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8.1 SYMMETRIC MATRICES

In chapter 7, we are concerned with when is

a given square matrix A diagonalizable? That

is, when is there an eigenbasis for A?

In geometry, we prefer to work with orthnomal

bases, which raises the question:

For which matrices is there an orthonormal

eigenbasis?
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Example 1 If A is orthogonally diagonalizable,

what is the relationship between AT and A?

Solution We have

S−1AS = D

or

A = SDS−1 = SDST

for an orthogonal matrix S and a diagonal D.

Then

AT = (SDST )T = SDTST = SDST = A.

We find that A is symmetric.

Fact 8.1.1 Spectral theorem

A matrix A is orthogonally diagonalizable if and

only if A is symmetric (i.e., AT = A).
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The set of eigenvalues of a matrix is called the

spectrum of A, and the following description

of the eigenvalues is called a spectral theorem.

THEOREM

The Spectral Theorem For A Symmetric Ma-

trix

• A has n real eigenvalues, counting muti-

plicities. (Fact 8.1.3)

• The dimension of the eigenspace for each

eigenvalue λ equals the algebraic multiplic-

ity of λ.

• The eigenspaces are mutually orthogonal,

in the sense that eigenvectors correspond-

ing to different eigenvalues are orthogonal.

(Fact 8.1.2)

• A is orthogonally diagonalizable. (Fact 8.1.1)
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Example 2 For the symmetric matrix A =
[

4 2
2 7

]

, find an orthogonal S such that S−1AS

is diagonal.

Solution See Figure 1.

E3 =

[

2
−1

]

, E8 =

[

1
2

]
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Note that the eigenspaces E3 and E8 are per-

pendicular. (This is no coincidence.) There-

fore, we can find an orthonormal eigenbasis

simply by dividing the given eigenvectors by

their lengths:

~v1 =
1√
5

[

2
−1

]

, ~v2 =
1√
5

[

1
2

]

Define

S =







| |
~v1 ~v2
| |






=

1√
5

[

2 1
−1 2

]

then S−1AS =

[

3 0
0 8

]



Fact 8.1.2 Consider a symmetric matrix A. If

~v1 and ~v2 are eigenvectors of A with distinct

eigenvalues λ1 and λ2, then ~v1 ·~v2 = 0; that is,

~v2 is orthogonal to ~v1.

Proof We compute the product ~vT
1 A~v2 in two

ways:

• ~vT
1 A~v2 = ~vT

1 (λ2~v2) = λ2(~v1 · ~v2)

• ~vT
1 A~v2 = ~vT

1 AT~v2 = (A~v1)
T~v2 = (λ1~v1)

T~v2 =

λ1(~v1 · ~v2)

Comparing the results, we find

λ1(~v1 · ~v2) = λ2(~v1 · ~v2)

or

(λ1 − λ2)(~v1 · ~v2) = 0

Since λ1 6= λ2, ~v1 · ~v2 must be zero.
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Fact 8.1.3 A symmetric n× n matrix A has n

real eigenvalues if they are counted with their

algebraic multiplicites.

Proof of 8.1.3 For those who have studied

Section 7.5. Consider two complex conjugate

eigenvalues p±iq of A with corresponding eigen-

vectors ~v ± i ~w. Compute the product

(~v + i ~w)TA(~v − i ~w)

in two different ways:

(~v + i ~w)TA(~v − i ~w) = (~v + i ~w)T (p − iq)(~v − i ~w)

= (p − iq)(‖~v‖2 + ‖~w‖2)

(~v + i ~w)TA(~v − i ~w) = (A(~v + i ~w))T (~v − i ~w)

= (p+iq)(~v+i ~w)T (~v−i ~w) = (p+iq)(‖~v‖2+‖~w‖2)
Comparing the results, we find that p + iq =

p − iq, so q = 0, as claimed.

Proof of 8.1.1 Even more technical.
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Example 3 For the symmetric matrix

A =







1 1 1
1 1 1
1 1 1







find an orthogonal S such that S−1AS is diag-

onal.

Solution

The eigenvalues are 0 and 3, with

E0 = span













−1
1
0






,







−1
0
1












and E3 = span







1
1
1







Note that the two eigenspaces are indeed per-

pendicular to one another (See Figure 2, 3).

We can construct an orthonormal eigenbasis

for A by picking an orthonormal basis of each

eigenspace.

Perform Gram-Schmidt process to the vectors






−1
1
0






,







−1
0
1






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we find

~v1 =
1√
2







−1
1
0






, ~v2 =

1√
6







−1
−1
2







For E3, we get

~v3 =
1√
3







1
1
1







Therefore, the orthogonal matrix

S =







| | |
~v1 ~v2 ~v3
| | |






=







−1/
√

2 −1/
√

6 1/
√

3

1/
√

2 −1/
√

6 1/
√

3

0 2/
√

6 1/
√

3







diagonalizes the matrix A:

S−1AS =







0 0 0
0 0 0
0 0 3











Algorithm 8.1.4 Orthogonal diagonaliza-

tion of a symmetric matrix A

1. Find the eigenvalues of A, and find a basis

of each eigenspace.

2. Using the Gram-Schmidt process, find an

orthonormal basis of each eigenspace.

3. Form an orthonormal eigenbasis ~u1, ~u2, ..., ~un

for A by combining the vectors you find in

the last step, and let

P =







| | |
~u1 ~u2 ... ~un

| | |







P is orthogonal, and P−1AP will be diagonal.
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Spectral Decomposition

Suppose that A = PDP−1, where the columns

of P are orthonormal eigenvectors ~u1, ~u2, ..., ~un

of A and the corresponding eigenvalues λ1, λ2, ..., λn

are in the diagonal matrix D. Then, since

P−1 = PT ,

A = PDPT =
[

~u1 · · · ~un

]







λ1 0
.. .

0 λn













~uT
1...

~uT
n







=
[

λ1~u1 · · · λn~un

]







~uT
1...

~uT
n






= λ1~u1~uT

1+· · ·+λn~un~uT
n

This representation of A is called a spectral de-

composition of A because it breaks up A into

pieces determined by the spectrum (eigenval-

ues) of A. Each term is an n × n matrix of

rank 1. Furthermore, each matrix ~uj~u
T
j is a

projection matrix onto the subspace spanned

by ~uj.
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Example 4 Consider an invertible symmetric

2 × 2 matrix A. Show that the linear transfor-

mation T (~x = A~x maps the unit circle into an

ellipse, and find the lengths of the semimajor

and the semiminor axes of the ellipse in terms

of the eigenvalues of A.

Solution

The spectral theorem tells us there is an or-

thonormal eigenbasis u1, u2 for T , with asso-

ciated real eigenvalues λ1, λ2. Suppose that

|λ1| > |λ2|. These eigenvalues will be nonzero,

since A is invertible. The unit circle consists

of all vectors of the form

~v = cos(t)u1 + sin(t)u2

. The image of the unit circle will be

T (~v) = cos(t)T (u1) + sin(t)T (u2)

= cos(t)λ1u1 + sin(t)λ2u2

10



an ellipse whose semimajor axis has the length

‖λ1u1‖ = |λ1|, while the length of the semimi-

nor axis is ‖λ2u2‖ = |λ2|. (See Figure 4).


