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7.1 DYNAMICAL SYSTEMS AND EIGENVEC-
TORS: AN INTRODUCTORY EXAMPLE

Consider a dynamical system:
x(t+ 1) = 0.86x(t) + 0.08y(t)

y(t+ 1) = —-0.12x(¢) + 1.14y(¢t)

Lo | x(t)
=3

be the state vector of the system at time ¢.

Let

We can write the matrix equation as
v(t+ 1) = Av(t)

where
A= 0.86 0.08
| —0.012 1.14

Suppose we know the initial state, we wish to find 7(t),
for any time t.

Case 1: Suppose 7(0) = :1),88
Case 2: Suppose 9(0) = igg
Case 3: Suppose 7(0) = 1888




Case 1:

3(1) = A5(0) = [ 0.86 0.08] ! 1oo] _ [ 110]

—0.012 1.14 300 330

#(1) = A7(0) = 1.17(0)
7(2) = AT(1) = A(1.17(0)) = 1.12%(0)
7(3) = Av(2) = A(1.1%3(0)) = 1.13%(0)

7(t) = 1.1'9(0)
Case 2:

—0.012 1.14 100 | | 90

v(1) = AY(0) = 0.97(0)
7(t) = 0.9'7(0)

3(1) = A5(0) = [ 0.86 0.08] [200] _ [ 180]

Case 3:

3(1) = A5(0) = [ 0.86 0.08] [1000] _ [ 940 ]

—0.012 1.14 1000 1020

The state vector ¥(1) is not a scalar multiple
of the initial state ¢¥(0). We have to look for
another approach.



Consider the two vectors

= _[1o0] .. _[200
1 =1 300 271100

Since the system is linear and

S 1000 . S
v(0) = [ 1000 ] = 291 + 47>

Therefore,
7(t) = A'G(0) = AN (201 +40,) = 2AM + 4 A5
= 2(1.1)% + 4(0.9)05

= 2(1.1)¢ [ ;88 ] + 4(0.9)! [ fgg ]

z(t) = 200(1.1)" 4+ 800(0.9)*

y(t) = 600(1.1)t + 400(0.9)*

Since the terms involving 0.9% approach zero
as t increases, x(t) and y(t) eventually grow by
about 10% each time, and their ratio y(t)/x (%)
approaches 600/200=3.



See Figure 3, The state vector Z(¢) approaches
the line L1, with the slope 3.

Connect the tips of the state vector v(i),i =
1,2,...,t, the trajectory is shown in Figure 4.

Sometimes, we are interested in the state of
the system in the past at times -1, -2, ....

For different ¥(0), the trajectory is different.
Figure 5 shows the trajectory that starts above
L1 and one that starts below L».

From a mathematical point of view, it is in-
formative to sketch a phase portrait of this
system in the whole ¢—r-plane (see Figure 6),
even though the trajectories outside the first
quadrant are meaningless in terms of popula-
tion study.



Eigenvectors and Eigenvalues
How do we find the initial state vector ¥ such
that Av is a scalar multiple of ¥, or

AU = Av,

for some scalar \7?

Definition 7.1.1

Eigenvectors and eigenvalues Consider an
n X n matrix A. A nonzero vector v in R"
is called an eitgenvector of A if Av is a scalar
multiple of v, that is, if

Av = \v

for some scalar A. Note that this scalar A may
be zero. The scalar M\ is called the eigenvalue
associated with the eigenvector v.



EXAMPLE 1
Find all eigenvectors and eigenvalues of the
identity matrix I,.

Solution All nonzero vectors in R™ are eigen-
vectors, with eigenvalue 1.

EXAMPLE 2

Let T" be the orthogonal projection onto a line
L in R2. Describe the eigenvectors of T geo-
metrically and find all eigenvalues of T

Solution (See Figure 8.) (a). Any vector ¥ on
L is a eigenvector with eigenvalue 1. (b). Any
vector w perpendicular to L is a eigenvector
with eigenvalue O.



EXAMPLE 3

Let T from R? to R? be the rotation in the
plane through an angle of 90° in the counter-
clockwise direction. Find all eigenvalues and
eigenvectors of T'. (See Figure 9)

Solution There are no eigenvectors and eigen-
values here.

EXAMPLE 4
What are the possible real eigenvalues of an
orthogonal matrix A7

Solution The possible real eigenvalue is 1 or
-1 since orthogonal transformation preserves
length.



Dynamical Systems and Eigenvectors

Fact 7.1.3 Discrete dynamical systems
Consider the dynamical system

Z(t + 1) = AZ(t) with £(0) = &g
Then

Z(t) = AlZg

Suppose we can find a basis v1,vo,...,v, Of R"
consisting of eigenvectors of A with

AU1 = A\ U1, AUp = AoUo, ..., AUp = A\pUn.
Find the coordinates cq,c¢o,...,cn Of vector xj
with respect to vq,vo,...,vn OF R™:

Z(0) = c1U71 + coV2 + - - - + cnUn.

C1




Let S =

Then xg =S

Consider

Un
_ o
C
so that | 2

Z(t) = i \i01 + codbin + - - - + ep AL .

We can write this equation in matrix form as

— —

vl U2

Z(t) =

A, 0 .0
0 X, 0 0
0 0 0 X
O—t
O 1 g1z,
M

C1
C2

Cn




Definition 7.1.4
Discrete trajectories and phase portraits
Consider a discrete dynamical system

Z(t 4+ 1) = AZ(t)

with initial value Z(0) = Zp where A is a 2 x 2
matrix. In this case, the state vector Z(t) =
! 1 (1)

z2(t)
the x1 — zo-plane.

] can be represented geometrically in

The endpoints of state vectors #(0) = %, (1) =
AZo, Z(2) = A2, ...form the (discrete) tra-
jectory of this system, representing its evo-
lution in the future. Sometimes we are in-

terested in the past states #(—1) = A_lfo,
2(=2) = (A2)~1zy, ... as well. It is suggestive

to "connect the dots’ to create the illusion of
a continuous trajectories. Take another look
at Figure 4.



A (discrete) phase portrait of the system Z(t +
1) = AZ(t) shows discrete trajectories for vari-
ous initial states, capturing all the qualitatively
different scenarios (as in Figure 6).

See Figure 11, we sketch phase portraits for
the case when A has two eigenvalues A1 > Ao >
0. (Leave out the special case when one of
the eigenvalues is 1.) Let Lq = span(¥y) and
L> = span(v>). Since

Z(t) = c1 A\101 + 2250

we can sketching the trajectories for the fol-
lowing cases:
(@) A1 > X >1

(b) A1 >1> X

() 1>X1> X



Summary 7.1.4
Consider an n x n matrix

— — —

1 ’l}2 o o ’l}n

Then the following statements are equivalent:

i. A is invertible.

ii. The linear system Ax = b has a unique
solution &, for all b for all b in R"™.
iii. rref(A) = Ip,.

iv. rank(A) = n.

v. im(A) = R™.

vi. ker(A) = {0}.

vii. The v; are a basis of R".

viii. The v; span R™.

iX. The v; are linearly independent.
X. det(A) # 0.

Xi. O fails to be an eigenvalue of A.



