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3.1 Image and Kernal of a Linear Trans-

formation

Definition. Image

The image of a function consists of all the

values the function takes in its codomain. If f

is a function from X to Y , then

image(f) = {f(x): x ∈ X}
= {y ∈ Y : y = f(x), for some x ∈ X}

Example. See Figure 1.

Example. The image of

f(x) = ex

consists of all positive numbers.

Example. b ∈ im(f), c 6∈ im(f) See Figure 2.

Example. f(t) =

[
cos(t)
sin(t)

]
(See Figure 3.)

1



Example. If the function from X to Y is in-

vertible, then image(f) = Y . For each y in Y ,

there is one (and only one) x in X such that

y = f(x), namely, x = f−1(y).

Example. Consider the linear transformation

T from R3 to R3 that projects a vector or-

thogonally into the x1 − x2-plane, as illustrate

in Figure 4. The image of T is the x1−x2-plane

in R3.

Example. Describe the image of the linear

transformation T from R2 to R2 given by the

matrix

A =

[
1 3
2 6

]

Solution

T

[
x1
x2

]
= A

[
x1
x2

]
=

[
1 3
2 6

] [
x1
x2

]
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= x1

[
1
2

]
+ x2

[
3
6

]
= x1

[
1
2

]
+ 3x2

[
1
2

]

= (x1 + 3x2)

[
1
2

]

See Figure 5.

Example. Describe the image of the linear

transformation T from R2 to R3 given by the

matrix

A =




1 1
1 2
1 3




Solution

T

[
x1
x2

]
=




1 1
1 2
1 3




[
x1
x2

]
= x1




1
1
1


 + x2




1
2
3




See Figure 6.



Definition. Consider the vectors ~v1, ~v2, . . . ,

~vn in Rm. The set of all linear combinations of

the vectors ~v1, ~v2, . . . , ~vn is called their span:

span(~v1, ~v2, . . . , ~vn)

={c1~v1 + c2~v2 + . . .+ cn~vn: ci arbitrary scalars}

Fact The image of a linear transformation

T (~x) = A~x

is the span of the columns of A. We denote

the image of T by im(T ) or im(A).

Justification

T (~x) = A~x =



| |
~v1 . . . ~vn

| |







x1
x2
...

xn




= x1 ~v1 + x2 ~v2 + . . . + xn ~vn.
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Fact: Properties of the image

(a). The zero vector is contained in im(T ),
i.e. ~0 ∈ im(T ).

(b). The image is closed under addition:
If ~v1, ~v2 ∈ im(T ), then ~v1 + ~v2 ∈ im(T ).

(c). The image is closed under scalar multipli-
cation: If ~v ∈ im(T ), then k~v ∈ im(T ).

Verification

(a). ~0 ∈ Rm since A~0 = ~0.

(b). Since ~v1 and ~v2 ∈ im(T ), ∃ ~w1 and ~w2 st.
T ( ~w1) = ~v1 and T ( ~w2) = ~v2. Then, ~v1 + ~v2 =
T ( ~w1) + T ( ~w2) = T ( ~w1 + ~w2), so that ~v1 + ~v2

is in the image as well.

(c). ∃ ~w st. T (~w) = ~v. Then k~v = kT (~w) =
T (k ~w), so k~v is in the image.
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Example. Consider an n× n matrix A. Show

that im(A2) is contained in im(A).

Hint: To show ~w is also in im(A), we need to

find some vector ~u st. ~w = A~u.

Solution

Consider a vector ~w in im(A2). There exists

a vector ~v st. ~w = A2~v = AA~v = A~u where

~u = A~v.
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Definition. Kernel

The kernel of a linear transformation T (~x) =

A~x is the set of all zeros of the transformation

(i.e., the solutions of the equation A~x = ~0. See

Figure 9.

We denote the kernel of T by ker(T ) or ker(A).

For a linear transformation T from Rn to Rm,

• im(T ) is a subset of the codomain Rm of

T , and

• ker(T ) is a subset of the domain Rn of T .
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Example. Consider the orthogonal project onto

the x1 − x2−plane, a linear transformation T

from R3 to R3. See Figure 10.

The kernel of T consists of all vectors whose

orthogonal projection is ~0. These are the vec-

tors on the x3−axis (the scalar multiples of ~e3).
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Example. Find the kernel of the linear trans-
formation T from R3 to R2 given by

T (~x) =

[
1 1 1
1 2 3

]

Solution

We have to solve the linear system

T (~x) =

[
1 1 1
1 2 3

]
~x = ~0

rref

[
1 1 1 0
1 2 3 0

]
=

[
1 0 −1 0
0 1 2 0

]

x1 − x3 = 0
x2 + 2x3 = 0




x1
x2
x3


 =




t
−2t

t


 = t




1
−2
1




The kernel is the line spanned by




1
−2
1


.
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Example. Find the kernel of the linear trans-

formation T from R5 to R4 given by the matrix

A =




1 5 4 3 2
1 6 6 6 6
1 7 8 10 12
1 6 6 7 8




Solution We have to solve the linear system

T(~x) = A~0 = ~0

rref(A) =




1 0 −6 0 6
0 1 2 0 −2
0 0 0 1 2
0 0 0 0 0


 .

The kernel of T consists of the solutions of the

system

∣∣∣∣∣∣∣

x1 −6x3 +6x5 = 0
x2 +2x3 −2x5 = 0

x4 +2x5 = 0

∣∣∣∣∣∣∣
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The solution are the vectors

~x =




x1
x2
x3
x4
x5




=




6s− 6t
−2s + 2t

s
−2t

t




where s and t are arbitrary constants .

ker(T)=




6s− 6t
−2s + 2t

s
−2t

t




: s , t arbitrary scalars

We can write




6s− 6t
−2s + 2t

s
−2t

t




= s




6
−2
1
0
0




+ t




−6
2
0

−2
1






This shows that

ker(T) = span







6
−2
1
0
0




,




−6
2
0

−2
1









Fact 3.1.6: Properties of the kernel

(a) The zero vector ~0 in Rn in in ker(T ).
(b) The kernel is closed under addition.
(c) The kernel is closed under scalar multipli-
cation.

The verification is left as Exercise 49.

Fact 3.1.7
1. Consider an m*n matrix A then

ker(A) = {~0}

if (and only if ) rank(A) = n.(This implies that
n ≤ m.)

Check exercise 2.4 (35)

2. For a square matrix A,

ker(A) = {~0}

if (and only if ) A is invertible.
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Summary
Let A be an n*n matrix . The following state-
ments are equivalent (i.e.,they are either all
true or all false):

1. A is invertible.

2. The linear system A~x = ~b has a unique
solution ~x , for all ~b in Rn. (def 2.3.1)

3. rref(A) = In. (fact 2.3.3)

4. rank(A) = n. (def 1.3.2)

5. im(A) = Rn. (ex 3.1.3b)

6. ker(A) = {~0}. (fact 3.1.7)

Homework 3.1: 5, 6, 7, 14, 15, 16, 31, 33,
42, 43
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3.2 Subspaces of Rn Bases and Linear In-

dependence

Definition. Subspaces of Rn

A subset W of Rn is called a subspace of Rn if

it has the following properties:

(a). W contains the zero vector in Rn.

(b). W is closed under addition.

(c). W is closed under scalar multiplication.

Fact 3.2.2

If T is a linear transformation from Rn to Rm,

then

¦ ker(T ) is a subspace of Rn

¦ im(T ) is a subspace of Rm
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Example. Is W =

{[
x
y

]
∈ R2 : x ≥ 0, y ≥ 0

}

a subspace of R2?

See Figure 1, 2.

Example. Is W =

{[
x
y

]
∈ R2 : xy ≥ 0

}
a sub-

space of R2?

See Figure 3, 4.

Example. Show that the only subspaces of

R2 are: {~0}, any lines through the origin, and

R2 itself.

Similarly, the only subspaces of R3 are: {~0},
any lines through the origin, any planes through
~0, and R3 itself.
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Solution

Suppose W is a subspace of R2 that is neither

the set {~0} nor a line through the origin. We

have to show W = R2.

Pick a nonzero vector ~v1 in W . (We can find

such a vector, since W is not {~0}.) The sub-

space W contains the line L spanned by ~v1, but

W does not equal L. Therefore, we can find

a vector ~v2 in W that is not on L (See Figure

5). Using a parallelogram, we can express any

vector ~v in R2 as a linear combination of ~v1

and ~v2. Therefore, ~v is contained in W (Since

W is closed under linear combinations). This

shows that W = R2 , as claimed.
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A plane E in R3 is usually described either by

x1 + 2x2 + 3x3 = 0

or by giving E parametrically, as the span of

two vectors, for example,




1
1
−1


 and




1
−2
1


.

In other words, E is described either as

ker[ 1 2 3 ]

or

im




1 1
1 −2

−1 1



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Similarly, a line L in R3 may be described either

parametrically, as the span of the vector



3
2
1




or by two linear equations
∣∣∣∣∣

x1 − x2 − x3 = 0
x1 − 2x2 + x3 = 0

∣∣∣∣∣
Therfore

L = im




3
2
1


 = ker

[
1 −1 −1
1 −2 1

]

A subspace of Rn is uaually presented either

as the solution set of a homogeneous linear

system (as a kernel) or as the span of some

vectors (as an image).

Any subspace of Rn can be represented as the

image of a matrix.
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Bases and Linear Independence

Example. Consider the matrix

A =




1 1 2 2
1 2 2 3
1 3 2 4




Find vectors ~v1, ~v2, · · · , ~vm in R3 that span the

image of A. What is the smallest number of

vectors needed to span the image of A?

Solution

We know from Fact 3.1.3 that the image of A

spanned by the columns of A,

~v1 =




1
1
1


, ~v2 =




1
2
3


, ~v3 =




2
2
2


, ~v4 =




2
3
4



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Figure 6 show that we need only ~v1 and ~v2 to

span the image of A. Since ~v3 = ~v2 and ~v4 =

~v1 + ~v2, the vectors ~v3 and ~v4 are redundant;

that is, they are linear combinations of ~v1 and

~v2:

im(A) = span( ~v1, ~v2, ~v3, ~v4)

= span( ~v1, ~v2) .

The image of A can be spanned by two vectors,

but not by one vectors alone.
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Definition. Linear independence; basis

Consider a sequence ~v1, . . . , ~vm of vectors in a

subspace V of Rn.

The vectors ~v1, . . . , ~vm are called linearly inde-

pendent if nono of them is a linear combina-

tion of the others.

We say that the vectors ~v1, . . . , ~vm form a basis

of V if they span V and are linearly indepen-

dent.

See last example. The vectors ~v1, ~v2, ~v3, ~v4

span

V = im(A)

but they are linearly dependent, because ~v4= ~v2+ ~v3.

Therefore, they do not form a basis of V . The

vectors ~v1, ~v2, on the other hand, do span V

and are linearly independent.
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Definition. Linear relations

Consider the vectors ~v1, . . . , ~vm in Rn. An equa-

tion of the form

c1~v1 + c2~v2 + . . . + cm~vm = ~0

is called a (linear) relation among the vec-

tors ~vi. There is always the trievial relation,

with c1 = c2 = · · · = cm = 0. Nontrivial rela-

tions may or may not exist among the vectors

~v1, . . . , ~vm in Rn.
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Fact 3.2.5

The vectors ~v1, . . . , ~vm in Rn are linearly de-

pendent if (and only if) there are nontrivial

relations among them.

Proof

⇒ If one of the ~vi s a linear combination of the

others,

~vi = c1~v1+· · ·+ci−1~vi−1+ci+1~vi+1+. . .+cm~vm

then we can find a nontrivial relation by sub-

tracting ~vi from both sides of the equations:

c1~v1+· · ·+ci−1~vi−1−~vi+ci+1~vi+1+. . .+cm~vm = ~0

⇐ Conversely, if there is a nontrivial relation

c1~v1 + · · ·+ ci~vi + . . . + cm~vm = ~0

then we can solve for ~vi and express ~vi as a

linear combination of the other vectors.
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Example. Determine whether the following

vectors are linearly independent




1
2
3
4
5



,




6
7
8
9

10



,




2
3
5
7

11



,




1
4
9

16
25



.

Solution

TO find the relations among these vectors, we

have to solve the vector equation

c1




1
2
3
4
5


 + c2




6
7
8
9

10


 + c3




2
3
5
7

11


 + c4




1
4
9

16
25


 =




0
0
0
0
0



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or



1 6 2 1
2 7 3 4
3 8 5 9
4 9 7 16
5 10 11 25







c1

c2

c3

c4


 =




0
0
0
0
0




In other words, we have to find the kernal of

A. To do so, we compute rref(A). Using

technology, we find that




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0




This shows the kernel of A is {~0}, because

there is a leading 1 in each column of rref(A).

There is only the trivial relation among the

four vectors and they are therefore linearly in-

dependent.
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Fact 3.2.6

The vectors ~v1, . . . , ~vm in Rn are linearly inde-

pendent if (and only if)

ker



| | |

~v1 ~v2 . . . ~vm

| | |


 = {~0}

or, equivalently, of

rank



| | |

~v1 ~v2 . . . ~vm

| | |


 = m

This condition implies that m ≤ n.
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Fact 3.2.7

Consider the vectors ~v1, . . . , ~vm in a subspace

V of Rn.

The vectors ~vi are a basis of V if (and only if)

every vector ~v in V can be expressed uniquely

as a linear combination of the vectors ~vi.

Proof

⇒ Suppose vectors ~vi are a basis of V , and

consider a vector ~v in V . Since the basis vec-

tors span V , the vector ~v can be written as

a linear combination of the ~vi. We have to

demonstrate that this representation is unique.

If there are two representations:

~v = c1~v1 + c2~v2 + . . . + cm~vm

= d1~v1 + d2~v2 + . . . + dm~vm

By subtraction, we find

~0 = (c1−d1)~v1+(c2−d2)~v2+ . . .+(cm−dm)~vm
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Since the ~vi are linearly independent, ci−di = 0,

or ci = di, for all i.

⇐, suppose that each vector in V can be ex-

pressed uniquely as a linear combination of the

vectors ~vi. Clearly, the ~vi. span V . The zero

vector can be expressed uniquely as a linear

combination of the ~vi, namely, as

~0 = 0~v1 + 0~v2 + . . . + 0~vm

This means there is only the trivial relation

among the ~vi: they are linearly independent.



See Figure 7. The vectors ~v1, ~v2, ~v3, ~v4 do not

form a basis of E, since every vector in E can

be expressed in more than one way as a linear

combination of the ~vi. For example,

~v4 = ~v1 + ~v2 + 0~v3 + 0~v4

but also

~v4 = 0~v1 + 0~v2 + 0~v3 + 1~v4.

Homework 3.2: 3, 5, 9, 17, 18, 19, 29, 30,

39
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3.3 The Dimension of a Subspace of Rn

Fact 3.3.2

All bases of a subspace V of Rn consist of the

same number of vectors.

Hint Basis: linear independent and span V

(Def 3.2.3)

Fact 3.3.1

Consider vectors ~v1, ~v2, ..., ~vp and ~w1, ~w2, ...,

~wq in a subspace V of Rn. If the vectors ~vi are

linearly independent, and the vectors ~wj span

V , then p ≤ q.
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Proof 3.3.2
Consider two bases ~v1, ~v2, ..., ~vp and ~w1, ~w2,
..., ~wq of V . Since the ~vi are linearly indepen-
dent, and the vectors ~wj span V , we have p ≤ q.
Like wise, since the ~wj are linearly independent
and the ~vi span V , we have q ≤ p. Therefore,
p = q.

Proof 3.3.1

~v1 = a11 ~w1 + · · ·+ a1q ~wq
... ... ...

~vp = ap1 ~w1 + · · ·+ apq ~wq

Write each of these equations in matrix form:


| |

~w1 . . . ~wq

| |







a11
...

a1q


 = ~v1

. . .


| |

~w1 . . . ~wq

| |







ap1
...

apq


 = ~vp
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Combine all these equations into one matrix

equation:


| |

~w1 . . . ~wq

| |







a11 . . . ap1
... ...

a1q . . . apq


 =



| |

~v1 . . . ~vp

| |




MA = N

Because

A~x = ~0, MA~x = N~x = ~0

The kernel of A is contained in the kernel of

N .

Since the kernel of N is {~0} (since the ~vi are

linearly independent), the kernel of A is {~0} as

well.

This implies that rank(A) = p ≤ q (by Fact

3.1.7).
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Definition. Dimension

Consider a subspace V of Rn. The number of

vectors in a basis of V is called the dimension

of V , denoted by dim(V ).

What is the dimension Rn itself?

Clearly, Rn ought to have dimension n. This is

indeed the case: the vectors ~e1, ~e2, . . . , ~en form

a basis of Rn called its standard basis.

A plane E in R3 is two-dimensional.
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Fact 3.3.4

Consider a subspace V of Rn with dim(V ) = m

1. We can find at most m linearly independent

vectors in V .

2. We need at least m vectors to span V .

3. If m vectors in V are linearly independent,

then they form a basis of V .

4. If m vectors span V , then they form a basis

of V .
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Proof 3.3.4 (3)

Consider linearly independent vectors ~v1, ~v2,

..., ~vm in V . We have to show that the ~vi

span V . Pick a ~v in V . Then the vectors ~v1,

~v2, ..., ~vm, ~v will be linearly dependent, by (1).

Therefore, there is a nontrivial relation

c1~v1 + · · ·+ cm~vm + c~v = ~0

We can solve the relation for ~v and express

it as a linear combination of the ~vi. In other

words, the ~vi span V .
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Finding a Basis of the Kernel

Example. Find a basis of the kernel of the

following matrix, and determine the dimension

of the kernel:

A =

[
1 2 0 3 0
2 4 1 9 5

]

Solution

A =

[
1 2 0 3 0
2 4 1 9 5

]

−2(I)

−→ rref(A) =

[
1 2 0 3 0
0 0 1 3 5

]

This corresponds to the system
∣∣∣∣∣

x1 + 2x2 3x4 = 0
x3 + 3x4 +5x5 = 0

∣∣∣∣∣
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with general solution



x1
x2
x3
x4
x5




=




−2s− 3t
s

−3t− 5r
t
r




= s




−2
1
0
0
0



+t




−3
0
−3
1
0



+r




0
0
−5
0
1




↑ ↑ ↑
~v1 ~v2 ~v3

The tree vectors ~v1, ~v2, ~v3 span ker(A) and form
a basis of the kernel of A (i.e. linearly inde-
pendent).

dim(ker A)=(number of nonleading variables)
=(number of columns of A)-(number of lead-
ing variables)
=(number of columns of A)-rank(A)
=5-2 =3

Fact 3.3.5
Consider an m× n matrix A.

dim(kerA) = n− rank(A)



Finding a Basis of the Image

Example. Find a basis of the image of the

linear transformation T from R5 to R4 with

matrix

A =




1 0 1 2 1
1 0 1 2 2
2 1 0 1 2
1 1 −1 −1 0




and determine the dimenson of the image.

Solution

We know the columns of A span the image

of A, but they are linearly dependent in this

example. To construct a basis of im(A), we

could find a relation among the columns of A,

express one of the columns as linear combina-

rtion of the others, and then omit this vector

as redundant.

34



We first find the reduced row-echelon form of

A:

A =




1 0 1 2 1
1 0 1 2 2
2 1 0 1 2
1 1 −1 −1 0




↑ ↑ ↑ ↑ ↑
~v1 ~v2 ~v3 ~v4 ~v5

E = rref(A) =




1 0 1 2 0
0 1 −2 3 0
0 0 0 0 1
0 0 0 0 0




↑ ↑ ↑ ↑ ↑
~w1 ~w2 ~w3 ~w4 ~w5

By inspection, we can express any column of

rref(A) that does not contain a leading 1 as a

linear combination of earlier columns that do

contain a leading 1.

~w3 = ~w1 − 2~w2, and ~w4 = 2~w1 − 3~w2



It may surprise you that the same relationships

hold among the corresponding columns of the

matrix A.

~v3 = ~v1 − 2~v2, and ~v4 = 2~v1 − 3~v2

Since ~w1, ~w2, and ~w5 are linearly independent,

so are the vectors ~v1, ~v2, and ~v5. (Why?)

The vectors ~v1, ~v2, and ~v5 alone span the im-

age of A, since any vector ~v in the image of A

can be expressed as

~v = c1 ~v1 + c2 ~v2 + c3 ~v3 + c4 ~v4 + c5 ~v5

= c1 ~v1+c2 ~v2+c3( ~v1−2 ~v2)+c4(2 ~v1−3 ~v2)+c5 ~v5

Therefore, the vectors ~v1, ~v2, and ~v5 form a

basis of im(A), and thus dim(imA) = 3.



Definition.

A column of a matrix A is called a pivot col-

umn if the corresponding column of rref(A)

contains a leading 1.

Fact 3.3.7 The pivot columns of a matrix A

form a basis of im(A).

Fact 3.3.8 For any matrix A,

rank(A) = dim(imA).
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Fact 3.3.9 Rank-Nullity Theorem

If A is an m× n matrix, then

dim(kerA) + dim(imA) = n.

The dimension of the kernel of matrix A is

called the nullity of A:

nullity(A) = dim(kerA).

Using this definition and Fact 3.3.8, we can

write:

nullity(A) + rank(A) = n.

⇒ The larger the kernel, the smaller the image,

and vice versa.
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Bases of Rn

How can we tell n given vectors ~v1, ~v2, . . . , ~vn in
Rn form a basis?

The ~vi form a basis of Rn if every vector ~b in Rn

can be written uniquely as a linear combination
of the ~vi:

~b = c1~v1+c2~v2+· · ·+cn~vn =



| | |

~v1 ~v2 · · · ~vn

| | |







c1
c2
...

cn




The linear system



| | |

~v1 ~v2 · · · ~vn

| | |







c1
c2
...

cn


 = ~b

has a unique solution if (only if) the n×n ma-
trix 


| | |

~v1 ~v2 · · · ~vn

| | |




is invertible.
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Fact 3.3.10 The vectors ~v1, ~v2, . . . , ~vn in Rn

form a basis of Rn if (and only if) the matrix


| | |

~v1 ~v2 · · · ~vn

| | |




is invertible.

Example. Are the following vectors a basis of

R4?

~v1=




1
2
9
1


, ~v2=




1
4
4
8


, ~v3=




1
8
1
5


, ~v4=




1
9
7
3



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Solution

We have to check whether the matrix




1 1 1 1
2 4 8 9
9 4 1 7
1 8 5 3




is invertible. Using technology, we find that

reff




1 1 1 1
2 4 8 9
9 4 1 7
1 8 5 3


 =I4

Thus, the vectors ~v1, ~v2, ~v3, ~v4 form a basis of

R4
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Summary 3.3.11

Consider an n× n matrix


| | |

~v1 ~v2 · · · ~vn

| | |




Then the following statements are equivalent:

1. A is invertible.

2. The linear system A~x = ~b has a unique

solution ~x, for all ~b for all ~b in Rn.

3. rref(A) = In.

4. rank(A) = n.

5. im(A) = Rn.
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6. ker(A) = {~0}.

7. The ~vi are a basis of Rn.

8. The ~vi span Rn.

9. The ~vi are linearly independent.

Homework 3.3 6, 7, 8, 17, 18, 27, 31, 33,

39, 58, 59



Exercise 49: Find a basis of the row space of

the matrix:



0 1 0 2 0
0 0 1 3 0
0 0 0 0 1
0 0 0 0 0




Exercise 51: Consider an arbitrary m×n ma-

trix A.

1. What is the relationship between the row

spaces of A and E = rref(A)?

2. What is the relationship between the di-

mension of the row space of A and the

rank of A?
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3.4 COORDINATES

EXAMPLE 1

Let V be the plane in R3 with equation
x1+2x2+3x3=0, a two-dimensional subspace
of R3. We can describe a vector in this plane by
its spatial (3D)coordinates; for example, vec-
tor

~x =




5
−1
−1




is in plane V . However, it may be more conve-
nient to introduce a plane coordinate system
in V .

Consider any two vectors in plane V that aren’t
parallel, e.g.

~v1 =




1
−1
−1


 and ~v2 =




1
−2
1



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See Figure 1, where we label the new axes c1
and c2, with the new coordinate grid defined

by vectors ~v1 and ~v2.

Note that the c1 - c2 coordinates of vector ~v1

is

[
c1
c2

]
=

[
1
0

]
and the coordinates of vector

~v2 is

[
0
1

]
, respectively.

For a vector ~x in plane V , we can find the

scalars c1 and c2 such that

~x = c1 ~v1 + c2 ~v2.

For example, ~x =




5
−1
−1


 = 3




1
1

−1


 +2




1
−2
1



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Therefore, the c1 − c2 coordinates of ~x are

[
c1
c2

]
=

[
3
2

]

See Figure 3.

Let’s denote the basis ~v1, ~v2 of V by B

(Fraktur B). Then, the coordinate vector of ~x

with respect to B is denoted by
[

~x
]
B:

If ~x=




5
−1
−1


, then

[
~x

]
B=

[
3
2

]
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Definition 3.4.1
Coordinates in a subspace of Rn

Consider a basis B of a subspace V of Rn,
consisting of vectors ~v1, ~v2, ..., ~vm. Any vector
~x in V can be written uniquely as

~x=c1 ~v1+c2 ~v2+...+cm ~vm

The scalars c1, c1, ..., cm are called the B-
coordinates of ~x, and the vector




c1
c2
...

cm




is called the B-coordinate vector of ~x, denoted
by

[
~x

]
B.

Note that

~x = S
[

~x
]
B

where S =



| | |

~v1 ~v2 . . . ~vm

| | |


, an n×m matrix.
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EXAMPLE 2
Consider the basis B of R2 consisting of vectors

~v1=

[
3
1

]
and ~v2=

[
−1
3

]

a. If ~x =

[
10
10

]
, find

[
~x

]
B

b. If
[

~x
]
B

=

[
2

−1

]
, find ~x

Solution
a. To find the coordinates of vector ~x, we need
to write ~x as a linear combination of the basis
vectors:

~x = c1 ~v1+c2 ~v2, or

[
10
10

]
= c1

[
3
1

]
+c2

[
−1
3

]

Alternatively, we can solve the equation

~x = S
[

~x
]
B

=

[
3 −1
1 3

] [
~x

]
B

for
[

~x
]
B

=

[
c1
c2

]
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[
~x

]
B

= S−1~x =

[
3 −1
1 3

]−1 [
10
10

]

= 1
10

[
3 1

−1 3

] [
10
10

]
=

[
4
2

]

b. By definition of coordinates,
[

~x
]
B

=

[
2

−1

]

means that

~x = 2 ~v1+(−1) ~v2 = 2

[
3
1

]
+(−1)

[
−1
3

]
=

[
7

−1

]

Alternatively, use the formula

~x = S
[

~x
]
B=

[
3 −1
1 3

] [
2

−1

]
=

[
7

−1

]
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EXAMPLE 3

Let L be the line in R2 spanned by vector

[
3
1

]
.

Let T be the linear transformation from R2 to
R2 that projects any vector orthogonally onto
line L, as shown in Figure 5.

1. In ~x1 − ~x2 coordinate system (See Figure
5): Sec 2.2 (pp. 59).

2. In c1−c2 coordinate system (See Figure 6):

T transforms vector

[
c1
c2

]
into

[
c1
0

]
.

That is, T is given by the matrix B =[
1 0
0 0

]
, since

[
1 0
0 0

] [
c1
c2

]
=

[
c1
0

]

The transforms from
[

~x
]
B

into
[

T (~x)
]
B

is
called the B-matrix of T :

[
T (~x)

]
B

= B
[

~x
]
B
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Definition 3.4.2

The B-matrix of a linear transformation

Consider a linear transformation T from Rn to

Rn and a basis B of Rn. The n × n matrix B

that transforms
[

~x
]
B

into
[

T (~x)
]
B

is called

the B-matrix of T :

[
T (~x)

]
B

=B
[

~x
]
B

for all ~x in Rn.

Fact 3.4.3 The columns of the B-matrix

of a linear transformation

Consider a linear transformation T from Rn to

Rn and a basis B of Rn consisting of vectors

~v1, ~v2, ..., ~vn. Then, the B-matrix of T is

B =
[ [

T ( ~x1)
]
B

[
T ( ~x2)

]
B

...
[

T ( ~xn)
]
B

]

That is, the columns of B are the B-coordinate

vectors of T( ~v1), T( ~v2), ..., T( ~vn).
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EXAMPLE 4
Consider two perpendicular unit vectors ~v1 and
~v2 in R3. Form the basis ~v1, ~v2, ~v3= ~v1 × ~v2 of
R3; let’s denote this basis by B. Find the B-
matrix B of the linear transformation T(~x)= ~v1
× ~x.

(see Exercise 2.1: 44 on pp. 49,


a1
a2
a3


×




b1
b2
b3


 =




a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1


)

Solution
Use Fact 3.4.3 to construct B column by col-
umn:

B =
[ [

T ( ~x1)
]
B

[
T ( ~x2)

]
B

...
[

T ( ~xn)
]
B

]

=
[ [

~v1 × ~v1

]
B

[
~v1 × ~v2

]
B

[
~v1 × ~v3

]
B

]

=
[ [

~0
]
B

[
~v3

]
B

[
− ~v2

]
B

]

=




0 0 0
0 0 −1
0 1 0



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EXAMPLE 5

Let T be the linear transformation from R2 to

R2 that projects any vector orthogonally onto

the line L spanned by

[
3
1

]
. In Example 3, we

found that the matrix of T with respect to the

basis B consisting of

[
3
1

]
and

[
−1
3

]
is

B =

[
1 0
0 0

]

What is the relation ship between B and the

standard matrix A of T (such that T(~x)=A~x)?

Solution

Recall from Definition 3.4.1 that

~x= S
[

~x
]
B
, where S=

[
3 −1
1 3

]

and consider the following diagram: (Figure 7)
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Note that T(~x)=AS
[

~x
]
B

and also T(~x)=SB
[

~x
]
B

,

so that AS
[

~x
]
B

=SB
[

~x
]
B

for all ~x.

Thus,

AS=SB and A=SBS−1

Now we can find the standard matrix A of T :

A=SBS−1

=

[
3 −1
1 3

] [
1 0
0 0

] (
1
10

[
3 1

−1 3

] )

=

[
0.9 0.3
0.3 0.1

]

Alternatively, we could use Fact 2.2.5 to con-

struct matrix A. The point here was to explore

the relationship between matrices A and B.



Fact 3.4.4

Standard matrix versus B-matrix of a linear

transformation

Consider a linear transformation T from Rn to

Rn and a basis B of Rn consisting of vectors

~v1, ~v2, ..., ~vn. Let B be the B-matrix of T and

let A be the standard matrix of T (such that

T(~x)=A~x). Then, AS = SB, B = S−1AS, and

A = SBS−1, where

S =



| | |

~v1 ~v2 . . . ~vm

| | |




Definition 3.4.5 Similar matrices

Consider two n × n matrices A and B. We say

that A is similar to B if there is an invertible

matrix S such that

AS=SB, or B=S−1AS
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EXAMPLE 6

Is matrix A =

[
1 2
4 3

]
similar to B =

[
5 0
0 −1

]
?

Solution

We are looking for a matrix S=

[
x y
z t

]
such

that AS=SB, or
[

x + 2z y + 2t
4x + 3z 4y + 3t

]
=

[
5x −y
5z −t

]
.

These equations simplify to

z = 2x, t = −y,

so that any invertible matrix of the form

S =

[
x y

2x −y

]

does the job. Note that det(S)=-3xy. Matrix

S is invertible if det(S)6=0 (i.e.,if neither x nor

y is zero).
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EXAMPLE 7

Show that if matrix A is similar to B, then its

power At is similar to Bt for all positive integers

t. (That is, A2 is similar to B2, A3 is similar

to B3, etc.)

Solution

We know that B=S−1AS for some invertible

matrix S. Now, Bt

=
(S−1AS)(S−1AS)...(S−1AS)(S−1AS)︸ ︷︷ ︸

t− times

= S−1AtS,

proving our claims. Note the cancellation of

many terms of the form SS−1.
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Fact 3.4.6
Similarity is an equivalence relation

1. An n × n matrix A is similar to itself (Re-
flexivity).

2. If A is similar to B, then B is similar to A

(Symmetry).

3. If A is similar to B and B is similar to C,
then A is similar to C (Transitivity).

Proof
A is similar to B: B = P−1AP

B is similar to C: C = Q−1BQ, then

C = Q−1BQ = Q−1P−1APQ = (PQ)−1A(PQ)

that is, A is similar to C by matrix PQ.

Homework Exercise 3.4: 5, 6, 9, 10, 13, 14,
19, 31, 39
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