as a special token <TEXT> [2]. In addition, all-tag

encoding scheme [2] which concerns all HTML tags can be

a lower level abstraction in the encoding hierarchy.

The encoding schemes not only translate the enclosed

information block into a token string, but also enforce a

natural segmentation of the data by the tokens they en-

codes. In other words, an encoded token string of length

n can segment the data into n slots. We call the segments

the primitive data of the tokens. The primitive data for

each slot will further be encoded by the next level encoding

scheme at drill-down operation. For example, the primi-

tive data of the slots segmented by block-level encoding

scheme can be encoded by all-tag encoding scheme at the

drill-down operation. For other semi-structure documents

such as XML, the encoding can be de�ned by the layer

position of the tags in the parse tree of an XML page.

Both block-tag or all-tag encoding are markup-level en-

coding schemes and can be applied to any Web pages writ-

ten in English or Chinese, etc. For further drill-down oper-

ations, we can establish text-level and word-level encoding

schemes where some of them might depend on the con-

stituents of individual languages. For example, text data

(without markups) are made of paragraphs and sentences

separated by control characters such as new-line (NL),

carriage-return (CR), punctuation symbols such as period,

comma, question mark, etc. In addition, we can con-

sider word-level encoding schemes which concern the con-

stituents of sentences { words separated by blank spaces,

tabs, etc. Other symbols such as parenthesis, dollar signs

($), colons, and dashes etc. are also encoded at a proper

level.

It is worth mentioning that at this level, language infor-

mation may be included when de�ning these token classes.

For example, we may de�ne word token class to be sepa-

rated by blank spaces for English, but this does not �t for

character-based language such as Chinese and Japanese.

Take another example, many free text IE systems re-

quire part-of-speech tagging, partial parsing and seman-

tic interpretation which, however, are beyond the scope of

this paper. In the context of semi-structured IE, we fo-

cus ourselves on simpler text data segmented from Web

pages. The complete encoding hierarchy used in this pa-

per is listed in Table 1 which shows a common knowledge

for string composition. The system applies an encoding

scheme by recognizing the delimiters which are not sur-

rounded by quotation marks. From this hierarchy, it may

feel like a gap between the text-level and word-level en-

coding schemes. There is no general encoding scheme to

translate a long text string into a proper representation.

In fact, text-level encoding is designed for long text strings

to focus on the number of sentences. Word-level encoding,

on the other hand, is designed for short text strings which

usually require further processing such as email address,

date, etc.

Record Identi�cation

In this extension of IEPAD, the input can be one-record

Web pages or multiple-record Web pages. We describe

here how data are split into records when a user encloses

an information block at one of the given p training pages.

The enclosed block will �rst be translated into a token

string by a proper encoding scheme either chosen by the

system or speci�ed by the user. Similar to [2], the user

can specify the number of records in the enclosed block

for data splitting. Let k be the number of records in the

enclosed block. If k is greater than 1, then IEPAD con-

structs a PAT tree to discover the k-fold patterns as the

primitive record rule, Pr. Otherwise, the encoded token

string of the whole enclosed block is saved as the primi-

tive record rule. Note that if k is not speci�ed, IEPAD

will conduct an exhaustive enumeration for all k from 1

to n=2 where n is the length of the encoded token string

(given the minimum pattern length 2). As the number of

patterns can be increasingly large, these patterns have to

be validated by their regularity and density as de�ned in

[2]. In addition, we add another test on primitive data in

this extension as described next.

With the primitive record rule, the systems will perform

pattern matching on each of the rest p�1 pages to �nd ev-

ery occurrence of the primitive record rule in the encoded

token strings. However, it's more than just �nding the oc-

currences of a pattern Pr in the encoded token string of a

Web page. The system will make a comparison between

the primitive data of each matched tokens to ensure the

correctness of the matching. In other words, the primi-

tive record rule describes the contextual structure of the

records, while the primitive data of each token describes

what it really is to compensate the lost of information

during the encoding process. The test on primitive data

is enforced through out the paper so that the matching

is correct not only for a exterior resemblance but also a

interior resemblance.

The comparison of the primitive data for two tokens

can be estimated literally or by their representation at the

lower levels of the encoding hierarchy depending on the

length. For long segments of primitive data, it is usually

hard to compare them character by character. Therefore,

we need some abstraction of such data for comparison. For

example, for a TEXT token from block-tag encoding scheme,

we would consider its encoded representation at all-tag

encoding scheme and align respective token strings to �nd

its edit distance (discussed in the next section). The length

can be a helpful information too. We de�ne
jx�yj

maxfx;yg
as

the distance between two primitive data of length x and

y. The length distance as well as the alignment distance

constitute the evaluation for long segments.

Rule Generalization

Generalization is necessary when multiple records are

given as training example. If there is only one record for

training, the primitive record rule as well as the subse-

quent user-operation on the speci�ed slots will be saved as

the extraction rule. For example, the user may perform

drill-down operation on a speci�c slot to enforce the seg-

mentation of the primitive data until the desired slice of

information can be extracted. Meanwhile, relevant infor-

mation slots can be speci�ed and given proper attribute

names. The corresponding encoding scheme as well as the

positions of the speci�ed slots will then be record in the ex-



Category Encoding scheme Delimiters

Markup-level Block-tag <X>j X: block-level tags

All-tag <X>j X: text-level tags

Text-level Paragraph NewLine, CarriageReturn, Tab

Sentence Period, Question Mark, Exclamation Mark

(followed by a blank space)

Word-level Phrase Colon, Comma, Semicolon, Bracket, Quotation Mark

Word/Numeric Blank

Other delimiters: @, -, $, /, Period, etc.

Table 1: The Encoding Hierarchy for Web Documents

traction rule such that the extractors generated by IEPAD

can perform the same encoding and extraction of the spec-

i�ed slots as recorded.

For multiple records identi�ed from the data splitting

procedure, we need a generalization over multiple in-

stances. Let's say m token strings are discovered after

data splitting. We will apply string alignment procedure

to the m token strings to generalize the induced record

rule. Multiple string alignment has been applied in IEPAD

[2] to generalize the presentation of the critical common

features and tolerate exceptions induced by missing at-

tributes. The major problem in previous work is the de-

cision of an alignment when multiple alignments have the

same minimum edit distance. The edit distance between

two strings are de�ned as the summation of the match-

ing score between two aligned tokens. In previous work

[2], the value for matching a token against a hyphen is 1,

matching two same tokens charges no score, and a larger

value 3, is given for matching two di�erent tokens to avoid

such alignments. With such matching scores, all of the

following alignments for \dtbt" and \dtbtbt" will have the

same edit distance 2.

d t b t b t

d t b t � �
,

d t b t b t

d t � � b t

In order to �nd a correct alignment, the match function

needs to consider more than just facile tokens, especially

on matching non-delimiter tokens (e.g. TEXT tokens) since

such tokens actually represent some contents that have

been abstracted. Therefore, the score of matching two to-

kens is de�ned by the alignment result of their primitive

data as described in Section 3.2. With this new matching

function, the system can make a better alignment and sum-

marize the signature representation as a regular expression

from the alignment of multiple token strings. For example,

suppose we have the following alignment for three token

strings \dtbtbt", \dtbt" and \dtbat". The signature rep-

resentation will be expressed by \dtb[a|-]t[b|-][t|-]",

which divides an information slot into 7 sub-slots.

d t b � t b t

d t b � t � �

d t b a t � �

The repetitive process of drilling down an information

slot and aligning multiple instances can be considered

as the decomposition of rule generalization process. We

might conduct such processes for thousands of times with-

out thinking. The decomposition of the process into sev-

eral operations enables the program to simulate the work

and discover the knowledge. As long as the matching score

of two abstracted tokens are properly de�ned, the align-

ment will give a result similar to what we expect.

4. APPLICATIONS

In this section, we show two examples of this approach

to solve the extraction of one multiple-record page and

multiple singular pages, respectively.

Multiple-Record Page Extraction

The �rst application is about the extraction from Web

pages containing multiple records. The diÆcult part is to

discover the boundary for each record in the Web page.

We have described above how IEPAD solves this problem

by PAT-tree construction and multiple string alignment

[2]. In this extension of IEPAD, the problem of multi-

ple alignments and �ne extractions are further overcome.

First, the PAT-tree is constructed over the enclosed infor-

mation block which excludes k-fold (k > 2) patterns in

other part of the Web page. More importantly, the def-

inition of matching score between two tokens has greatly

improved the alignment result and reduced the number of

alignments. Second, the extraction of �ne information is

addressed by the drill-down operation along the encoding

hierarchy.

Figure 1 shows a snapshot of the interface after

a serial of operations: enclosing relevant information

block, drill-down on several information slots, and �-

nally specifying relevant ones and save them as ex-

traction rule. The top extraction pattern is expressed

as "<P><TEXT><BR>[<TEXT>]<BR><TEXT><BR><TEXT>" and

is accompanied by four patterns for each of the four

<TEXT> tokens accordingly. For example, the �rst

and the third patterns are "<B><TEXT></B><TEXT>" and

"<TEXT><FONT><TEXT></FONT><TEXT>",

respectively. Drill-down on the third slot of the pat-

tern "<TEXT><FONT><TEXT></FONT><TEXT>", we get pat-

tern ",<TEXT>,<TEXT>". Through the upper-right win-

dow, the users can type in the attribute names and select

the desired information blocks by clicking the check boxes

above each block. For example in this �gure, we have cho-

sen slot 1 and 2 for \title", and \description", respectively.



The `score" value can be extracted by sub-block 1 of block

3. The saved extraction rule can then be used to extract

other Web pages fetched from the same Web site.

Multiple Singular Page Extraction

The second example regards the application to the extrac-

tion from multiple Web pages, each containing one record

information. When the number of expected records k

equals 1, IEPAD does not need the process of building PAT

trees for record boundary discovery compared to one plural

page extraction. Instead, the system matches the encoded

token string (which is considered as the record pattern)

against other training pages. Next, the system conducts

multiple string alignment over the discovered records to

summarize the record extraction rule. The following drill-

down and slot-selection operations are similar to those for

multiple-record page extraction. Figure 2 shows the align-

ment result of three singular pages.

It is worth mentioning that the training pages are not

necessarily singular. We may choose one singular page for

block enclosing, and take other plural pages for pattern

matching. In this framework, as long as record pattern

can be identi�ed, pattern matching can be applied to other

training page, either singular or plural, to recognize other

training examples. In the ultimate situation, the enclosed

block equals the whole page and a large number of slots

may be segmented. Since this will increase the diÆculties

for slot-selection, it may need some kind of mechanisms

to �lter irrelevant slots. However, this problem is beyond

this paper.

5. CONCLUSION

With the growth of the amount of online information, the

availability of robust, exible IE systems will become a

stringent necessity. The application of pattern discovery

based approach to IE can save a lot of e�orts since no

labeling is required. By taking the advantages of HTML

tags and other delimiters, we can encode a page layer by

layer and at the same time divide it into blocks. This is the

basis of data segmentation and is shown to be successful in

discovering the patterns for page template. Based on this

idea, we have proposed a robust approach for IE and solve

the problems for text token alignment and the �ltering of

useless blocks.

In this paper, we have extended IEPAD to handle a

richer set of semi-structured documents. The proposed op-

erations: enclosing relevant block, drilling down and speci-

fying relevant information slots can reduce the user burden

for annotation. With hierarchical encoding, IEPAD per-

form the same task of Stalker but with less user e�ort. The

embedded hierarchical structure for the records in a Web

is discovered automatically by recursive data splitting and

string alignment techniques. Therefore, it can handle ex-

ceptions such as missing attributes and multiple attribute

values. This approach is language independent, since it

incorporates only generalization rule of markup language.

Therefore, it is adapts to English, Chinese, etc. This ap-

proach can be applied to one-record or multiple record

page extraction. We have not yet incorporated semantic

generalization, however, it is easy to add such general-

ization into the encoding hierarchy. We believe the pro-

posed framework has minimized the user burden required

for learning extraction rule.

References

[1] M. Cali� and R. Mooney. Relational learning of

pattern-match rules for information extraction. In

Proceedings of the Sixteenth National Conference on

Arti�cial Intelligence, 1997.

[2] C.-H. Chang and S.-C. Lui. Iepad: Information ex-

traction based on pattern discovery. In Proceedings

of the 10th International Conference on World Wide

Web, pages 681{688, Hong-Kong, May 2{6 2001.

[3] J. Cowie and W. Lehnert. Information extraction.

cacm, 39(1):80{90, Jan 1996.

[4] R.B. Doorenbos, O. Etzioni, and D.S. Weld. A scal-

able comparison-shopping agent for the world-wide

web. In Proceedings of the 1st International Confer-

ence on Autonomous Agents, pages 39{48, NewYork,

USA, 1997.

[5] J. Han and M. Kamber. Data Mining: Concepts and

Techniques. Morgan Kaufmann, 2001.

[6] C.-N. Hsu and M.-T. Dung. Generating �nite-state

transducers for semi-structured data extraction from

the web. Information Systems, 23(8):521{538, 1998.

[7] I. Muslea. Extraction patterns for information ex-

traction tasks: A survey. In Proceedings of AAAI'99:

Workshop on Machine Learning for Information Ex-

traction, 1999.

[8] I. Muslea, S. Minton, and C. Knoblock. A hierarchical

approach to wrapper induction. In Proceedings of the

3rd International Conference on Autonomous Agents,

pages 190{197, Seattle, WA, 1999.

[9] E. Rilo�. Automatically constructing a dictionary

for information extraction tasks. In Proceedings of

the Eleventh National Conference on Arti�cial Intel-

ligence, pages 811{816, 1993.

[10] E. Rilo�. Automatically generating extraction pat-

terns from untagged text. In Proceedings of the Thi-

teenth National Conference on Arti�cial Intelligence,

pages 1044{1049, 1996.

[11] S. Soderland. Learning to extract text-based infor-

mation from the world wide web. In Proceedings of

the 3rd International Conference on Knowledge Dis-

covery and Data Mining, pages 233{272, CA, USA,

1997.

[12] N. Kushmerick D. Weld and R. Doorenbos. Wrapper

induction for information extraction. In Proceedings

of the 15th International Joint Conference on Arti�-

cial Intelligence (IJCAI), pages 729{737, Japan, 1997.



Figure 1: Multiple-record page extraction.

Figure 2: Alignment result for multiple singular pages.


