Chapter 4
Linear Spaces

Chia-Hui Chang
Email: chia@csie.ncu.edu.tw
National Central University, Taiwan

October 28, 2002
4.1 Introduction to Linear Systems

EXAMPLE 1
Consider the differential equation (DE)

\[f''(x) + f(x) = 0, \text{ or } f''(x) = -f(x) \]

We are asked to find all functions \(f(x) \) whose second derivative is the negative of the function itself. Recalling rules from your introductory calculus class, you will (hopefully) note that

\[\sin(x) \text{ and } \cos(x) \]

are solutions of this DE.

Can you find any other solutions?
Definition 4.1.1

Linear spaces A linear space V is a set endowed with
(1) a rule for addition (if f and g are in V, then so is $f + g$) and
(2) a rule for scalar multiplication (if f is in V and k in R, then kf is in V)
such that these operations satisfy the following eight rules (for all f, g, h in V and all c, k in R):

1. $(f + g) + h = f + (g + h)$

2. $f + g = g + f$

3. There is a neutral element n in V such that $f + n = f$, for all f in V. This n is unique and denoted by 0.
4. For each f in V there is a g in V such that $f + g = 0$. This g is unique and denoted by $(-f)$

5. $k(f + g) = kf + kg$

6. $(c + k)f = cf + kf$

7. $c(kf) = (ck)f$

8. $1f = f$
EXAMPLE 2
In \mathbb{R}^n, the prototype linear space, the neutral element is the zero vector, $\vec{0}$.

EXAMPLE 3
Let $F(\mathbb{R}, \mathbb{R})$ be the set of all functions from \mathbb{R} to \mathbb{R} (see Example 1), with the operations

$$(f + g)(x) = f(x) + g(x)$$

and

$$(kf)(x) = kf(x)$$

Then, $F(\mathbb{R}, \mathbb{R})$ is a linear space. The neutral element is the zero function, $f(x) = 0$ for all x.

EXAMPLE 4
If addition and scalar multiplication are given as in Definition 1.3.9, then $\mathbb{R}^{m\times n}$, the set of all $m \times n$ matrices, is a linear space. The neutral element is the zero matrix whose entries are all zero.
EXAMPLE 5
The set of all infinite sequence of real numbers is a linear space, where addition and scalar multiplication are defined term by term:

\[(x_0, x_1, x_2, \ldots) + (y_0, y_1, y_2, \ldots) = (x_0 + y_0, x_1 + y_1, x_2 + y_2, \ldots)\]

\[k(x_0, x_1, x_2, \ldots) = (kx_0, kx_1, kx_2, \ldots).\]

The neutral element is the sequence \((0, 0, 0, \ldots)\).

EXAMPLE 6
The linear equation in three unknowns,

\[ax + by + cz = d,\]

where \(a, b, c,\) and \(d\) are constants, from a linear space.

The neutral element is the equation \(0 = 0\) (with \(a = b = c = d = 0\)).
Linear Combination

We say that an element f of a linear space is a linear combination of the elements f_1, f_2, \ldots, f_n if

$$f = c_1 f_1 + c_2 f_2 + \cdots + c_n f_n$$

for some scalars c_1, c_2, \ldots, c_n.

EXAMPLE 9

Let $A = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix}$. Show that $A^2 = \begin{bmatrix} 2 & 3 \\ 6 & 11 \end{bmatrix}$ is a linear combination of A and I_2.

Solution

We have to find scalars c_1 and c_2 such that

$$A^2 = c_1 A + c_2 I_2,$$

or

$$A^2 = \begin{bmatrix} 2 & 3 \\ 6 & 11 \end{bmatrix} = c_1 \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix} + c_2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
Definition 4.1.2 Subspaces

A subspace W of a linear space V is called a *subspace* of V if

1. W contains the neutral element 0 of V

2. W is closed under addition (if f and g are in W, then so is $f + g$).

3. W is closed under scalar multiplication (if f is in W and k is a scalar, then kf is in W).

We can summarize parts (2) and (3) by saying that W is closed under linear combinations.
EXAMPLE 10
Show that the polynomials of degree ≤ 2, of the form $f(x) = a + bx + cx^2$, are a subspace W of the space $F(R,R)$ of all functions from R to R.

EXAMPLE 11
Show that the differentiable functions form a subspace W of $F(R,R)$

EXAMPLE 12
Here are three more subspaces of $F(R,R)$:

1. C^∞, the smooth functions, that is, functions we can differentiate as many times as we want. This subspace contains all polynomials, exponential functions, $sin(x)$, and $cos(x)$, for example.

2. P, the set of all polynomials.

3. P_n, the set of all polynomials of degree $\leq n$
EXAMPLE 13
Show that the matrices B that commute with
$$A = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix}$$
form a subspace of $\mathbb{R}^{2 \times 2}$.

Solution
(a) The zero matrix 0 commutes with A.
(b) If matrices B_1 and B_2 commute with A,
then so does matrix $B_1 + B_2$.
(c) If B commutes with A, then so does kB.

EXAMPLE 14
Consider the set W of all noninvertible 2×2
matrices. Is W a subsequence of $\mathbb{R}^{2 \times 2}$?

Solution
$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
Definition 4.1.3
Span, linear independence, basis, coordinates

Consider the elements f_1, f_2, \ldots, f_n of a linear space V.

1. We say that f_1, f_2, \ldots, f_n span V if every f in V can be expressed as a linear combination of f_1, f_2, \ldots, f_n.

2. We say that f_1, f_2, \ldots, f_n are (linearly) independent if the equation

$$c_1 f_1 + c_2 f_2 + \cdots + c_n f_n = 0$$

has only the trivial solution

$$c_1 = c_2 = \cdots = c_n = 0.$$
3. We say that elements f_1, f_2, \ldots, f_n are a basis of V if they span V and are independent. This means that every f in V can be written uniquely as a linear combination

$$f = c_1 f_1 + c_2 f_2 + \cdots + c_n f_n.$$

The coefficients c_1, c_2, \ldots, c_n are called the coordinates of f with respect to the basis f_1, f_2, \ldots, f_n.

Fact 4.1.4 Dimension

If a linear space V has a basis with n elements, then all other bases of V consist of n elements as well. We say that n is the dimension of V:

$$\dim(V) = n.$$
EXAMPLE 15
Find a basis of $V = \mathbb{R}^{2\times 2}$ and thus determine $\text{dim}(V)$.

Solution
We can write any 2×2 matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ as:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

EXAMPLE 16
Find a basis of P_2, the space of all polynomials of degree ≤ 2, and thus determine the dimension of P_2.

Solution
We can write any polynomial $f(x)$ of degree ≤ 2 uniquely as:

$$f(x) = a + bx + cx^2 = a \cdot 1 + b \cdot x + c \cdot x^2$$
EXAMPLE 17

Find a basis of the space V of all matrices B that commute with $A = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix}$.

Solution

We need to find all matrices $B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ such that

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$

$$\Rightarrow \begin{bmatrix} 2b & a + 3b \\ 2d & c + 3d \end{bmatrix} = \begin{bmatrix} c & d \\ 2a + 3c & 2b + 3d \end{bmatrix}$$

$$c = 2b, \ d = a + 3b$$

So a typical matrix B in V is of the form

$$B = \begin{bmatrix} a & b \\ 2b & a + 3b \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix}$$

$$= aI_2 + bA$$

The matrices I_2 and A form a basis of V, so that $\dim(V) = 2$.

11
EXAMPLE 19

Let f_1, f_2, \ldots, f_n be polynomials. Explain why these polynomials do not span the space P of all polynomials.

Solution

Let N be the maximum of the degrees of these n polynomials. Then all linear combinations of f_1, f_2, \ldots, f_n are in P_N, the space of the polynomials of degree $\leq N$. Any polynomial of higher degree, such as $f(x) = x^{N+1}$, will not be in the span of f_1, f_2, \ldots, f_n.

This implies that the space P of all polynomials does not have a finite basis f_1, f_2, \ldots, f_n.
Definition 4.1.6 Finite-dimensional linear spaces

A linear spaces V is called \textit{finite-dimensional} if it has a (finite) basis f_1, f_2, \ldots, f_n, so that we can define its dimension $\dim(V) = n$. (See Definition 4.1.4.) Otherwise, the space is called \textit{infinite-dimensional}.

Exercises 4.1: 3, 5, 7, 8, 17, 18, 20, 33, 35
EXAMPLE 7
Consider the plane with a point designated as the origin, O, but without a coordinate system (the coordinate-free plane).

- A *geometric vector* \vec{v} in this plane is an arrow (a directed line segment) with its tail at the origin, as shown in Figure 1.

- The sum $\vec{v} + \vec{w}$ of vectors \vec{v} and \vec{w} is defined by means of a parallelogram, as illustration in Figure 2.

- If k is a positive scalar, then vector $k \vec{v}$ points in the same direction as \vec{v}, but $k \vec{v}$ is k times as long as \vec{v}; see Figure 3.
• If k is negative, then $k \vec{v}$ points in the opposite direction, and it is $|k|$ times as long as \vec{v}; see Figure 4.

The geometric vectors in the plane with these operations forms a linear space.

The neutral element is the zero vector $\vec{0}$, with tail and head at the origin.

By introducing a coordinate system, we can identify the plane of geometric vectors with R^2; this was the great idea of Descartes’ Analytic Geometry. In Section 4.3, we will study this idea more systematically.
EXAMPLE 8

Let C be the set of the *complex numbers*. We trust that you have at least a fleeting acquaintance with complex numbers. Without attempting a definition, we recall that a complex number can be expressed as $z = a + bi$, where a and b are real numbers. Addition of complex numbers is defined in a natural way, by the rule

$$(a + bi) + (c + di) = (a + c) + i(b + d).$$

If k is a real scalar, we define

$$k(a + bi) = ka + i(kb).$$

There is also a (less natural) rule for the multiplication of complex numbers, but we are not concerned with this operation here.

The complex numbers C with the two operations just given form a linear space; the neutral element is the complex number $0 = 0 + 0i$.
Fact 4.1.5 Linear differential equations

The solutions of the DE
\[f''(x) + af'(x) + bf(x) = 0 \]
where \(a \) and \(b \) are constants, form a two-dimensional subspace of the space \(C^\infty \) of smooth functions.

More generally, the solutions of the DE
\[f^{(n)}(x) + a_{n-1}f^{n-1}(x) + \cdots + a_1 f'(x) + a_0 f(x) \]
(where the \(a_i \) are constants) form an \(n \)-dimensional subspace of \(C^\infty \). A DE of this is called an \(n \)th-order linear differential equation.

Fact 4.1.5 will be proven in Section 9.3.
EXAMPLE 18

Find all solutions of the DE

\[f''(x) + f'(x) - 6f(x) = 0. \]

(*Hint:* Find all exponential functions \(f(x) = e^{kx} \) that solve the DE)

An exponential function \(f(x) = e^{kx} \) solves the DE if \(k = 2 \) or \(k = -3 \). Since

\[
k^2 e^{kx} + ke^{kx} - 6e^{kx} = (k^2 + k - 6)e^{kx}
\]

\[
= (k + 3)(k - 2)e^{kx} = 0
\]

According to Fact 4.1.5, the solution space \(V \) is two-dimensional. Thus, the two exponential functions \(e^{2x} \) and \(e^{-3x} \) form a basis of \(V \), and all solutions are of the form

\[f(x) = c_1 e^{2x} + c_2 e^{-3x} \]