
7.3 FINDING THE EIGENVECTORS OF
A MATRIX

After we have found an eigenvalue λ of an n×n

matrix A, we have to find the vectors ~v in Rn

such that

A~v = λ~v or (λIn −A)~v = ~0

In other words, we have to find the kernel of
the matrix λIn −A.

Definition 7.3.1 Eigenspace
Consider an eigenvalue λ of an n × n matrix
A.Then the kernel of the matrix λIn−A is called
the eigenspace associated with λ, denoted by
Eλ:

Eλ = ker(λIn −A)

Note that Eλ consists of all solutions ~v of the
linear system

A~v = λ~v
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EXAMPLE 1 Let T (~x) = A~v be the orthogo-

nal projection onto a plane E in R3. Describe

the eigenspaces geometrically.

Solution See Figure 1.

The nonzero vectors ~v in E are eigenvectors

with eigenvalue 1. Therefore, the eigenspace

E1 is just the plane E.

Likewise, E0 is simply the kernel of A (A~v = ~0);

that is, the line E⊥ perpendicular to E.
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EXAMPLE 2 Find the eigenvectors of the

matrix A =

[
1 2
4 3

]
.

Solution

See Section 7.2, Example 1, we saw the eigen-

values are 5 and -1. Then

E5 = ker(5I2 −A) = ker

[
4 −2

−4 2

]

= ker

[
4 −2
0 0

]
= span

[
2
4

]
= span

[
1
2

]

E−1 = ker(−I2 −A) = ker

[
−2 −2
−4 −4

]

= span

[
2

−2

]
= span

[
1

−1

]

Both eigenspaces are lines, See Figure 2.
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EXAMPLE 3 Find the eigenvectors of

A =




1 1 1
0 0 1
0 0 1


 .

Solution
Since

fA(λ) = λ(λ− 1)2

the eigenvalues are 1 and 0 with algebraic mul-
tiplicities 2 and 1.

E1 = ker




0 −1 −1
0 1 −1
0 0 0




To find this kernel, apply Gauss-Jordan Elimi-
nation:




0 −1 −1
0 1 −1
0 0 0


 rref−−→




0 1 1
0 0 1
0 0 0




The general solution of the system
∣∣∣∣∣

x2 = 0
x3 = 0

∣∣∣∣∣
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is 


x1
0
0


 = x1




1
0
0




Therefore,

E1 = span




1
0
0




Likewise, compute the E0:

E0 = span




1
−1
0




Both eigenspaces are lines in the x1-x2-plane,

as shown in Figure 3.

Compare with Example 1. There, too, we

have two eigenvalues 1 and 0, but one of the

eigenspace, E1, is a plane.



Definition 7.3.2 Geometric multiplicity

Consider an eigenvalue λ if a matrix A. Then
the dimension of eigenvalue Eλ = ker(λIn−A)
is called the geometric multiplicity of eigenvalue
λ. Thus, the geometric multiplicity of λ is the
nullity of matrix λIn −A.

Example 3 shows that the geometric multiplic-
ity of an eigenvalue may be different from the
algebraic multiplicity. We have

(algebraic multiplicity of eigenvalue 1)=2,

but

(geometric multiplicity of eigenvalue 1)=1.

Fact 7.3.3

Consider an eigenvalue λ of a matrix A. Then

(geometric multiplicity of λ)≤
(algebraic multiplicity of λ).
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EXAMPLE 4 Consider an upper triangular
matrix of the form

A =




1 • • • •
0 2 • • •
0 0 4 • •
0 0 0 4 •
0 0 0 0 4




.

What can you say about the geometric multi-
plicity of the eigenvalue 4?

Solution

E4 =




3 • • • •
0 2 • • •
0 0 0 • •
0 0 0 0 •
0 0 0 0 0




rref−−→




1 • • • •
0 1 • • •
0 0 0 ] •
0 0 0 0 ]
0 0 0 0 0




The bullets on row 3 and 4 could be leading
1’s. Therefore, the rank of this matrix will be
between 2 and 4, and its nullity will be between
3 and 1. We can conclude that the geometric
multiplicity of the eigenvalue 4 is less than the
algebraic multiplicity.
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Recall Fact 7.1.3, such a basis deserves a name.

Definition 7.3.4 Eigenbasis
Consider an n× n matrix A. A basis of Rn

consisting of eigenvectors of A is called an
eigenbasis for A.

Example 1 Revisited: Projection on a plane
E in R3. Pick a basis ~v1, ~v2 of E and a nonzero
~v3 in E⊥. The vectors ~v1, ~v2, ~v3 form an eigen-
basis. See Figure 4.

Example 2 Revisited: A =

[
1 2
4 3

]
.

The vectors

[
1
2

]
and

[
1
−1

]
form an eigenba-

sis for A, see Figure 5.

Example 3 Revisited: A =




1 1 1
0 0 1
0 0 1


.

There are not enough eigenvectors to form an
eigenbasis. See Figure 6.
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EXAMPLE 5 Consider a 3× 3 matrix A with

three eigenvalues, 1, 2, and 3. Let ~v1, ~v2, and

~v3 be corresponding eigenvectors. Are vectors

~v1, ~v2, and ~v3 necessarily linearly independent?

Solution See Figure 7.

Consider the plane E spanned by ~v1, and ~v2.

We have to examine ~v3 can not be contained

in this plane.

Consider a vector ~x = c1 ~v1 + c2 ~v2 in E (with

c1 6= 0 and c2 6= 0). Then A~x = c1A~v1 +

c2A~v2 = c1 ~v1 + 2c2 ~v2. This vector can not

be a scalar multiple of ~x; that is, E does not

contain any eigenvectors besides the multiples

of ~v1 and ~v2; in particular, ~v3 is not contained

in E.
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Fact 7.3.5 Considers the eigenvectors ~v1, ~v2,
. . ., ~vm of an n×n matrix A, with distinct eigen-
values λ1, λ2, . . ., λm. Then the ~vi are linearly
independent.

Proof
We argue by induction on m. Assume the claim
holds for m− 1. Consider a relation

c1~v1 + · · ·+ cm−1~vm−1 + cm~vm = ~0

• apply the transformation A to both sides:

c1λ1~v1 + · · ·+ cm−1λm−1~vm−1 + cmλm~vm = ~0

• multiply both sides by λm:

c1λm~v1 + · · ·+ cm−1λm~vm−1 + cmλm~vm = ~0

Subtract the above two equations:

c1(λ1−λm)~v1+ · · ·+cm−1(λm−1−λm)~vm−1 = ~0

Since ~v1, ~v2, . . ., ~vm−1 are linearly independent
by induction, ci(λi−λm) = 0, for i = 1, ..., m−1.
The eigenvalues are assumed to be distinct;
therefore λi − λm 6= 0, and ci = 0. The first
equation tells us that cm~vm = ~0, so that cm = 0
as well.
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Fact 7.3.6 If an n× n matrix A has n distinct

eigenvalues, then there is an eigenbasis for A.

We can construct an eigenbasis by choosing

an eigenvector for each eigenvalue.

EXAMPLE 6 Is there an eigenbasis for the

following matrix?

A =




1 2 3 4 5 6
0 2 3 4 5 6
0 0 3 4 5 6
0 0 0 4 5 6
0 0 0 0 5 6
0 0 0 0 0 6




Fact 7.3.7 Consider an n× n matrix A. If the

geometric multiplicities of the eigenvalues of A

add up to n, then there is an eigenbasis for A:

We can construct an eigenbasis by choosing a

basis of each eigenspace and combining these

vectors.
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Proof

Suppose the eigenvalues are λ1, λ2, ..., λm,

with dim(Eλi
)=di. We first choose a basis ~v1,

~v2, ..., ~vd1
of Eλ1

, and then a basis ~vd1+1, ...,

~vd1+d2
of Eλ2

, and so on.

Consider a relation

c1~v1 + · · ·+ cd1
~vd1︸ ︷︷ ︸+ · · ·+ cd1+d2

~vd1+d2︸ ︷︷ ︸+ · · ·+ · · ·+ cn~vn︸ ︷︷ ︸ = ~0

~w1 in Eλ1
~w2 in Eλ2

~wm in Eλm

Each under-braced sum ~wi must be a zero vec-

tor since if they are nonzero eigenvectors, they

must be linearly independent and the relation

can not hold.

Because ~w1 = 0, it follows that c1 = c2 = · · · =
cd1

= 0, since ~v1, ~v2, ..., ~vd1
are linearly inde-

pendent. Likewise, all the other cj are zero.



EXAMPLE 7 Consider an Albanian mountain

farmer who raises goats. This particular breed

of goats has a life span of three years. At

the end of each year t, the farmer conducts a

census of his goats. He counts the number of

young goats j(t) (those born in the year t), the

middle-aged ones m(t) (born the year before),

and the old ones a(t) (born in the year t− 2).

The state of the herd can be represented by

the vector

~x(t) =




j(t)
m(t)
a(t)




How do we expect the population to change

from year to year? Suppose that for this breed

and environment the evolution of the system

can be modelled by

~x(t + 1) = A~x(t)

where A =




0 0.95 0.6
0.8 0 0
0 0.5 0



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We leave it as an exercise to interpret the en-

tries of A in terms of reproduction rates and

survival rates.

Suppose the initial populations are j0 = 750

and m0 = a0 = 200.What will the popula-

tions be after t years, according to this model?

What will happen in the long term?

Solution

Step 1: Find eigenvalues.

Step 2: Find eigenvectors.

Step 3: Express the initial vector ~v0 =




750
200
200




as a linear combination of eigenvectors.

Step 4: Write the closed formula for ~v(t).



Fact 7.3.8

The eigenvalues of similar matrices Sup-

pose matrix A is similar to B. Then

1. Matrices A and B have the same charac-

teristic polynomial; that is, fA(λ) = fB(λ)

2. rank(A) =rank(B) and nullity(A) =nullity(B)

3. Matrices A and B have the same eigenval-

ues, with the same algebraic and geomet-

ric multiplicities. (However,the eigenvec-

tors need not be the same.)

4. det(A)=det(B) and tr(A)=tr(B)
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Proof

a. If B = S−1AS, then

fB(λ) = det(λIn −B) = det(λIn − S−1AS)

= det(S−1(λIn−A)S)= det(S−1)det(λIn−A)det(S)

= det(λIn −A) = fA(λ)

b. See Section 3.4, exercise 45 and 46.

c. If follows from part (a) that matrices A

and B have the same eigenvalues, with the

same algebraic multiplicities. As for for the

geometric multiplicities, note that λIn − A is

similar to λIn−B for all λ, so that nullity(λIn−
A)=nullity(λIn −B) by part (b).

d. These equations follow from part (a) and

Fact 7.2.5. Trance and determinant are coef-

ficients of the characteristic polynomial.


