7.3 FINDING THE EIGENVECTORS OF
A MATRIX

After we have found an eigenvalue A of an nxn
matrix A, we have to find the vectors v in R"
such that

AT = X0 or (M, — A)T=0

In other words, we have to find the kernel of
the matrix \I,, — A.

Definition 7.3.1 Eigenspace

Consider an eigenvalue A of an n X n matrix
A.Then the kernel of the matrix \I,,— A is called
the eigenspace associated with A\, denoted by
E)\Z

Ey\ = ker(\I, — A)

Note that E\ consists of all solutions v of the
linear system

Av = \v



EXAMPLE 1 Let T(¥) = AvY be the orthogo-
nal projection onto a plane E in R3. Describe
the eigenspaces geometrically.

Solution See Figure 1.
The nonzero vectors v in E are eigenvectors
with eigenvalue 1. Therefore, the eigenspace
E4 is just the plane E.

Likewise, Eg is simply the kernel of A (A% = 0);
that is, the line E+ perpendicular to E.



EXAMPLE 2 Find the eigenvectors of the

. 1 2
matrix A = [4 3].

Solution
See Section 7.2, Example 1, we saw the eigen-
values are 5 and -1. Then

Fs = ker(51> — A) = ker [ 4 =2 ]
= ker 4 =2
= 0 o | = span

span

]

2

= span | _, ] = span

E_1 = ker(— IQ—A)—ker[

Both eigenspaces are lines, See Figure 2.



EXAMPLE 3 Find the eigenvectors of

(1 1 1]
A =

O 0 1].
| 0 0 1|
Solution

Since

fAQ) = A(A - 1)?

the eigenvalues are 1 and O with algebraic mul-
tiplicities 2 and 1.

To find this kernel, apply Gauss-Jordan Elimi-

nation:
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The general solution of the system

L2
L3

O
O



1 1
O|=x1|0
L O - L O -
Therefore,
TR
E1 =span | O
L O -

Likewise, compute the Ep:

1
FEqg = span | —1
0

Both eigenspaces are lines in the x1-x>-plane,
as shown in Figure 3.

Compare with Example 1. There, too, we
have two eigenvalues 1 and O, but one of the
eigenspace, Eq, is a plane.



Definition 7.3.2 Geometric multiplicity
Consider an eigenvalue X if a matrix A. Then
the dimension of eigenvalue E) = ker(Al, — A)
is called the geometric multiplicity of eigenvalue
M. Thus, the geometric multiplicity of A is the
nullity of matrix \I,, — A.

Example 3 shows that the geometric multiplic-
ity of an eigenvalue may be different from the
algebraic multiplicity. We have

(algebraic multiplicity of eigenvalue 1)=2,
but

(geometric multiplicity of eigenvalue 1)=1.

Fact 7.3.3
Consider an eigenvalue XA of a matrix A. Then

(geometric multiplicity of )<
(algebraic multiplicity of \).



EXAMPLE 4 Consider an upper triangular
matrix of the form

A=

oNoNoNeN
OO ON e
OPD e o o
N o o o o

QO P~ o o

What can you say about th eometric multi-

plicity of the eigenvalue 47

®
(@]

Solution
(3 o o o o (1] o o o o |
O 2 o o o O 1 o o o
Ea=|0 0 0 e o |7rref| O O O f o
000O0e| |OOOO ¢
O OO0 OO O OO0 OO

The bullets on row 3 and 4 could be leading
1's. Therefore, the rank of this matrix will be
between 2 and 4, and its nullity will be between
3 and 1. We can conclude that the geometric
multiplicity of the eigenvalue 4 is less than the
algebraic multiplicity.



Recall Fact 7.1.3, such a basis deserves a hame.

Definition 7.3.4 Eigenbasis

Consider an nx n matrix A. A basis of R"
consisting of eigenvectors of A is called an
etgenbasts for A.

Example 1 Revisited: Projection on a plane
E in R3. Pick a basis @1, 7> of E and a nonzero
U3 in E-+. The vectors U1, Up,v3 form an eigen-
basis. See Figure 4.

Example 2 Revisited: A = [élt g]

The vectors > and [ 1 form an eigenba-
sis for A, see Figure 5.

(1 1 1]
Example 3 Revisited: A= |0 0 1

0 0 1
There are not enough eigenvectors to form an

eigenbasis. See Figure 6.



EXAMPLE 5 Consider a 3 x 3 matrix A with
three eigenvalues, 1, 2, and 3. Let v7,v>, and
U3 be corresponding eigenvectors. Are vectors
U1, U2, and vz necessarily linearly independent?

Solution See Figure 7.

Consider the plane E spanned by v, and v5.
We have to examine v3 can not be contained
in this plane.

Consider a vector ¥ = cqv] 4+ cov5 in E (with
c1 = 0 and c» # O). Then Axr = C]_A’l71 -+
co AUy = c1v] + 2cov>. This vector can not
be a scalar multiple of Z; that is, £ does not
contain any eigenvectors besides the multiples
of ¥ and vy, in particular, v3 is not contained
in E.



Fact 7.3.5 Considers the eigenvectors v, vo,

.., Um Of an nxn matrix A, with distinct eigen-
values A1, Ao, ..., Am. Then the v; are linearly
independent.

Proof
We argue by induction on m. Assume the claim
holds for m — 1. Consider a relation

c1U1 + -+ cm—1Um—1 + cmom = 0
e apply the transformation A to both sides:

QML+ F 1 Am_1Um—1 + cmAmTm = 0
e Mmultiply both sides by A\;;:

AAAmTL + -+ ¢y 1 AmUm—_1 + cmAmtm = 0
Subtract the above two equations:

c1( A1 =Mm)T14+Femo1(Mm_1—Am)Tp_1 =0
Since vy, v, ..., U;m_1 are linearly independent
by induction, ¢;(\;—Am) =0, fori=1,....m—1.
The eigenvalues are assumed to be distinct;
therefore \; — Am # 0, and ¢; = 0. The first
equation tells us that ¢, g, = 0, so that ¢, = O
as well.



Fact 7.3.6 If an n x n matrix A has n distinct
eigenvalues, then there is an eigenbasis for A.
We can construct an eigenbasis by choosing
an eigenvector for each eigenvalue.

EXAMPLE 6 Is there an eigenbasis for the
following matrix?

OO OWWwWWw
ocop+pPpppH
o 010101 01 On
O OO OOy O

eNoNGRGRNON__
OO OONDN

Fact 7.3.7 Consider an n x n matrix A. If the
geometric multiplicities of the eigenvalues of A
add up to n, then there is an eigenbasis for A:
We can construct an eigenbasis by choosing a
basis of each eigenspace and combining these
vectors.
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Proof

Suppose the eigenvalues are A1, Ao, ..., Am,
with dim(E).)=d;. We first choose a basis 71,
Up, ..., Uq, of £y, , and then a basis v4, 41, ...,

Ud,+d, OF E),, and so on.

Consider a relation

cv1 4 -+ ¢q, U, + -+ Ca+d,Udi+d, T F - enly =0

w1 N EAl wo iNn E)\Q W, 1N E>\m

Each under-braced sum w; must be a zero vec-
tor since if they are nonzero eigenvectors, they
must be linearly independent and the relation
can not hold.

Because w1 = 0, it follows that ¢y = cr = --- =
Cd; = 0, since vy, vo, ..., ’Udl are linearly inde-
pendent. Likewise, all the other cj are zero.



EXAMPLE 7 Consider an Albanian mountain
farmer who raises goats. This particular breed
of goats has a life span of three years. At
the end of each year t, the farmer conducts a
census of his goats. He counts the number of
young goats j(t) (those born in the year t), the
middle-aged ones m(t) (born the year before),
and the old ones a(t) (born in the year ¢t — 2).
The state of the herd can be represented by
the vector

WION
Z(t) = | m(t)
| a(?) |
How do we expect the population to change
from year to year? Suppose that for this breed
and environment the evolution of the system
can be modelled by

Z(t+ 1) = AZ(t)

0O 0.95 0.6 ]
where A = | 0.8 0 O
O 05 O
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We leave it as an exercise to interpret the en-
tries of A in terms of reproduction rates and
survival rates.

Suppose the initial populations are jo = 750
and mg = ag = 200.What will the popula-
tions be after t years, according to this model?
What will happen in the long term??

Solution
Step 1: Find eigenvalues.

Step 2: Find eigenvectors.

- 750 |
Step 3: Express the initial vector vg = | 200

| 200 |
as a linear combination of eigenvectors.

Step 4: Write the closed formula for 9(t).



Fact 7.3.8

The eigenvalues of similar matrices Sup-
pose matrix A is similar to B. Then

1. Matrices A and B have the same charac-
teristic polynomial; that is, f4(A) = fg(\)

2. rank(A) =rank(B) and nullity(A) =nullity(B)

3. Matrices A and B have the same eigenval-
ues, with the same algebraic and geomet-
ric multiplicities. (However,the eigenvec-
tors need not be the same.)

4. det(A)=det(B) and tr(A)=tr(B)
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Proof
a. If B=S"1A8, then

fe(\) = det(\p, — B) = det(\, — S~LAS)

= det(S~1(\I[—A)S)= det(S1det(\I;,—A)det(S)
= det(An — A) = fa(N)

b. See Section 3.4, exercise 45 and 46.

c. If follows from part (a) that matrices A
and B have the same eigenvalues, with the
same algebraic multiplicities. As for for the
geometric multiplicities, note that \I,, — A is
similar to A\I,, — B for all X\, so that nullity(Al, —
A)=nullity(AI, — B) by part (b).

d. These equations follow from part (a) and
Fact 7.2.5. Trance and determinant are coef-
ficients of the characteristic polynomial.



