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5.1 ORTHONORMAL BASES AND OR-
THOGONAL PROJECTIONS

Not all bases are created equal.

Definition. 5.1.1

Orthogonality, length, unit vectors
a. Two vectors ~v and ~w in Rn are called per-
pendicular or orthogonal if ~v · ~w = 0.

b. The length (or magnitude or norm) of a
vector ~v in Rn is ‖~v‖ =

√
~v · ~v.

c. A vector ~u in Rn is called a unit vector if its
length is 1, (i.e., ‖~u‖ = 1, or ~u · ~u = 1).

Explanation:

If ~v is a nonzero vector in Rn, then

~u = 1
‖~v‖~v

is a unit vector.
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Definition. 5.1.2 Orthonormal vectors

The vector ~v1, ~v2, . . . , ~vm in Rn are called or-

thonormal if they are all unit vectors and or-

thogonal to one another:

~vi · ~vj=

{
1 if i=j,
0 if i 6=j.

Example. 1.

The vectors ~e1, ~e2,. . ., ~en in Rn are orthonormal.

Example. 2.

For any scalar α, the vectors

[
cosα
sinα

]
,

[
− sinα
cosα

]

are orthonormal.
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Example. 3. The vectors

~v1 =




1/2
1/2
1/2
1/2


 , ~v2 =




1/2
1/2

−1/2
−1/2


 , ~v3 =




1/2
−1/2
1/2

−1/2




in R4 are orthonormal. Can you find a vector

~v4 in R4 such that all the vectors ~v1, ~v2, ~v3, ~v4

are orthonormal.

The following properties of orthonormal vec-

tors are often useful:
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Fact 5.1.3
a. Orthonormal vectors are linearly indepen-
dent.
b. Orthonormal vectors ~v1, . . ., ~vn in Rn form
a basis of Rn.

Proof
a. Consider a relation

c1 ~v1+c2 ~v2+· · ·+ci~vi+· · ·+cm ~vm=~0

Let us form the dot product of each side of
this equation with ~vi:

(c1 ~v1 + c2 ~v2 + · · ·+ ci~vi + · · ·+ cm ~vm) · ~vi =
~0 · ~vi = 0.

Because the dot product is distributive.

ci(~vi · ~vi) = 0

Therefore, ci = 0 for all i = 1, . . ., m.

b. Any n linearly independent vectors in Rn

form a basis of Rn.
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Definition. 5.1.4 Orthogonal complement

Consider a subspace V of Rn. The orthogonal

complement V ⊥ of V is the set of those vectors

~x in Rn that are orthogonal to all vectors in V :

V ⊥={~x in Rn: ~v · ~x = 0, for all ~v in V }.

Fact 5.1.5 If V is a subspace of Rn, then its

orthogonal complement V ⊥ is a subspace of

Rn as well.

Proof

We will verify that V ⊥ is closed under scalar

multiplication and leave the verification of the

two other properties as Exercise 23. Consider

a vector ~w in V ⊥ and a scalar k. We have

to show that k ~w is orthogonal to all vectors

~v in V. Pick an arbitrary vector ~v in V. Then,

(k ~w)·~v=k(~w · ~v)=0, as claimed.
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Orthogonal projections

See Figure 5.

The orthogonal projection of a vector ~x onto

one-dimentaional subspace V with basis ~v1 (unit

vector) is computed by:

projV ~x = ~w = ( ~v1 · ~x) ~v1

Now consider a subspace V with arbitrary di-

mension m. Suppose we have an orthonormal

basis ~v1, ~v2, . . . , ~vm of V . Find ~w in V such that

~x− ~w is in V ⊥. Let

~w = c1~v1 + c2~v2 + · · ·+ cm~vm

It is required that

~x−~w = ~x− c1~v1 − c2~v2 − · · · − cm~vm

is perpendicular to V ; i.e.:
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~vi · ( ~x−~w) = ~vi · (~x− c1~v1 − c2~v2 − · · · − cm~vm)

= ~vi ·~x−c1(~vi ·~v1)−· · ·−ci(~vi ·~vi)−· · ·−cm(~vi ·~vm)

= ~vi · ~x− ci = 0

The equation holds if ci = ~vi · ~x.
Therefore, there is a unique ~w in V such that
~x− ~w is in V ⊥, namely,

~w = (~v1 · ~x)~v1 + (~v2 · ~x)~v2 + · · ·+ (~vm · ~x)~vm

Fact 5.1.6 Orthogonal projection
Consider a subspace V of Rn with orthonormal
basis ~v1, ~v2,. . ., ~vm. For any vector ~x in Rn, there
is a unique vector ~w in V such that ~x-~w is in
V ⊥. This vector ~w is called the orthogonal
projection of ~x onto V , denoted by projV ~x. We
have the formula

projV ~x=( ~v1 · ~x) ~v1+· · ·+( ~vm · ~x) ~vm.

The transformation T (~x) = projV ~x from Rn to
Rn is linear.
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Example. 4

Consider the subspace V =im(A) of R4. where

A =




1 1
1 −1
1 −1
1 1


 .

Find projV ~x, for

~x =




1
3
1
7


 .

Solution

The two columns of A form a basis of V . Since

they happen to be orthogonal, we can con-

struct an orthonormal basis of V merely by di-

viding these two vectors by their length (2 for

both vectors):
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~v1 =




1/2
1/2
1/2
1/2


 , ~v2 =




1/2
−1/2
−1/2
1/2




Then,

projV ~x=( ~v1 · ~x) ~v1+( ~v2 · ~x) ~v2=6 ~v1+ 2 ~v2=



3
3
3
3


 +




1
−1
−1
1


 =




4
2
2
4


 .

To check this answer, verify that ~x-projV ~x is

perpendicular to both ~v1 and ~v2.



What happens when we apply Fact 5.1.6 to

the subspace V =Rn of Rn with orthonormal

basis ~v1, ~v2,· · · , ~vn? Clearly, projV ~x=~x, for all ~x

in Rn. Therefore,

~x = ( ~v1 · ~x) ~v1 + · · ·+ ( ~vn · ~x) ~vn,

for all ~x in Rn. See Figure 7.

Fact 5.1.7

Consider an orthonormal basis ~v1,· · · , ~vn of Rn.

Then,

~x = ( ~v1 · ~x) ~v1 + · · ·+ ( ~vn · ~x) ~vn,

for all ~x in Rn.

This is useful for computing the B-coordinate,

since ci = ~vi · ~x.
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Example. 5

By using paper and pencil, express the vector

~x=




1
2
3


 as a linear combination of

~v1 = 1
3




2
2
1


 , ~v2 = 1

3




1
−2
2


 , ~v3 = 1

3



−2
1
2


 .

Solution

Since ~v1, ~v2, ~v3 is an orthonormal basis of R3,

we have

~x = ( ~v1 · ~x) ~v1 + ( ~v2 · ~x) ~v2 + ( ~v3 · ~x) ~v3 = 3 ~v1 +

~v2 + 2 ~v3.
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From Pythagoras to Cauchy

Example. 6

Consider a line L in R3 and a vector ~x in R3.

What can you say about the relationship be-

tween the lengths of the vectors ~x and projL~x?

Solution

Applying the Pythagorean theorem to the shaded

right triangle in Figure 8, we find that

‖ projL~x ‖≤‖ ~x ‖ .

The statement is an equality if (and only if) ~x

is on L.

Does this inequality hold in higher dimensional

cases? We have to examine whether the

Pythagorean theorem holds in Rn.
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Fact 5.1.8 Pythagorean theorem

Consider two vectors ~x and ~y in Rn. The equa-

tion

‖ ~x + ~y ‖2=‖ ~x ‖2 + ‖ ~y ‖2

holds if (and only if)~x and ~y are orthogonal.

(See Figure 9.)

Proof The verification is straightforward:

‖ ~x + ~y ‖2= (~x + ~y) · (~x + ~y)

= ~x · ~x + 2(~x · ~y) + ~y · ~y
=‖ ~x ‖2 +2(~x · ~y)+ ‖ ~y ‖2
=‖ ~x ‖2 + ‖ ~y ‖2
if (and only if) ~x · ~y = 0.
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Fact 5.1.9 Consider a subspace V of Rn and

a vector ~x in Rn. Then,

‖ projV ~x ‖≤‖ ~x ‖.

The statement is an equality if (and only if) ~x

is in V .

Proof we can write ~x = projV ~x+(~x−projV ~x)and

apply the Pythagorean theorem(see Figure 10):

‖ ~x ‖2=‖ projV ~x ‖2 + ‖ ~x− projV ~x ‖2.

It follows that ‖ projV ~x ‖≤‖ ~x ‖, as claimed.
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Let V be a one-dimensional subspace of Rn

spanned by a (nonzero) vector ~y. We introduce
the unit vector

~u = 1
‖~y‖~y

in V . (See Figure 11.)
We know that

projV ~x = (~u · ~x)~u = 1
‖~y‖2(~y · ~x)~y.

for any ~x in Rn. Fact 5.1.9 tells us that

‖ ~x ‖≥‖ projV ~x ‖=‖ 1
‖~y‖2(~y · ~x)~y ‖=

1
‖~y‖2|~y · ~x| ‖ ~y ‖.

To justify the last step, note that ‖ k~v ‖= |k| ‖
~v ‖, for all vectors ~v in Rn and all scalars k.
(See Exercise 25(a).) We conclude that

|~x·~y|
‖~y‖ ≤‖ ~x ‖.
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Fact 5.1.10 Cauchy-Schwarz inequality

If ~x and ~y are vectors in Rn, then

|~x · ~y| ≤‖ ~x ‖‖ ~y ‖.

The statement is an equality if (and only if) ~x

and ~y are parallel.

Definition. 5.1.11

Angle between two vectors Consider two

nonzero vectors ~x and ~y in Rn. The angle α

between these vectors is defined as

cosα = ~x·~y
‖~x‖‖~y‖.

Note that α is between 0 and π, by definition

of the inverse cosine functiion.
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Example. 7

Find the angle between the vectors

~x =




1
0
0
0


 and ~y =




1
1
1
1


 .

Solution

cosα = ~x·~y
‖~x‖‖~y‖ = 1

1·2 = 1
2

α =
π

3
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Correlation

Consider two characteristics of a population,

with deviation vectors ~x and ~y. There is a

positive correlation between the two charac-

teristics if (and only if) ~x · ~y > 0.

Definition. 5.1.12

Correlation coefficient

The correlation coefficient r between two char-

acteristics of a population is the cosine of the

angle α between the deviation vectors ~x and ~y

for the two characteristics:

r = cos(α) = ~x·~y
‖~x‖‖~y‖

Exercise 5.1: 7, 9, 12, 19, 23, 24, 25, 28
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5.2 GRAM-SCHMIDT PROCESS AND QR
FACTORIZATION
How can we construct an orthonormal basis?
Say, from any basis ~v1, ~v2, . . . , ~vm of a subspace
V ?

If V is a line with basis ~v1:

~w1 =
1

‖~v1‖
~v1

When V is a plane with basis ~v1, ~v2, we first
get ~w1 as above.

Next find a vector in V orthogonal to ~w1.

~v2 − projL~v2 = ~v2 − (~v2 · ~w1)~w1

Then Divide the vector by its length to get the
second vector ~w2.

~w2 =
1

‖~v2 − projL~v2‖
(~v2 − projL~v2)

See Figure 1, 2, 3.
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EXAMPLE 1 Find an orthonormal basis of

the subspace

V = span







1
1
1
1


 ,




1
9
9
1







of R4, with basis

~v1 =




1
1
1
1


 , ~v2 =




1
9
9
1


 .

Solution

Using the terminology just introduced, we find

the following results:
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‖ ~v1 ‖=
√

12 + 12 + 12 + 12 = 2,

~w1 = 1
‖ ~v1‖ ~v1 = 1

2




1
1
1
1


 =




1/2
1/2
1/2
1/2


 .

~w1 · ~v2 =




1/2
1/2
1/2
1/2


 ·




1
9
9
1


 = 10,

projL ~v2 = ( ~w1 · ~v2)~w1 = 10




1/2
1/2
1/2
1/2


 =




5
5
5
5




~v2 − projL ~v2 =




1
9
9
1


−




5
5
5
5


 =




−4
4
4

−4


 .

‖ ~v2 − projL ~v2 ‖=
√

4 · 16 = 8,
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~w2 = 1
‖ ~v2−projL ~v2‖( ~v2 − projL ~v2)

=
1

8




−4
4
4

−4


 =




−1/2
1/2
1/2

−1/2


 .

We have found an orthonormal basis of V :

~w1 =




1/2
1/2
1/2
1/2


 , ~w2 =




−1/2
1/2
1/2

−1/2




We can represent the preceding computations

more succinctly in matrix form. Let’s solve the

equations defining ~w1 and ~w2.

~w1 = 1
‖ ~v1‖ ~v1 and ~w2 = 1

‖ ~v2−projL ~v2‖( ~v2−projL ~v2),
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for vectors ~v1 and ~v2:

~v1 =‖ ~v1 ‖ ~w1,

and

~v2 = projL ~v2+ ‖ ~v2 − projL ~v2 ‖ ~w2

= ( ~w1 · ~v2) ~w1+ ‖ ~v2 − projL ~v2 ‖ ~w2.

We can write the last two equations in matrix
form:

[
~v1 ~v2

]
=

[
~w1 ~w2

]
︸ ︷︷ ︸

[
‖ ~v1 ‖ ~w1 · ~v2

0 ‖ ~v2 − projL ~v2 ‖
]

︸ ︷︷ ︸
Q R

Note that we have written 4×2 matrix Q with
orthonormal columns and the upper triangu-
lar 2× 2 matrix R with positive entries on the
diagonal.

Matrix Q stores the orthonormal basis ~w1, ~w2
we constructed, and matrix R gives the rela-
tionship between the ”old” basis ~v1, ~v2, and
the ”new” basis ~w1, ~w2 of V .
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Let’s plug in numbers (note that we computed

all the entries of matrix of matrix R in the

process of finding ~w1 and ~w2):




1 1
1 9
1 9
1 1


 =




1/2 −1/2
1/2 1/2
1/2 1/2
1/2 −1/2




[
2 10
0 8

]



Algorithm 5.2.1

The Gram-Schmidt process

Consider a subspace V of Rn with basis ~v1, ~v2,. . ., ~vm.

We wish to construct an orthonormal basis

~w1, ~w2,. . ., ~wm of V .

Let ~w1 = ( 1
‖ ~v1‖) ~v1. As we define ~wj for j =

2,3, ..., m, we may assume that an orthonormal

basis ~w1, ~w2,. . ., ~wj−1 of Vj−1 = span( ~v1, ~v2, . . . , ~vj−1)

has already been constructed. Let

~wj = 1
‖~vj−projVj−1

~vj‖(~vj − projVj−1
~vj).

Note that

projVj−1
~vj

= ( ~w1 · ~vj) ~w1+( ~w2 · ~vj) ~w2+ . . .+( ~wj−1 · ~vj) ~wj−1,

by Fact 5.1.6.
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THE QR Factorization

The Gram-Schmidt process can be presented

succinctly in matrix form, as illustrated in Ex-

ample 1. Using the terminology introduced in

Algorithm 5.2.1, we can write

~v1 = ‖ ~v1‖ ~w1

and

~vj = projVj−1
~vj + ‖~vj − projVj−1

~vj‖ ~wj

= ( ~w1~vj) ~w1+· · ·+(~wj−1~vj)~wj−1+‖~vj−projVj−1
~vj‖ ~wj

(for j=2,3,...,m).

Let

r11 = ‖ ~v1‖
rjj = ‖~vj − projVj−1

~vj‖ (j = 2,3, ..., m),

rij = ~wi · ~vj (i < j).
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Then,

~v1 = r11 ~w1
~v2 = r12 ~w1 + r22 ~w2
...
~vm = r1m ~w1 + r2m ~w2 + · · ·+ rmm ~wm.

We can write these equations in matrix form:




| | |
~v1 ~v2 · · · ~vm

| | |


 =




| | |
~w1 ~w2 · · · ~wm

| | |







r11 r12 · · · r1m

0 r22 · · · r2m
... ... . . . ...
0 0 · · · rmm


 .

M = QR

Note that M is an n × m matrix with linearly

independent columns, Q is an n × m matrix

with orthonormal columns, and R is an upper

triangular m × m matrix with positive entires

on the diagonal.
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Fact 5.2.2 QR factorization

Consider an n × m matrix M with linearly in-

dependent columns ~v1, ..., ~vm. Then there is

an n × m matrix Q whose columns ~w1, ..., ~wm

are orthonormal and an upper triangular m×m

matrix R with positive diagonal entries such

that

M = QR.

This representation is unique. Furthermore,

r11 = ‖ ~v1‖, rij = ‖~vj − projVj−1
~vj‖(for j > 1),

and rij = ~wi · ~vj (for i < j),

where Vj−1 = span( ~v1, ~v2, ..., ~vj−1).
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EXAMPLE 2 Find the QR factorization of

the shear matrix M=

[
1 0
1 1

]
.

Solution

Here

~v1 =

[
1
1

]
, ~v2 =

[
0
1

]
.

As in Example 1, the QR factorization of M
will have the form

M =
[

~v1 ~v2
]
=

[
~w1 ~w2

] [
‖ ~v1 ‖ ~w1 · ~v2

0 ‖ ~v2 − projV1
~v2 ‖

]

We will compute the columns of W and the

entries of R step by step:

r11 = ‖ ~v1‖ =
√

2

~w1 = 1
‖ ~v1‖ ~v1 = 1√

2

[
1
1

]
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r12 = ~w1 · ~v2 = 1√
2

[
1
1

]
·
[

0
1

]
= 1√

2

~v2 − projv1 ~v2 = ~v2 − ( ~w1 · ~v2) ~w1

=

[
0
1

]
− 1√

2

1√
2

[
1
1

]
=

[
−1/2
1/2

]

r22 = ‖ ~v2 − projv1 ~v2‖ =
√

1
4 + 1

4 = 1√
2

~w2 = 1
‖ ~v2−projv1 ~v2‖( ~v2 − projv1 ~v2)

=
√

2

[
−1/2
1/2

]
=

1√
2

[
−1
1

]

Now,
[

1 0
1 1

]
= M = QR =

[
~w1 ~w2

] [
r11 r12
0 r22

]

=

(
1√
2

[
1 −1
1 1

]) (
1√
2

[
2 1
0 1

])
.



Draw pictures analogous to Figures 1 through

3 to illustrate these computations!

Exercise 5.2 5, 11, 13, 19, 27, 31, 33, 37



5.3 ORTHOGONAL TRANSFORMATIONS

AND ORTHOGONAL MATRICES

Definition 5.3.1 Orthogonal transformations

and orthogonal matrices

A linear transformation T from Rn to Rn is

called orthogonal if it preserves the length of

vectors:

‖T (~x)‖ = ‖~x‖, for all ~x in Rn.

If T (~x) = A~x is an orthogonal transformation,

we say that A is an orthogonal matrix.
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EXAMPLE 1 The rotation

T (~x) =

[
cosφ −sinφ
sinφ cosφ

]
~x

is an orthogonal transformation from R2 to R2,

and

A =

[
cosφ −sinφ
sinφ cosφ

]
~x

is an orthogonal matrix, for all angles φ.
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EXAMPLE 2 Reflection

Consider a subspace V of Rn. For a vector ~x

in Rn, the vector R(~x) = 2projV ~x − ~x is called

the reflection of ~x in V . (see Figure 1).

Show that reflections are orthogonal transfor-

mations.

Solution

We can write

R(~x) = projV ~x + (projV ~x− ~x)

and

~x = projV ~x + (~x− projV ~x).

By the pythagorean theorem, we have

‖R(~x)‖2 = ‖projV ~x‖2 + ‖projV ~x− ~x‖2

= ‖projV ~x‖2 + ‖~x− projV ~x‖2 = ‖~x‖2.
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Fact 5.3.2 Orthogonal transformations pre-

serve orthogonality

Consider an orthogonal transformation T from
Rn to Rn. If the vectors ~v and ~w in Rn are
orthogonal, then so are T (~v) and T (~w).

Proof

By the theorem of Pythagoras, we have to
show that

‖T (~v) + T (~w)‖2 = ‖T (~v)‖2 + ‖T (~w)‖2.

Let’s see:

‖T (~v) + T (~w)‖2 = ‖T (~v + ~w)‖2 (T is linear)

= ‖~v + ~w‖2 (T is orthogonal)

= ‖~v‖2 + ‖~w‖2 (~v and ~w are orthogonal)

= ‖T (~v)‖2 + ‖T (~w)‖2.
(T (~v) and T (~w) are orthogonal)
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Fact 5.3.3 Orthogonal transformations and

orthonormal bases

a. A linear transformation T from Rn to Rn is

orthogonal iff the vectors T ( ~e1), T ( ~e2),. . .,T ( ~en)

form an orthonormal basis of Rn.

b. An n × n matrix A is orthogonal iff its

columns form an orthonormal basis of Rn.

Proof Part(a):

⇒ If T is orthogonal, then, by definition, the

T (~ei) are unit vectors, and by Fact 5.3.2, since

~e1, ~e2,. . ., ~en are orthogonal, T ( ~e1), T ( ~e2),. . .,T ( ~en)

are orthogonal.

⇐ Conversely, suppose the T (~ei) form an or-

thonormal basis.

Consider a vector

~x = x1 ~e1 + x2 ~e2 + · · ·+ xn ~en

in Rn. Then,
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‖T (~x)‖2 = ‖x1T ( ~e1)+x2T ( ~e2)+· · ·+xnT ( ~en)‖2

= ‖x1T ( ~e1)‖2 + ‖x2T ( ~e2)‖2 + · · ·+ ‖xnT ( ~en)‖2
(by Pythagoras)

= x2
1 + x2

2 + · · ·+ x2
n

= ‖~x‖2

Part(b) then follows from Fact 2.1.2.

Warning: A matrix with orthogonal columns

need not be orthogonal matrix.

As an example, consider the matrix A =

[
4 −3
3 4

]
.



EXAMPLE 3 Show that the matrix A is or-

thogonal:

A = 1
2




1 −1 −1 −1
1 −1 1 1
1 1 −1 1
1 1 1 −1


 .

Solution

Check that the columns of A form an orthono-

raml basis of R4.
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Fact 5.3.4

Products and inverses of orthogonal matrices

a. The product AB of two orthogonal n × n

matrices A and B is orthogonal.

b.The inverse A−1 of an orthogonal n×n matrix

A is orthogonal.

Proof

In part (a), the linear transformation T (~x) =

AB~x preserves length, because ‖T (~x)‖ = ‖A(B~x)‖ =

‖B~x‖ = ‖~x‖. Figure 4 illustrates property (a).

In part (b), the linear transformation T (~x) =

A−1~x preserves length, because ‖A−1~x‖ = ‖A(A−1~x)‖.
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The Transpose of a Matrix

EXAMPLE 4 Consider the orthogonal matrix

A = 1
7




2 6 3
3 2 −6
6 −3 2


 .

Form another 3× 3 matrix B whose ijth entry

is the jith entry of A:

B = 1
7




2 3 6
6 2 −3
3 −6 2




Note that the rows of B correspond to the

columns of A. Compute BA, and explain the

result.
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Solution

BA = 1
49




2 6 3
6 2 −3
3 −6 2







2 6 3
3 2 −6
6 −3 2


 =

1
49




49 0 0
0 49 0
0 0 49


 = I3

This result is no coincidence: The ijth entry of

BA is the dot product of the ith row of B and

the jth column of A. By definition of B, this is

just the dot product of the ith column of A and

the jth column of A. Since A is orthogonal,

this product is 1 if i = j and 0 otherwise.
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Definition 5.3.5 The transpose of a matrix;

symmetric and skew-symmetric matrices

Consider an m× n matrix A.

The transpose AT of A is the n × m matrix

whose ijth entry is the jith entry of A: The

roles of rows and columns are reversed.

We say that a square matrix A is symmetric

if AT = A, and A is called skew-symmetric if

AT = −A.

EXAMPLE 5 If A =

[
1 2 3
9 7 5

]
, then AT =




1 9
2 7
3 5


 .
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EXAMPLE 6 The symmetric 2 × 2 matrices

are those of the form A =

[
a b
b c

]
, for example,

A =

[
1 2
2 3

]
.

The symmetric 2 × 2 matrices form a three-

dimensional subspace of R2×2, with basis[
1 0
0 0

]
,

[
0 1
1 0

] [
0 0
0 1

]
.

The skew-symmetric 2 × 2 matrices are those

of the form A =

[
0 b
−b 0

]
, for example, A =

[
0 2

−2 0

]
. These form a one-dimmensional space

with basis

[
0 1

−1 0

]
.
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Note that the transpose of a (column) vector

~v is a row vector: If

~v =




1
2
3


, then ~vT =

[
1 2 3

]
.

The transpose give us a convenient way to ex-

press the dot product of two (cloumn) vectors

as a matrix product.

Fact 5.3.6

If ~v and ~w are two (column) vectors in Rn, then

~v · ~w = ~vT ~w.

For example,




1
2
3


 ·




1
−1
1


 =

[
1 2 3

]



1
−1
1


 = 2.
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Fact 5.3.7

Consider an n × n matrix A. The matrix A

is orthogonal if (and only if) ATA = In or,

equivalently, if A−1 = AT .

Proof

To justify this fact, write A in terms of its

columns:

A =



| | |
~v1 ~v2 . . . ~vn

| | |




Then,

ATA =




− ~v1
T −

− ~v2
T −
...

− ~vn
T −







| | |
~v1 ~v2 . . . ~vn

| | |


 =




~v1 · ~v1 ~v1 · ~v2 . . . ~v1 · ~vn

~v2 · ~v1 ~v2 · ~v2 . . . ~v2 · ~vn
... ... . . . ...

~vn · ~v1 ~vn · ~v2 . . . ~vn · ~vn


 .

By Fact 5.3.3(b) this product is In if (and only

if) A is orthogonal.
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Summary 5.3.8 Orthogonal matrices

Consider an n×n matrix A. Then, the following

statements are equivalent:

1. A is an orthogonal matrix.

2. The transformation L(~x) = A~x preserves

length, that is, ‖A~x‖ = ‖~x‖ for all ~x in Rn.

3. The columns of A form an orthonormal

basis of Rn.

4. ATA = In.

5. A−1 = AT .
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Fact 5.3.9 Properties of the transpose

a. If A is an m×n matrix and B an n×p matrix,

then

(AB)T = BTAT .

Note the order of the factors.

b. If an n× n matrix A is invertible, then so is

AT , and

(AT )−1 = (A−1)T .

c. For any matrix A,

rank(A) = rank(AT ).
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Proof

a. Compare entries:

ijth entry of (AB)T=jith entry of AB

=(jth row of A)·(ith column of B)

ijth entry of BTAT=(ith row of BT )·(jth col-

umn of AT )

=(ith column of B)·(jth row of A)

b. We know that

AA−1 = In

Transposing both sides and using part(a), we

find that

(AA−1)T = (A−1)TAT = In.

By Fact 2.4.9, it follows that
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(A−1)T = (AT )−1.

c. Consider the row space of A (i.e., the span

of the rows of A). It is not hard to show that

the dimmension of this space is rank(A) (see

Exercise 49-52 in section 3.3):

rank(AT )=dimension of the span of the columns

of AT

=dimension of the span of the rows of A

=rank(A)



The Matrix of an Orthogonal projection

The transpose allows us to write a formula for

the matrix of an orthogonal projection. Con-

sider first the orthogonal projection

projL~x = ( ~v1 · ~x) ~v1

onto a line L in Rn, where ~v1 is a unit vector in

L. If we view the vector ~v1 as an n× 1 matrix

and the scalar ~v1 · ~x as a 1× 1, we can write

projL~x = ~v1( ~v1 · ~x)
= ~v1 ~v1

T~x

= M~x,

where M = ~v1 ~v1
T . Note that ~v1 is an n × 1

matrix and ~v1
T is 1× n, so that M is n× n, as

expected.

More generally, consider the projection
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projv~x = ( ~v1 · ~x) ~v1 + · · ·+ ( ~vm · ~x) ~vm

onto a subspace V of Rn with orthonormal ba-

sis ~v1,. . ., ~vm. We can write

projv~x = ~v1 ~v1
T~x + · · ·+ ~vm ~vm

T~x

= ( ~v1 ~v1
T + · · ·+ ~vm ~vm

T )~x

=



| |
~v1 . . . ~vm

| |






− ~v1

T −
...

− ~vm
T −


 ~x



Fact 5.3.10 The matrix of an orthogonal

projection

Consider a subspace V of Rn with orthonormal

basis ~v1, ~v2, . . . , ~vm. The matrix of the orthog-

onal projection onto V is

AAT , where A =



| | |
~v1 ~v2 . . . ~vm

| | |


 .

Pay attention to the order of the factors (AAT

as opposed to ATA).

EXAMPLE 7 Find the matrix of the orthogo-

nal projection onto the subspace of R4 spanned

by

~v1 = 1
2




1
1
1
1


 , ~v2 = 1

2




1
−1
−1
1


 .
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Solution

Note that the vectors ~v1 and ~v2 are orthonor-

mal. Therefore, the matrix is

AAT = 1
4




1 1
1 −1
1 −1
1 1




[
1 1 1 1
1 −1 −1 1

]

= 1
2




1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1


 .

Exercises 5.3: 1, 3, 5, 11, 13, 15, 20



5.4 LEAST SQUARES AND DATA FIT-

TING

ANOTHER CHARACTERIZATION OF ORTHOG-

ONAL COMPLEMENTS

Consider a subspace V = im(A) of Rn, where

A =
[

~v1 ~v2 ... ~vm

]
. Then,

V ⊥ = { ~x in Rn : ~v · ~x = 0, for all ~v in V }

= { ~x in Rn : ~vi · ~x = 0, for i = 1,. . . ,m}

= { ~x in Rn : ~vi
T~x = 0, for i = 1,. . . ,m}

In other words, V ⊥ is the kernel of the matrix

AT =




− ~v1
T −

− ~v2
T −
...

− ~vm
T −



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Fact 5.4.1 For any matrix A,

(im A)⊥ = ker (AT ).

Example: consider the line

V = im




1
2
3




Then

V ⊥ = ker[ 1 2 3 ]

is the plan with equation x1 + 2x2 + 3x3 = 0.

(See Figure 1)

Fact 5.4.2 Consider a subspace V of Rn. then,

a. dim(V ) + dim(V ⊥) = n

b. (V ⊥)⊥ = V

c. V
⋂

V ⊥ = {~0}
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Proof

a. Let V = im(A) and ker(AT ) = V ⊥. Fact

3.3.9 tells us that n = dim(imAT ) + dim(kerAT )

= rank(AT ) + dim(V ⊥) =rank(A)+dim(V ⊥)

=dim(V)+dim(V ⊥) by Fact 5.3.9.

b. First observe that V ⊆ (V ⊥)⊥, since a vec-

tor in V is orthogonal to every vector in V ⊥
(by definition of V ⊥). Furthermore, the dimen-

sions of the two spaces are equal, by part(a):

dim(V ⊥)⊥ = n− dim(V ⊥)

= n− (n− dim(V ))

= dim(V ).

It follows that the two spaces are equal. (See

Exercise 3.3.41.)

c. If ~x is in V and in V ⊥, then ~x is orthogonal

to itself; that is, ~x · ~x = ‖~x‖2 = 0, and thus ~x

= ~0.



Fact 5.4.3

a. If A is an m ∗ n matrix, then

ker(A) = ker(ATA).

b. If A is an m ∗ n matrix with ker(A) = {~0},
then ATA is invertible.

Proof

a. Clearly, the kernel of A is contained in the

kernel kernel of ATA. Conversely, consider a

vector ~x in the kernel of ATA, so that ATA~x =
~0 Then, A~x is in the image of A and in the

kernel of AT . Since ker(AT ) is the orthogonal

complement of im(A) by Fact 5.4.1, the vector

A~x is ~0 by Fact 5.4.2(c), that is, ~x is in the

kernel of A.

b. Note that ATA is an n ∗ n matrix. By part

(a), ker(ATA) = {~0}, and ATA is therefore in-

vertible.(See Summary 3.3.11)
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An Alternative Characterization of Orthog-

onal Projections

Fact 5.4.4

Consider a vector ~x in Rn and a subspace V of
Rn. Then, the orthogonal projection projV ~x is
the vector in V closest to ~x, in that

‖~x− projV ~x‖ < ‖~x− ~v‖,

for all ~v in V different from projV ~x

Least-Squares Approximations

Definition 5.4.5 Least-squares solution
Consider a linear system

A~x = ~b,

where A is an m∗n matrix. A vector ~x∗ in Rn is
called a least − squares solution of this system
if ‖~b−A~x∗‖ ≤ ‖~b−A~x‖ for all ~x in Rn.
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The vector ~x∗ is a least-square solution

of the system A~x = ~b

m Def 5.4.5

‖~b−A~x∗‖ ≤ ‖~b−A~x‖ for all ~x in Rn.

m Def 5.4.4

A~x∗ = projV b, where V = im(A)

m Fact 5.1.6 and 5.4.1

~b−A~x∗ is in V ⊥ = im(A)⊥ = ker(AT )

m

AT (~b−A~x∗) = ~0

m

ATA~x∗ = AT~b
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Fact 5.4.6 The normal equation

The least-squares solutions of the system

A~x = ~b,

are the exact solutions of the (consistent) sys-

tem

ATA~x = AT~b,

The system ATA~x = AT~b is called the normal

equation of A~x = ~b

Fact 5.4.7

If ker(A) = {~0}, then the linear system

A~x = ~b,

has the unique least-squares solution

~x∗ = (ATA)−1AT~b
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Example 1 Use Fact 5.4.7 to find the least-

squares solution ~x∗ of the system

A~x = ~b, where A =




1 1
1 2
1 3


 and ~b




0
0
6




what is the geometric relationship between A~x∗
and ~b?

Solution We compute

~x∗ = (ATA)−1AT~b =

[
−4
3

]
and A~x∗ =



−1
2
5




Recall that A~x∗ is the orthogonal projection of
~b onto the image of A.
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Fact 5.4.8 The matrix of an orthogonal

projection

Consider a subspace V of Rn with basis ~v1,

~v2,..., ~vm. Let

A =
[

~v1, ~v2, ..., ~vm

]

Then the matrix of the orthogonal projection

onto V is

A(ATA)−1AT .

This means we are not required to find an or-

thonormal basis of V here. If the vectors ~vi

happen to be orthonormal, then ATA = Im

and the formula simplifies to ATA. (See Fact

5.3.10.)
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Example 2 Find the matrix of the orthogonal

projection onto the subspace of R4 spanned by

the vector




1
1
1
1


 and




1
2
3
4




Solution Let

A =




1 1
1 2
1 3
1 4


’

and compute

A(ATA)−1AT =




7 4 1 −2
4 3 2 1
1 2 3 4

−2 1 4 7



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Data Fitting Scientists are often interested

in fitting a function of a certain type to data

they have gathered. The functions considered

could be linear, polynomial, relational’ trigono-

metric, or exponential. The equations we have

to solve as we fit data are frequently linear.

(See Exercises 29 and 30 of section 1.1, and

Exercises 30 through 33 of Section 1.2.)

Example 3 Find a cubic polyonmial whose

graph passes through the points (1, 3), (-1,

13), (2, 1), (-2, 33).

Solution We are looking for a function

f(t) = c0 + c1t + c2t2 + c3t3

such that f(1) = 3, f(-1) = 13, f(2) = 1,

f(-2) = 33; that is, we have to solve the linear

system
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∣∣∣∣∣∣∣∣∣

c0 + c1 + c2 + c3 = 3
c0 − c1 + c2 − c3 = 13
c0 + 2c1 + 4c2 + 8c3 = 1
c0 − 2c1 + 4c2 − 8c3 = 33

∣∣∣∣∣∣∣∣∣

This linear system has the unique solution




c0
c1
c2
c3


 =




5
−4
3

−1


.

Thus, the cubic polynomial whose graph passes

through the four given data points if f(t) =

5− 4t + 3t2 − t3, as shown in Figure 6.
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Example 4 Fit a quadratic function to the four

data points (a1, b1) = (-1, 8), (a2, b2) = (0,

8), (a3, b3) = (1, 4), and (a4, b4) = (2, 16).

Solution We are looking for a function f(t) =
c0 + c1t + C2t2 such that
∣∣∣∣∣∣∣

f(a1) = b1
f(a2) = b2
f(a3) = b3
f(a4) = b4

∣∣∣∣∣∣∣
or

∣∣∣∣∣∣∣

c0 −c1 + c2 = 8
c0 = 8
c0 +c1 + c2 = 4
c0 +2c1 + 4c2 = 16

∣∣∣∣∣∣∣
or A




c0

c1

c2




where

A =




1 −1 1
1 0 0
1 1 1
1 2 4


 and ~b =




8
8
4

16


.

57



We have four equations, corresponding to the

four data points, but only three unknowns, the

three coefficients of a quadratic polynomial.

Check that this system is indeed inconsistent.

The least-squares solution is

~x∗ =




c∗0
c∗1
c∗2


 = (ATA)−1AT~b =




5
−1
3




The least-squares approximation is

f∗(t) = 5− t+3t2, as shown in Figure 7. This

quadratic function f∗(t) fits the data points

best, in that the vector

A~x∗ =




f∗(a1)
f∗(a2)
f∗(a3)
f∗(a4)




is close as possible to
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A =




b1
b2
b3
b4


.

This means that

‖~b - A~c∗‖2 = (b1 - f∗(a1))
2 + (b2 - f∗(a2))

2 +

(b3 - f∗(a3))
2 + (b4 - f∗(a4))

2

is minimal: The sum of the squares of the ver-

tical distances between graph and data points

is minimal. (See Figure 8.)



Example 5 Find the linear function c0 + c1t

that best fits the data points (a1, b1), (a2,

b2),...,(an, bn), use least squares. Assume that

a1 6=a2.

Solution We attempt to solve the system

∣∣∣∣∣∣∣∣∣

c0 + c1a1 = b1
c0 + c1a2 = b2
... ... ...

c0 + c1an = bn

∣∣∣∣∣∣∣∣∣

or




1 a1
1 a2
... ...
1 an




[
c0
c1

]
=




b1
b2
...

bn


 ,

or

A

[
c0
c1

]
= ~b
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Note that rank(A) = 2, since a1 6=a2. The

least-squares solution is

∣∣∣∣∣
c∗0
c∗1

∣∣∣∣∣ = (ATA)−1AT~b =




[
1 . . . 1

a1 . . . an

] 


1 a1
... ...
1 an






−1 [

1 . . . 1
a1 . . . an

] 


b1
...

bn




=

[
n Σiai

Σiai Σia
2
i

]−1 [
Σibi

Σiaibi

]

(where
∑

i refers to the sum for i = 1,...,n)

We have found that

C∗0 =
(
∑

i a2
i )(

∑
i bi)−(

∑
i ai)(

∑
i aibi)

n(
∑

i a2
i )−(

∑
i ai)2

,

C∗1 =
n(

∑
i aibi)−(

∑
i ai)(

∑
i bi)

n(
∑

i a2
i )−(

∑
i ai)2

.

There formulas are well known to statisticians.

There is no need to memorize them.



Example 6 In the accompanying table, we list

the scores of five students in the three exams

given in a class.

Find the function of the form f = c0 + c1h

+ c2m that best fits these data, using least

squares. what score f does your formula pre-

dict for Marlisa, another student, whose scores

in the first two exams were h = 92 and m =

72?

Solution

We attempt to solve the system

∣∣∣∣∣∣∣∣∣∣∣∣

c0 + 76c1 + 48c2 = 43
c0 + 92c1 + 92c2 = 90
c0 + 68c1 + 82c2 = 64
c0 + 86c1 + 68c2 = 69
c0 + 54c1 + 70c2 = 50

∣∣∣∣∣∣∣∣∣∣∣∣

.
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The least-squares solution is

∣∣∣∣∣∣∣

c∗0
c∗1
c∗2

∣∣∣∣∣∣∣
. = (ATA)−1AT~b ≈

∣∣∣∣∣∣∣

−42.4
0.639
0.799

∣∣∣∣∣∣∣
.

The function which gives the best fit is approx-

imately

f = -42.4 + 0.639h + 0.799m.

The formula predicts the score

f = -42.4 + 0.639 · 92 + 0.799 · 72 ≈ 74.

for Marlisa.
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