Optimization

Homework 2 Solutions

1. (a). The value of x^* (in terms of a, b and c) that minimizes f is $x^* = b/a$.

(b). We have $f'(x) = ax - b$. Therefore, the recursive equation for the DDS algorithm is $x^{(k+1)} = x^{(k)} - \alpha (ax^{(k)} - b) = (1 - \alpha a) x^{(k)} + \alpha b$.

(c). Let $\bar{x} = \lim_{k \to \infty} x^{(k)}$. Taking limits of both sides of $x^{(k+1)} = x^{(k)} - \alpha (ax^{(k)} - b)$ (from part b), we get $\bar{x} = \bar{x} - \alpha (a \bar{x} - b)$. Hence, we get $\bar{x} = b/a = x^*$.

(d). To find the order of convergence, we compute

$$\frac{|x^{(k+1)} - b/a|}{|x^{(k)} - b/a|^p} = \frac{|(1 - \alpha a)x^{(k)} + \alpha b - b/a|}{|x^{(k)} - b/a|^p} = |1 - \alpha a||x^{(k)} - b/a|^{1-p}.$$

Let $z^{(k)} = |1 - \alpha a||x^{(k)} - b/a|^{1-p}$. Note that $z^{(k)}$ converges to a finite nonzero number if and only if $p=1$ (if $p<1$, then $z^{(k)} \to 0$, and if $p > 1$, then $z^{(k)} \to \infty$). Therefore, the order of convergence of $\{x^{(k)}\}$ is 1.

(e). Let $y^{(k)} = |x^{(k)} - b/a|$. From part d, after some manipulation we obtain $y^{(k+1)} = |1 - \alpha a|y^{(k)} = |1 - \alpha a|^{k+1}y^{(0)}$. The sequence $\{x^{(k)}\}$ converges to b/a if and only if $y^{(k)} \to 0$. This holds if and only if $|1 - \alpha a| < 1$, which is equivalent to $0 < \alpha < 2/a$.

2. (a). We have $f(x) = ||Ax - b||^2 = (Ax - b)^T(Ax - b)$

$$= (x^T A^T - b^T)(Ax - b) = x^T (A^T A)x - 2A^T b x + b^T b.$$

which is a quadratic function. The gradient is given by $\nabla f(x) = 2(A^T A)x - 2A^T b$ and the Hessian is given by $F(x) = 2(A^T A)$.

(b). The fixed step size gradient algorithm for solving the above optimization problem is given by $x^{(k)} = x^{(k)} - \alpha (2A^T A)x^{(k)} - 2A^T b$

$$= x^{(k)} - 2\alpha A^T (Ax^{(k)} - b).$$

(c). The largest range of values for α such that the algorithm in part b converges to the solution of the problem is given by $0 < \alpha < \frac{2}{\lambda_{\text{max}} (2A^T A)} = \frac{1}{4}$.

3. The steepest descent algorithm applied to the quadratic function f has the form

$$x^{(k+1)} = x^{(k)} - \alpha g^{(k)} = x^{(k)} - \frac{g^{(k)}T g^{(k)}}{g^{(k)T}Qg^{(k)}} g^{(k)}.$$
⇒: if $x^{(1)} = Q^{-1}b$, then $Q^{-1}b = x^{(0)} - \alpha_0g^{(0)}$.
Rearranging the above yields $Qx^{(0)} - b = \alpha_0Qg^{(0)}$.
Since $g^{(0)} = Qx^{(0)} - b \neq 0$, we have $Qg^{(0)} = \frac{1}{\alpha_0}g^{(0)}$.
Which means that $g^{(0)}$ is an eigenvector of Q (with corresponding eigenvalue $\frac{1}{\alpha_0}$).

⇐: By assumption, $Qg^{(0)} = \lambda g^{(0)}$. Where $\lambda \in \mathbb{R}$. We want to show that $Qx^{(1)} = b$. We have

$$Qx^{(1)} = Q(x^{(0)} - \frac{g^{(0)}Tg^{(0)}}{g^{(0)}TQg^{(0)}}g^{(0)}) = Qx^{(0)} - \frac{1}{\lambda}g^{(0)}Qg^{(0)} = Qx^{(0)} - g^{(0)} = b.$$

4. For the given algorithm we have $\gamma_k = \beta(2-\beta)(\frac{(g^{(k)}Tg^{(k)})^2}{g^{(0)}TQg^{(0)}g^{(0)}TQ^{-1}g^{(k)})}$. If $0 < \beta < 2$, then $\beta(2-\beta) > 0$, and by Lemma 8.2, $\gamma_k \geq \beta(2-\beta)(\frac{\lambda_{\min}(Q)}{\lambda_{\max}(Q)}) > 0$.
which implies that $\sum_{k=0}^{\infty} \gamma_k = \infty$. Hence, by Theorem 8.1, $x^{(k)} \to x^*$ for any $x^{(0)}$.
If $\beta \leq 0$ or $\beta \geq 0$, then $\beta(2-\beta) \leq 0$, and by Lemma 8.2,

$$\gamma_k \leq \beta(2-\beta)(\frac{\lambda_{\min}(Q)}{\lambda_{\max}(Q)}) < 0.$$

By Lemma 8.1, $V(x^{(k)}) \geq V(x^{(0)})$. Hence, if $x^{(0)} \neq x^*$, then $\{V(x^{(k)})\}$ does not converge to 0, and consequently $x^{(k)}$ does not converge to x^*.

5. By Lemma 8.1, $V(x^{(k+1)}) = (1-\gamma_k)V(x^{(k)})$ for all k. Note that the algorithm has a descent property if an only if $V(x^{(k+1)}) < V(x^{(k)})$ whenever $g^{(k)} \neq 0$. Clearly, whenever $g^{(k)} \neq 0$, $V(x^{(k+1)}) < V(x^{(k)})$ if and only if $1-\gamma_k < 1$. The desired result follows immediately.

6. (a). $x^{(k+1)} = x^{(k+1)} - F(x^{(k)})^{-1}g^{(k)}$. $\nabla f(x) = [-400x_1(x_2 - x_1^2) - 2(1 - x_1)
\quad 200(x_2 - x_1^2)]$.

$$F(x) = \begin{bmatrix}
-400x_1(x_2 - x_1^2) + 800x_1^2 + 2 & -400x_1 \\
-400x_1 & 200
\end{bmatrix}.$$

$k=0$, $x^{(0)} = [1]$, $g^{(0)} = \nabla f(x^{(0)}) = [0]$, $F(x^{(0)}) > 0$.

\(x^{(1)} = x^{(0)} - F(x^{(0)})^{-1} g^{(0)} = \left[\begin{array}{c} 0 \\ 1 \end{array} \right] = x^{(0)}, \quad g^{(1)} = \nabla f(x^{(1)}) = \left[\begin{array}{c} 0 \\ 1 \end{array} \right].\)

Hence, \(x^{(0)}\) is a global minimizer of \(f\).

(b). \(x^{(0)} = 0\), \(\nabla f(x) = \left[\begin{array}{c} -400x_1(x_2 - x_1^2) - 2(1 - x_1) \\ 200(x_2 - x_1^2) \end{array} \right].\)

\(F(x) = \left[\begin{array}{cc} -400x_1(x_2 - x_1^2) + 800x_1^2 + 2 & -400x_1 \\ -400x_1 & 200 \end{array} \right].\)

Iteration 1:

\(g^{(0)} = \nabla f(x^{(0)}) = \left[\begin{array}{c} -2 \\ 0 \end{array} \right], \quad F(x^{(0)}) = \left[\begin{array}{cc} 2 & 0 \\ 0 & 200 \end{array} \right], \quad F(x^{(0)})^{-1} g^{(0)} = \left[\begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right].\)

iteration 1:

\(g^{(1)} = \nabla f(x^{(1)}) = \left[\begin{array}{c} 400 \\ -200 \end{array} \right], \quad F(x^{(1)}) = \left[\begin{array}{cc} 402 & -400 \\ -400 & 200 \end{array} \right].\)

\(F(x^{(1)})^{-1} g^{(1)} = \frac{1}{79600} \left[\begin{array}{cc} 200 & 400 \\ 400 & 402 \end{array} \right].\)

\(F(x^{(1)})^{-1} g^{(1)} = \frac{1}{79600} \left[\begin{array}{cc} 200 & 400 \\ 400 & 402 \end{array} \right] \left[\begin{array}{c} 400 \\ -200 \end{array} \right] = \left[\begin{array}{c} -1 \\ 0 \end{array} \right].\)

\(x^{(2)} = x^{(1)} - F(x^{(1)})^{-1} g^{(1)} = \left[\begin{array}{c} 1 \\ 0 \end{array} \right].\)

(c). Use the gradient algorithm \(x^{(k+1)} = x^{(k)} - \alpha^{(k)} g^{(k)}.\)

\(\alpha^{(0)} = \alpha^{(1)} = 0.05\)

\(x^{(0)} = \left[\begin{array}{c} 0 \\ 0 \end{array} \right], \quad \nabla f(x) = \left[\begin{array}{c} -400x_1(x_2 - x_1^2) - 2(1 - x_1) \\ 200(x_2 - x_1^2) \end{array} \right].\)

Iteration 1:

\(g^{(0)} = \nabla f(x^{(0)}) = \left[\begin{array}{c} -2 \\ 0 \end{array} \right].\)

\(x^{(1)} = x^{(0)} - \alpha^{(0)} g^{(0)} = \left[\begin{array}{c} 0.1 \\ 0 \end{array} \right].\)

Iteration 2:

\(g^{(1)} = \nabla f(x^{(1)}) = \left[\begin{array}{c} -1.4 \\ 2 \end{array} \right].\)

\(x^{(2)} = x^{(1)} - \alpha^{(1)} g^{(1)} = \left[\begin{array}{c} 0.17 \\ 0.1 \end{array} \right].\)
7. If \(x^{(0)} = x^* \), we are done. So, assume \(x^{(0)} \neq x^* \). Since the standard Newton’s method reaches the point \(x^* \) in one step, we have
\[
f(x^*) = f(x^{(0)} + Q^{-1}g^{(0)}) = \min f(x^{(0)} + aQ^{-1}g^{(0)}) .
\]
For any \(\alpha \geq 0 \), hence \(\alpha_0 = \arg \min f(x^{(0)} + aQ^{-1}g^{(0)}) = 1 \).
Hence, in the case, the modified Newton’s algorithm is equivalent to the standard Newton’s algorithm and thus \(x^{(1)} = x^* \),