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5.1 ORTHONORMAL BASES AND OR-
THOGONAL PROJECTIONS

Not all bases are created equal.
Definition. 5.1.1

Orthogonality, length, unit vectors
a. Two vectors ¥ and w in R™ are called per-
pendicular or orthogonal if v-w = 0.

b. The length (or magnitude or norm) of a

- =

vector v in R"™ is ||¥]| = VU - U.

c. A vector u in R" is called a unit vector if its
length is 1, (i.e., ||[4]| =1, or 4-u =1).

Explanation:

If ¥ is a nonzero vector in R", then

=

U= Y

=

IS a unit vector.



Definition. 5.1.2 Orthonormal vectors
The vector vi,vs,...,vm In R™ are called or-
thonormal if they are all unit vectors and or-
thogonal to one another:

- 1 of i=j
' 0 if i#j.

Example. 1.

The vectors €1,e>,...,en, in R™ are orthonormal.

Example. 2.

—Sin«

For any scalar «, the vectors
COS &

Sin «

COS o ]
)

are orthonormal.



Example. 3. The vectors

[ 1/27 T 1/2° o 1/2°
I I 2~ 2 B B 0> T R S s
1= a2 P27 —12 0BT 12

1/2 - —1/2 | - —1/2 |

in R* are orthonormal. Can you find a vector
v in R* such that all the vectors vi,v5,03,04
are orthonormal.

The following properties of orthonormal vec-
tors are often useful:



Fact 5.1.3

a. Orthonormal vectors are linearly indepen-
dent.

b. Orthonormal vectors v, ..., vp in R™ form
a basis of R™.

Proof
a. Consider a relation

c1v1+covo+- - - v+ - - +emvm=0

Let us form the dot product of each side of
this equation with vj:

(c10i + cotd + -+ + ¢i0; + -+ + cmui) - 05 =
O0-v; =0.
Because the dot product is distributive.
c;(v; - v3) =0
Therefore, c; =0 forall:=1, ..., m.

b. Any n linearly independent vectors in R"
form a basis of R".



Definition. 5.1.4 Orthogonal complement
Consider a subspace V of R"™. The orthogonal
complement VX of V is the set of those vectors
Z in R™ that are orthogonal to all vectors in V':

Vi={Z in R*: ¢¥-£=0, for all ¥ in V }.

Fact 5.1.5 If V is a subspace of R", then its
orthogonal complement V-1 is a subspace of
R™ as well.

Proof

We will verify that V-1 is closed under scalar
multiplication and leave the verification of the
two other properties as Exercise 23. Consider
a vector & in V4 and a scalar k. We have
to show that kw is orthogonal to all vectors
v in V. Pick an arbitrary vector v in V. Then,
(kW) -v=k(w - ¥)=0, as claimed.



Orthogonal projections
See Figure 5.

T he orthogonal projection of a vector £ onto
one-dimentaional subspace V with basis 77 (unit
vector) is computed by:

projyZ = w = (v1 - T)vi

Now consider a subspace V with arbitrary di-
mension m. Suppose we have an orthonormal
basis v1,v2,...,Um Of V. Find w in V such that
Z—isin VL. Let

W = c1U1 + coUo + - -+ + cmUm

It is required that

—

T—W =T — C{U] — CoUD — + -+ — CmUm

IS perpendicular to V; i.e.:



U; - (37116) = 0; - (& — c1U1 — coUo — -+ — cmUm)

= U T—c1 (V- 01) = - - —¢i(U-03) = - - —em (V- Um)

17,L--:Y;’—ci=0

The equation holds if ¢; = v; - x.

Therefore, there is a unique w in V such that
7 — 0 is in V1, namely,

W= (V1 - T)VU1 + (V2 - )V + -+ + (Um - T)Um

Fact 5.1.6 Orthogonal projection

Consider a subspace V of R™ with orthonormal
basis v1,v>,...,um. FOr any vector £ in R"™, there
IS @ unique vector w in V such that z-w is in
VL. This vector @ is called the orthogonal
projection of £ onto V, denoted by projyx. We
have the formula

projyx=(vi - ¥)vi+- - +(vm - T)vm.

The transformation T'(¥) = projyx from R™ to
R™ is linear.



Example. 4

Consider the subspace V=im(A) of R*. where

1 11
1 -1
A= 1 -1
- 1 1 -
Find projyx, for
F g
= 3
11
- 7 -

Solution

The two columns of A form a basis of V. Since
they happen to be orthogonal, we can con-
struct an orthonormal basis of V merely by di-
viding these two vectors by their length (2 for
both vectors):



C1/27 T 1/2°
L 12 L | —1)2
1= 12 027 —1/2
| 1/2 . 1/2]

Then,

projy&=(vi - )vi+(v2 - T)vp=6vi+ 2vs=

3 1 4
3 —1| |2
3T 1T 2
3] | 1] | 4]

To check this answer, verify that z-projyx is
perpendicular to both v3 and v>.



What happens when we apply Fact 5.1.6 to
the subspace V=R" of R"™ with orthonormal
basis vy, va, -+, vn? Clearly, projyr=x, for all £
in Ry. Therefore,

= (v1 -%)v1+- -+ (vn - B)vp,
for all £ in R™. See Figure 7.

Fact 5.1.7
Consider an orthonormal basis v1,---,vp Of R™.
Then,

= (w1 -©)v1+- -+ (vp - ¥)vp,
for all £ in R™.

This is useful for computing the B-coordinate,

—

since ¢; = v; - .



Example. 5

By using paper and pencil, express the vector

1
r— | 2 | as a linear combination of
_3_
[ D ] 1 [ D ]
v_i:% 2 ,U_é:% —2 ,v_f:,:% 1
| 1] 2 2
Solution

Since v3,v5,03 is an orthonormal basis of R3,
we have

= (v1 - ¥)v1 + (V3 - ©)vs + (v3 - T)vz = 3v1 +
'U_é + 2v3.

10



From Pythagoras to Cauchy
Example. 6

Consider a line L in R3 and a vector # in R3.
What can you say about the relationship be-
tween the lengths of the vectors £ and proj;x?

Solution
Applying the Pythagorean theorem to the shaded
right triangle in Figure 8, we find that

| projra |I<[| Z | .

The statement is an equality if (and only if) ¥
is on L.

Does this inequality hold in higher dimensional
cases? We have to examine whether the
Pythagorean theorem holds in R™.

11



Fact 5.1.8 Pythagorean theorem
Consider two vectors £ and ¢ in R™. The equa-
tion

lZ+glIP=Iz >+ 7I°

holds if (and only if)Z and ¢ are orthogonal.
(See Figure 9.)

Proof The verification is straightforward:
|2+ 7 °=@&+7) @+

=& F+2F D+7-7

=|| Z |2 +2z- N+ || 7|7

= Z?+ 7

if (and only if) £-4=0.

12



Fact 5.1.9 Consider a subspace V of R"™ and
a vector £ in R™. Then,

| projva ||<[| Z |-

The statement is an equality if (and only if) ¥
isin V.

Proof we can write & = projyr+(Z—projy£)and
apply the Pythagorean theorem(see Figure 10):

| & |°=|| projv-& ||* + || £ — projy& ||°.

It follows that || projy @ ||<|| £ ||, as claimed.

13



Let V be a one-dimensional subspace of R"™
spanned by a (nonzero) vector . We introduce
the unit vector

- L—»
R il
in V. (See Figure 11.)
We know that
projyE = (@ D) = 2 (7 - D7

9]

for any £ in R"™. Fact 5.1.9 tells us that

|| L ||Z|l projyx ||_|| ||g||2(y . :B)y H_
1 - = —

To justify the last step, note that || kv ||= |k| ||

—

v ||, for all vectors ¢ in R™ and all scalars k.
(See Exercise 25(a).) We conclude that

14



Fact 5.1.10 Cauchy-Schwarz inequality
If £ and y are vectors in R"™, then

[z -yl <[ Z [ 71

The statement is an equality if (and only if) &
and iy are parallel.

Definition. 5.1.11
Angle between two vectors Consider two

nonzero vectors ¥ and ¢ in R™. The angle «
between these vectors is defined as

Note that « is between 0 and m, by definition
of the inverse cosine functiion.

15



Example. 7

Find the angle between the vectors

and y =

o oo+

Solution




Correlation

Consider two characteristics of a population,
with deviation vectors ¥ and y. There is a
positive correlation between the two charac-
teristics if (and only if) ¥- ¢ > 0.

Definition. 5.1.12

Correlation coefficient

T he correlation coefficient » between two char-
acteristics of a population is the cosine of the
angle a between the deviation vectors ¥ and vy
for the two characteristics:

B _ &g
r = cos(a) = [T

Exercise 5.1: 7, 9, 12, 19, 23, 24, 25, 28

17



5.2 GRAM-SCHMIDT PROCESS AND QR
FACTORIZATION

How can we construct an orthonormal basis?
Say, from any basis v, vp, ..., Uy Of @ subspace
Ve

If V is a line with basis v7:

1
—
|71 ]

—

Wy, =

When V is a plane with basis v, v, we first
get wy as above.

Next find a vector in V orthogonal to w;.

Up — projrvp = vUp — (VUp - W1 )W

Then Divide the vector by its length to get the
second vector wo.
1

Wo = —; —— (U — projrvz)
|U> — projr,vo|

See Figure 1, 2, 3.
18



EXAMPLE 1 Find an orthonormal basis of
the subspace

V = span

el
= O O+~

of R* with basis

S
I
NI
NT
|
= © O =

Solution
Using the terminology just introduced, we find
the following results:

19



| ll=y12+12 412412 =2,

1 1/2
Lo 1 - _ 1|1 _ 1/2
L=t =2 1| =~ | 1/2
1] [ 1/2]
(1/2] [ 1]
Lo |12 o|
12 = g | o | T 10
| 1/2] [1]
12
. AN - 1/2
projrvs = (w1 - v3)wyp = 10 1?2 =
| 1/2
[ 1 ] [ 5 ] [ —4 ]
- - 9 5 4
U2 — Projrvy — o) T 5 — 4
1 | 5 - —4 |
| v5 — projrvs ||= V4 -16 = 8,

o101 O 01




- 1

W2 = [ —projraa] (V2 ~ ProiLv2)
[ —4 ] i —1/2 |
I I N R V2
8 4 | 1/2
4] [ -1/2]

We have found an orthonormal basis of V:

1/2 [ —1/2°
Lol L 12
L= 11210727 1/2

| 1/2 | —1/2 ]

We can represent the preceding computations
more succinctly in matrix form. Let's solve the
equations defining wy and w».

- 1

— — ]_
= —=—-v1 and wo =
1 g1 2 = Jlua—p

rojua||

(v2—projpv2),

21



for vectors v and vs:
v1 =|| v1 || w1,
and
v2 = projpvz+ || v2 — projpvs || w2
= (w1 - v2)wi+ || v2 — projpvs || wa.

We can write the last two equations in matrix
form:

| v1 | w1 - VD

1 *2]

0 || v2—projrvz |

7

Q R
Note that we have written 4 x 2 matrix Q with
orthonormal columns and the upper triangu-
lar 2 x 2 matrix R with positive entries on the
diagonal.

Matrix ) stores the orthonormal basis wi, w>
we constructed, and matrix R gives the rela-
tionship between the "old" basis v, v>, and
the "new" basis wy, wr of V.

22



Let's plug in numbers (note that we computed
all the entries of matrix of matrix R in the
process of finding wj and w5):

1 1] [1/2 —1/27
19| |12 1/2 [2 10]
19| |12 1/2||0 8
1 1] |1/2 —-1/2




Algorithm 5.2.1

The Gram-Schmidt process

Consider a subspace V of R™ with basis v1,v>,...,vm.
We wish to construct an orthonormal basis
1(71,’(172,. . .,’w_fn of V.

Let w] = (”U%H)fu‘i. As we define w; for j =
2,3,...,m, we may assume that an orthonormal
basis w1 ,w>,...,w;_1 of V;_1 = span(vi,v3,...,v; 1)
has already been constructed. Let

ij — |07 — 7“01' v |
JTPTOIV; 1Y)

|(fu_} — projvj_lv_j).
Note that
projvj_lv}”

= (w? - vj)wy + (wa-vj)wr+. ..+ (w1 -vj)w;’q,
by Fact 5.1.6.

23



THE QR Factorization

The Gram-Schmidt process can be presented
succinctly in matrix form, as illustrated in Ex-
ample 1. Using the terminology introduced in
Algorithm 5.2.1, we can write

vl = [lvi||w1

and
v = projvj_lv}’- + ||’U; — proj‘/j_lv_3||tt7}-

= (w1vj)wi+ - -+ (Wj-105) W1 +||vj—projy,_, vj||w;

(for j=2,3,...,m).

Let
ri1 = |[[vi]l
Tij = ||’UJ — progx/}_lvj|| (] — 27 37 "'7m)7

24



r11W1
= r1oW1 + T22W>

v R
N =
Il

Um = r1mW1 + momWo + - - + rmmWm.

We can write these equations in matrix form:

| | | | | | [ r11 r12 tte T1im
L N L4 4 O 720 -+ T2y
V1 V2 - Um = w1 w2 - W : : . )
| | o AN I
M = QR

Note that M is an n X m matrix with linearly
independent columns, @ is an n X m matrix
with orthonormal columns, and R is an upper
triangular m x m matrix with positive entires

on the diagonal.

25



Fact 5.2.2 QR factorization

Consider an n x m matrix M with linearly in-
dependent columns v3,...,vm. Then there is
an n X m matrix Q whose columns wq, ..., wWm
are orthonormal and an upper triangular m X m
matrix R with positive diagonal entries such
that

M = QR.

This representation is unique. Furthermore,
r11 = ||vill, rij = [|0j — projy,_,v3l|(for j > 1),

and Tij = W -fU_]" (for ¢ < j),

where V;_1 = span(vi, v3,...,Uj_1).

26



EXAMPLE 2 Find the QR factorization of

the shear matrix M= [ 1 (1) ] .

Solution

Here

As in Example 1, the QR factorization of M
will have the form

e K B - U
m=la w)=(a a] 1G58
We will compute the columns of W and the

entries of R step by step:
r11 = |91l = v2

— 1 —
—_ ——=—V1 =
1 g1

N
1
=
I

27



rog = |05 — projuvb|| = \/1 + £ =

N

- 1 — . —
W2 = 53 proje o3l (V2 ~ PTOJ102)
B 121 1 [ -1
—ﬁ[ 12 —ﬁ[ 1]
Now,




Draw pictures analogous to Figures 1 through
3 to illustrate these computations!

Exercise 5.2 5, 11, 13, 19, 27, 31, 33, 37



5.3 ORTHOGONAL TRANSFORMATIONS
AND ORTHOGONAL MATRICES

Definition 5.3.1 Orthogonal transformations
and orthogonal matrices

A linear transformation 7" from R™ to R" is
called orthogonal if it preserves the length of
vectors:

|T(2)|| = ||Z||, for all Zin R™.

If T(¥) = AZ is an orthogonal transformation,
we say that A is an orthogonal matrix.

28



EXAMPLE 1 The rotation

T() = [ cos¢p —sing ] =

sing  coso

is an orthogonal transformation from R? to R2,
and

A — [ cosp —sing ] =

sing  cos®

is an orthogonal matrix, for all angles ¢.

29



EXAMPLE 2 Reflection

Consider a subspace V of R™. For a vector &
in R™, the vector R(¥) = 2projyZ — & is called
the reflection of ¥ in V. (see Figure 1).

Show that reflections are orthogonal transfor-
mations.

Solution
We can write

R(%) = projy ¥ + (projy & — &)
and
T = projy@ + (Z — projy@).
By the pythagorean theorem, we have

IR@)|I? = llprojv||® + [lprojv@ — |2

= |lprojy@||? + ||1Z — projyZ||? = ||Z])°.

30



Fact 5.3.2 Orthogonal transformations pre-
serve orthogonality

Consider an orthogonal transformation 7' from
R™ to R™. 1If the vectors v and w in R™ are
orthogonal, then so are T'(¥) and T'().

Proof

By the theorem of Pythagoras, we have to
show that

IT(%) + T(@)[|? = | T (@)% + | T(@)]|°.
Let's see:

1T (@) + T (@)||? = | T(F + @)||? (T is linear)

|7+ @||2 (T is orthogonal)

= ||&]|2 + ||w||? (¥ and @ are orthogonal)

= |T(@)I* + |7 (@)]|*.
(T'(¥) and T'(wW) are orthogonal)
31



Fact 5.3.3 Orthogonal transformations and
orthonormal bases

a. A linear transformation T' from R™ to R"™ is
orthogonal iff the vectors T'(e¢1), T'(€3),...,T(én)
form an orthonormal basis of R".

b. An n X n matrix A is orthogonal iff its
columns form an orthonormal basis of R™.

Proof Part(a):

= If T" is orthogonal, then, by definition, the
T'(e;) are unit vectors, and by Fact 5.3.2, since
€1, €5,...,6n are orthogonal, T'(e1), T(é5),....T(en)
are orthogonal.

< Conversely, suppose the T'(e;) form an or-
thonormal basis.
Consider a vector

T =x1€1 +x06>+ -+ xnEN

in R™. Then,
32



||T(f)||2 = |[x1T (1) +x2T(ed)+-- .+an(€jr’L)||2

= lz1 T (D2 + llz2T ()% + - - - + [[znT (e0)]]?
(by Pythagoras)

Zx%—I-m%—l----—l—w%
= || 2|
Part(b) then follows from Fact 2.1.2.

Warning: A matrix with orthogonal columns
need not be orthogonal matrix.

4 -3
3 4|

As an example, consider the matrix A = !



EXAMPLE 3 Show that the matrix A is or-

thogonal:
1 -1 —1 -1
A=31T11
1 1 1 —1 |

Solution

Check that the columns of A form an orthono-
raml basis of R*.

33



Fact 56.3.4
Products and inverses of orthogonal matrices

a. The product AB of two orthogonal n X n
matrices A and B is orthogonal.

b.The inverse A—1 of an orthogonal nxn matrix
A is orthogonal.

Proof
In part (a), the linear transformation T'(Z) =
ABZ preserves length, because ||T(Z)|| = ||A(BZ)|| =

|BZ|| = ||Z£]|. Figure 4 illustrates property (a).

In part (b), the linear transformation T'(&) =
A~1Z preserves length, because ||[A71Z|| = ||[A(A~1D)]|.

34



The Transpose of a Matrix

EXAMPLE 4 Consider the orthogonal matrix

(2 6 3|
A=2|3 2 -6
6 -3 2

Form another 3 x 3 matrix B whose 5th entry
is the j:th entry of A:

2 3 6
B=1|l6 2 -3
'3 6 2

Note that the rows of B correspond to the
columns of A. Compute BA, and explain the
result.

35



Solution

2 6 3][2 6 3
BA=4|6 2 -3||3 2 -6|=
'3 -6 2||6 -3 2]
49 0 O
is| 049 0|=1I3
0 0 49

This result is no coincidence: The jth entry of
BA is the dot product of the +th row of B and
the jth column of A. By definition of B, this is
just the dot product of the ¢th column of A and
the jth column of A. Since A is orthogonal,
this product is 1 if : = 3 and O otherwise.

36



Definition 5.3.5 The transpose of a matrix;
symmetric and skew-symmetric matrices
Consider an m X n matrix A.

The transpose Al of A is the n x m matrix
whose i5th entry is the ji:th entry of A: The
roles of rows and columns are reversed.

We say that a square matrix A is symmetric
if AT = A, and A is called skew-symmetric if
Al = —A.

EXAMPLE 5 If A = [

1 2 3 T
9 7 5],thenA =

WN =
6 N(e}

37



EXAMPLE 6 The symmetric 2 x 2 matrices

are those of the form A = [ @ , for example,

b c
1 2
2 3|

The symmetric 2 x 2 matrices form a three-
dimensional subspace of R2X2 with basis

so)[2a/l0t]

T he skew-symmetric 2 x 2 matrices are those

A=

of the form A = _% g] , for example, A =
0 2 | .
[ 5 0| ‘These form a one-dimmensional space
with basis 1
-1 0 |

38



Note that the transpose of a (column) vector
U is a row vector: If

1
7= 2 ,thenfUTz[l 2 3].
3

The transpose give us a convenient way to ex-
press the dot product of two (cloumn) vectors
as a matrix product.

Fact 5.3.6
If ¥ and w are two (column) vectors in R™, then

70 = 3.
For example,
1] [ 1] 1
2 .| =1 =[1 2 3] _1 | =2.
3] | 1 1

39



Fact 5.3.7
Consider an n x n matrix A. The matrix A

is orthogonal if (and only if) ATA = I, or,
equivalently, if A—1 = AT

Proof
To justify this fact, write A in terms of its

columns:

A= | v vo Un,
Then, )
S
— ol - | | |
ATA e ] ’U_i 'U_é ’U_;l —
I R .
V1 - U1 V1 U V1 - Uy
V201 U2 U2 V2 - Up,
Uy U1 Up * U Uy, + Upy

By Fact 5.3.3(b) this product is I, if (and only
if) A is orthogonal.
40



Summary 5.3.8 Orthogonal matrices
Consider an nxn matrix A. Then, the following
statements are equivalent:

1. A is an orthogonal matrix.

2. The transformation L(Z¥) = AZX preserves
length, that is, ||AZ|| = ||Z|| for all £ in R™.

3. The columns of A form an orthonormal
basis of R™.

4. ATA=1,.

5. A1 = AT,

41



Fact 5.3.9 Properties of the transpose
a. If Aisan mxn matrix and B an n xp matrix,
then

(AB)L = BT AT,

Note the order of the factors.

b. If an n x n matrix A is invertible, then so is
Al and

(AT)—l — (A—l)T_
c. For any matrix A,

rank(A) = rank(A1).

42



Proof
a. Compare entries:

ijth entry of (AB)!l'=jith entry of AB
=(yth row of A)-(ith column of B)

ijth entry of BLAT=(ith row of B1)-(jth col-
umn of A1)

=(ith column of B)-(jth row of A)

b. We know that

AA~L =1,

Transposing both sides and using part(a), we
find that

(AADT = (A DT AT = |,,.

By Fact 2.4.9, it follows that

43



(A_l T (AT)—l_

c. Consider the row space of A (i.e., the span
of the rows of A). It is not hard to show that
the dimmension of this space is rank(A) (see
Exercise 49-52 in section 3.3):

rank(A1)=dimension of the span of the columns
of AT

=dimension of the span of the rows of A
=rank(A)



T he Matrix of an Orthogonal projection

The transpose allows us to write a formula for
the matrix of an orthogonal projection. Con-
sider first the orthogonal projection

projrT = (vi - £)vi

onto a line L in R™, where v7 is a unit vector in
L. If we view the vector v as an n x 1 matrix
and the scalar v3 - as a 1 x 1, we can write

proj = vi(vy - ¥)
= il T

= M=,

where M = vivil. Note that v is an n x 1
matrix and vi% is 1 x n, so that M is n x n, as
expected.

More generally, consider the projection
44



proju = (v1 - Z)v1 + - + (v - ©)vm

onto a subspace V of R™ with orthonormal ba-
Sis v1,...,um. We can write

Projyt = ’U_i’U_in e U}L’U}}LT:E'

= (ﬁv‘iT + ...+ vﬁw}’nT):E'




Fact 5.3.10 The matrix of an orthogonal
projection

Consider a subspace V of R™ with orthonormal
basis v1,v>,...,vm. T he matrix of the orthog-
onal projection onto V is

AAT where A= | v U5 ... un

Pay attention to the order of the factors (AAT
as opposed to AT A).

EXAMPLE 7 Find the matrix of the orthogo-
nal projection onto the subspace of R4 spanned
by

1 1

S 1 . —1

Vi =3 1 =3 1
_1_ L 1_

45



Solution

Note that the vectors v3 and v5 are orthonor-
mal. Therefore, the matrix is

1 1
T 1]1 -1 1 1 11
A4t =7 1 —1 [1—1—11]
_1 1_
1 0 0 17
1101 10
~2|0110
1 0 0 1

Exercises 5.3: 1, 3, 5, 11, 13, 15, 20



5.4 LEAST SQUARES AND DATA FIT-
TING

ANOTHER CHARACTERIZATION OF ORTHOG-
ONAL COMPLEMENTS

Consider a subspace V = im(A) of R", where
A = [qfl ... v}b} . Then,

Vi={ZinR":¥.£=0, forall §inV }
={ZinR":v;-2=0,fori=1,... m}

={ZinR":glZ =0, for i

|
‘I—‘
3

AT: — U2 —

46



Fact 5.4.1 For any matrix A,
(im A)L = ker (471).

Example: consider the line

1
V=tm]|?2
3

Then
Vi=ker[1 2 3]

is the plan with equation 1 4+ 2x5 + 3x3 = 0.
(See Figure 1)

Fact 5.4.2 Consider a subspace V of R™. then,
a. dim(V) +dim(VH) =n
b. (VH)+t =V

c. VN V+={0}

a7



Proof

a. Let V = im(A) and ker(AT) = vL. Fact
3.3.9 tells us that n = dim(imAL) 4+ dim(kerAL)
= rank(AT) + dim(V1Y) =rank(A)+dim(V1)
=dim(V)4+dim(V+1) by Fact 5.3.9.

b. First observe that V C (VL)i, since a vec-
tor in V is orthogonal to every vector in VL
(by definition of V). Furthermore, the dimen-
sions of the two spaces are equal, by part(a):

dim(VEH)T = n — dim(V')
=n—(n—dim(V))
= dim (V).
It follows that the two spaces are equal. (See

Exercise 3.3.41.)

c. If Zisin V and in V1, then ¥ is orthogonal
to itself; that is, & - & = ||#||° = 0, and thus &
0.



Fact 5.4.3
a. If Ais an m xn matrix, then

ker(A) = ker(AT A).

b. If A is an m xn matrix with ker(A) = {0},
then AT A is invertible.

Proof

a. Clearly, the kernel of A is contained in the
kernel kernel of AT A, Conversely, consider a
vector Z in the kernel of AT A, so that AT Az =
0 Then, AZ is in the image of A and in the
kernel of AL, Since ker(A?) is the orthogonal
complement of im(A) by Fact 5.4.1, the vector
AZ is 0 by Fact 5.4.2(c), that is, & is in the
kernel of A.

b. Note that AT A is an n xn matrix. By part
(a), ker(ATA) = {0}, and AT A is therefore in-
vertible.(See Summary 3.3.11)
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An Alternative Characterization of Orthog-
onal Projections

Fact 5.4.4

Consider a vector £ in R™ and a subspace V of
R™. Then, the orthogonal projection projy is
the vector in V closest to Z, in that

|Z — projy || < ||& — ],
for all v in V different from projyx
Least-Squares Approximations

Definition 5.4.5 Least-squares solution
Consider a linear system

AZ = b,

where A is an m*xn matrix. A vector £* in R" is

called a least — squares solution Of this system
if ||b — Ax*|| < ||b — AZ|| for all £ in R™.
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The vector £* is a least-square solution
of the system AZX = b

{ Def 5.4.5
b — AZ*|| < ||b — AZ|| for all Z in R™.
 Def5.4.4
AZ* = projyb, where V= im(A)
{ Fact 5.1.6 and 5.4.1
b— AT* is in VL = im(A)L = ker(AT)
T
AT(b — A7*) =0

)

AT Az = AT
50



Fact 5.4.6 The normal equation
The least-squares solutions of the system

—

AZ =,

are the exact solutions of the (consistent) sys-
tem

Al Az = A™Y,
The system AT Az = ATb is called the normal
equation Of Axr = b

Fact 5.4.7
If ker(A) = {0}, then the linear system

AZ = b,
has the unique least-squares solution
7 = (AT A)~1ATh
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Example 1 Use Fact 5.4.7 to find the least-
squares solution £* of the system

Axr = 5, where A =

— =
WN =
Q)
>
o
o

O
O
6

what is the geometric relationship between Ax™*
and b7

Solution We compute

_1
7 = (AT A)-1AT} = [ _gl and Az = | 2
5

Recall that AzZ™ is the orthogonal projection of
b onto the image of A.

52



Fact 5.4.8 The matrix of an orthogonal
projection

Consider a subspace V of R"™ with basis 71,
272,..., Um. Let

— —

A= | vy, Up, ..., fum]

Then the matrix of the orthogonal projection
onto V is

AAT A1 AT,

This means we are not required to find an or-
thonormal basis of V here. If the vectors v;
happen to be orthonormal, then ATA = I,,
and the formula simplifies to AT A. (See Fact
5.3.10.)
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Example 2 Find the matrix of the orthogonal
projection onto the subspace of R4 spanned by
the vector

1 1
1 2
1 and 3
_1_ _4_
Solution Let
4 1
1 2|,
A= 1 3
_14_
and compute
7 4 1 -2
4 3 2 1
T AN—1 AT —
A(ATA)AT = 1 2 3 4
| —2 1 4 7
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Data Fitting Scientists are often interested
in fitting a function of a certain type to data
they have gathered. The functions considered
could be linear, polynomial, relational’ trigono-
metric, or exponential. The equations we have
to solve as we fit data are frequently linear.
(See Exercises 29 and 30 of section 1.1, and
Exercises 30 through 33 of Section 1.2.)

Example 3 Find a cubic polyonmial whose
graph passes through the points (1, 3), (-1,
13), (2, 1), (-2, 33).

Solution We are looking for a function
f(t) = cog + 1t + 62t2 -+ C3t3
such that f(1) = 3, f(-1) = 13, f(2) = 1,

f(-2) = 33; that is, we have to solve the linear
system
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co + c1
c0 — C1
co + 21
co — 2c

_|_
_|_

2
2

+ 4co
+ 4c2

_|_
_I_

c3
C3
3c3
3c3

This linear system has the unique solution

=)
€1
c2
c3

- _1 -

5
—4
3

Thus, the cubic polynomial whose graph passes
through the four given data points if f(t) =
5 — 4t + 3t2 — t3, as shown in Figure 6.
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Example 4 Fit a quadratic function to the four
data points (a1, b1) = (-1, 8), (ao, by) = (0,
8), (a3, b3) = (1, 4), and (aa, bs) = (2, 16).

Solution We are looking for a function f(t) =
co + c1t + Cot? such that

f(a1) = b1 co —c1+ co =8 ‘o
fla2) = b2 co =38
flaz)=bs | %" | co 4e1+eo —4 |OFA4] @
f(as) = bs co +2c1+4cr =16 €2
where
1 —1 1] [ 8 ]
1 O O > 3
A= 1 11 and b = 4
1 2 4 | 16 |
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We have four equations, corresponding to the
four data points, but only three unknowns, the
three coefficients of a quadratic polynomial.
Check that this system is indeed inconsistent.
T he least-squares solution is

cH . 5
= |ct | =@ArA) ATy = | -1
| ] | 3

T he least-squares approximation is

f*(t) = 5 —t+ 3t2, as shown in Figure 7. This
quadratic function f*(t) fits the data points
best, in that the vector

e
e a
AT = f*(a3z)
| f*(ag)

IS close as possible to
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This means that

16 - A2 = (b1 - f*(a1))? + (b2 - f*(a2))? +
(b3 - f*(a3))? 4 (ba - f*(aq))?

iIs minimal: The sum of the squares of the ver-
tical distances between graph and data points
is minimal. (See Figure 8.)



Example 5 Find the linear function cg 4+ cqt
that best fits the data points (a1, b1), (ao,
b>),...,(an, bn), use least squares. Assume that

a17ao.

Solution We attempt to solve the system

co + cia; = b
co + ciar = bo
co + cian = bp
or
i 1 a/]_ | i b]_ |
1 a» co| _ | bo
S c1 | p|
1 an | by, |
or
AlDCl=5p
1
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Note that rank(A) = 2, since aij7#a>. The
least-squares solution is

X —
V| = (ATA)1ATh =
C
1
_ _ -1 _
[1... 1]1:“1: [1 1] b1
ai ... an _1 an_ ai ... Qan _bn
—1
. n ZZ'CLZ' Zibi
Ziai Ziag Ziaibi

(where >, refers to the sum for ¢ = 1,...,n)

We have found that

ox = (Zia)(T5) (3 a) (X, aiby)
0 n(;a2)— (2 a:)? '
O — n(EL aibi)—(Zi ai)(Zi b;)
1 n(ZZ %2)—(27; az‘)Q .

There formulas are well known to statisticians.
There is no need to memorize them.




Example 6 In the accompanying table, we list
the scores of five students in the three exams
given in a class.

Find the function of the form f = cg + c1h
+ com that best fits these data, using least
squares. what score f does your formula pre-
dict for Marlisa, another student, whose scores
in the first two exams were h = 92 and m =
727

Solution

We attempt to solve the system

co + 76cy + 48cr = 43
co + 92¢1 + 92¢o» = 90
co + 68cy + 82cr = 64
co + 86cy + 68cr = 69
co + 54cy + 70cr = 50
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T he least-squares solution is

c . —42 .4
ct|. = (ATA)~1ATh ~ | 0.639
c5 0.799

The function which gives the best fit is approx-
imately

f=-42.4 4+ 0.639h 4+ 0.799m.
The formula predicts the score

f=-42.4 4+ 0.639 - 92 + 0.799 - 72 ~ 74.

for Marlisa.
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