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Introduction

e The simplex algorithm for solving LP problem has
complexity O(2"-1), where n is the number of
variables

e Khachiyan (also translated as Hacijan) proposed an
algorithm (called the ellipsoid algorithm) with
complexity O(n“L), where L represents the number
of bits used in the computations.

e Another nonsimplex algorithm for solving LP was
proposed in 1984 by Karmarkar which has
complexity of O(n3°L).



Khachiyan’s Method

e Primal LP + Dual LP

minimizec' x maximizeb' A
subject to A'A <c

subject to Ax>Db

x> 0. A>0.

e Using Theorem 17.1 c'x=b'A <:>{

c'x=b'A,

S

Ax>D, ¢ b
—A 0 (X

:

AL<c, B

x>0, 0 A

A >0. L0 —lnl

c'x-b'1<0,
-c'x+b'A<0.




Ellipsoid Method

e LetzeR™™M pe a given vector and let Q be an (m+n)x(m+n)
nonsingular matrix. The ellipsoid associated with Q centered
at z is defined as the set

Eo(2) :{Z+Qy:ye R™", yHSl}.

e Assume the entries in P and g are all integers.

e At each iteration, the associated ellipsoid contains a solution
to the given system of Pz<q.

e The algorithm updates z and Q in such a way that the ellipsoid
at the next step is smaller than the current step.

e The number of iterations N is computed based on L and m+n.
e The algorithm inspired other researches.



Interior Point Method °

e Recall: Simplex method

o Jumps from vertex to vertex of the
feasible set seeking an optimal vertex

e Interior-point method

e Starts inside the feasible set and P
e ] . .~ level setof cTx

moves within it toward an optimal X
vertex

-~




Affine Scaling Method

e Basic Algorithm

Suppose we have a feasible point x© that is strictly
Interior.

Search in a direction d© to decrease the objective
value while remains feasible. x® = x©) + ¢,,d©

=d©® must be a vector in the nullspace of A.

Choose d© to be the orthogonal projection of the
negative gradient —c.

= P(v)=v-AT(AAT)TAv=[l -AT(AAT)1A]v.
ker(A) L im(AT)



Affine Scaling

e Observation

e The initial point should be chosen close to the center of the
feasible set such that we can take a larger step in the search

direction.
e Solution

o Transform a feasible interior point to the center by applying

affine scaling:

» Ex: the center for 1[1

o

'

b

1x = LlJ is e=[1,...,1]

A @
To transform x© to e, we use the scaling
transformation Dy2 [ ol [\ ——
e=| L xO N\
0 \

-
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New Formulation

e New coordinate system: X=D;"x,
minimize
subject to

z

B

oZ =20
> 0,

o]

where & = Dge
Ay = AD,.

set direction to be g = —Pyz,.
where Py =1I,- A (AgAy)~ 4o
compute Z1) using

1) = 50 _ ao Py,

obtain the point in the original coordinates:

I{l} — Du.’iﬁ(” -




Final Format

o lteration step:  ,x+n — 3 4 4,4

D, =
A, =
o AxK=Db Py =
o x®50 Py AL R

diaglz®,...,z¥)]

AD;

I,-A] (A, A]) A

—Dkﬁkﬂkﬂ.

e choosing o, such that «*** = z{® + d¥ > 0fori =1,...

rr= min

ol Td® T a=090r0.99
e Stopping criteria: |ez®**) — cz®)|

max(1, lez(*)])

¥ ax = ary, where a € (0,1).

<€



Two Phase Method °

e Phase |

Let u be an arbitrary vector with positive components
Let v=b-Au.
If v =0, let xO=y.
Else solve the following LP
minimize Y

subject to [A,v] [;:] =b

Hi

The objective function is bounded below by 0, thus the affine
scaling method will terminate with some optimal solution.



Karmarkar’s Canonical Form | ::
o (all entries in A and c are integers) minimize clx

subject to Ax =0

» Nullspace of A: Q:{Xe R”:AX:O} i=
e Simplex A in R": A:{xe R”:eTx:szo}_ z >0,
o Center of the simplex A: _E_[E E} n-simplex:
nolnt ] e e,
1 1 --- 1
ONA = {zeR*:Azxz=0,eTz=1, >0}

= {mER“:[j]m:[ﬂ,mgﬂ}.



00
Example 18.1 Consider the following LP problem, taken from [90]: 0000
e0o00

minimize dx1 + 4x9 + 814
subject to T +r2+2x3=1
Ty1,I2,%3 2 0.

Xy |
Example 18.2 Consider the following LP problem, taken from [80]:
minimize 3z, + 32 — x3
subject to 2r; 32+ 23 =0
Ty +T2+z3=1

Tr1,T2,T3 2 0.




Karmarkar’s Restricted Problem :

Karmarkar’s algorithm solves LP problems in Karmarkar’s canonical form, with the
following assumptions:

A. The center ay of the simplex A is a feasible point, that is, ap € Q0;

B. The minimum value of the objective function over the feasible set is zero;

]

D. We are given a termination parameter g > 0, such that if we obtain a feasible
point x satisfying

C. The (m + 1) x n matrix

has rank m + 1;

T
c T

T i: Z-q‘l‘
C* Qg

then we consider the problem solved.



How to satisfy the assumptions?::

e Assumption A can be achieved when we convert an
LP into Karmarkar’s canonical form

e Assumption B can be achieved if we know
beforehand the minimum value of its objective
function value.

fleg)=cTe—M=c"z - MeTz = (c" - Me")x =&,
Example 18.3 Recall the LP problem in Example 18.1:

minimize 5xy + 4x9 + 8x3
subject to Ty +x2+z3=1

Iy,Z2,T3 :_:' 0.



From Standard Form to 43

Karmarkar’s Canonical Form 2

minimize c'z, zeR" minimize ¢z, z € R*+!
subject to Az =b subject to A'z=0
x > 0. z2>0.
where ¢ = [e",0]" and A" = [A,-b]. z = [ﬂ _

lety = [y1,.. ., ¥nsYns1]” € R*H,
projective transformation

yi = T i=1,...,n
' T1+- -+ T+ 1
— 1 minimize Ty, y € R*!
¥+l = 7 + T+ 1 '
1 n subject to Ay=0
eTyzl
y20.




Center of 0000
simplex A :::o
Ensuring Assumption A (aye Q) e

e Suppose we are given a point a=[a,, a,, ..., a,] that Is a strictly
Interior feasible point: Aa=b and a>0.

e P,:positive orthant of R": P, = {X eR":1x> O}.
e A:the simplexin R™L: A= {z eR"™:e'z=1z> O}.

o Define T: P,— A by
T(z) = [T1(),...,Tnn(@)]”

with
zi/a; .
T; = el =1,...

l(z] :El!ﬁl'l‘""l‘-'r—ﬂfﬂﬂ"'l, l. - ? ]n" T 1
1 minimize vy, y € R**

Tn+1 (m) = Ty /'ﬁ'l +--- 4 Iﬂ/ﬂﬂ +1 ' E“bje{:tr to A’y =0

eTy =1

y20.

e T(a) is the center of the simplex and is TeasiniE.



Karmarkar’s Algorithm 2
e Restricted Karmarkar problem

minimize c’x, x c R"

subject to xz €NNA, )

o Steps:
1. Initialize: Set k:=0, x©®=a,=e/n.
2. Update: Set x&*D=(x*)
3. Check the stopping criterion: cTx®/cTx <2
4. Iterate: Set k:=k+1; go to step 2.



Update for x\1; s = 30 4 0q©®,

e Constraints: QNA  Na = {zcR:Az=0e'z=1z20}

e 008
U_[ET]' = {menﬂzﬂum=[‘l’],mzo},

e Choose d© to be the orthogonal projection of —c
onto the nullspace of B,. p, — 1, - BT(B,BI)~!B,.

o Let d9 =—rg?,

Pnc
where &9 = ,
|| Pocl]

and  _1/./n(n-1)




0000
0000
Update for x®), k>1 I

o
Since x® is not in the center of the simplex, we need to
transform this point to the center. 128 o

D’ = . :
0

Let U,: A—>A be defined by U, (X)= Dk‘lx/eT Dglx
Note that U, (x¥)=e/n=a,,.
We need to state the original LP in the new coordinates:

minimize e’ D E
subject to AD;E =0 By = {

AD . P.D.c

|| Py Dgel|’

T eA.

Apply the update step as for x| Px = I, — Bi (BxB} )™ ! Bs.

Finally apply the inverse transformation U, to obtain x(k*1)
Dkﬁ{k.l-l]

ETDki[k+1) )

2D — (k) =




1. Compute the matrices:

E K

D = :

The update of x&+1 : Lo
B, = .A:-I?kil.

2. Compute the orthogonal projector onto the nullspace of By:

P, =1I,- BI'(B,B)'B,.

3. Compute the normalized orthogonal projection of ¢ onto the nullspace of By:
k) _ PrDye
& =
| PxDycl|
4. Compute the direction vector:

d®) = ),

wherer = 1/y/n(n — 1).
5. Compute &*+1) using:
k4D = a4 + ad™®,

where « is the prespecified step size, a € (0, 1).

6. Compute &(¥+1) by applying the inverse transformation U ':

D, zkt+1)




