
A Fault-Tolerant h-out of-k Mutual Exclusion Algorithm
Using Cohorts Coteries for Distributed Systems

Jehn-Ruey Jiang

Department of Computer Science and Information Engineering
National Central University, Jhongli 320, Taiwan

jrjiang@csie.ncu.edu.tw

Abstract. In this paper, we propose a distributed algorithm for solving the h-out
of-k mutual exclusion problem with the aid of a specific k-coterie  cohorts co-
terie. The proposed algorithm is resilient to node and/or link failures, and has
constant message cost in the best case. Furthermore, it is a candidate to achieve
the highest availability among all the algorithms using k-coteries. We analyze the
algorithm and compare it with other related ones.

1 Introduction

A distributed system consists of interconnected, autonomous nodes which communi-
cate with each other by passing messages. A node in the system may need to enter the
critical section (CS) occasionally to access a shared resource, such as a shared file or a
shared table, etc. The problem of controlling the nodes so that the shared resource is
accessed by at most one node at a time, is called the mutual exclusion problem. If
there are k, k≥1, identical copies of shared resources, such as a k-user software license,
then there can be at most k nodes accessing the resources at a time. This raises the k-
mutual exclusion problem. On some occasions, a node may require to access h (1≤h≤k)
copies out of the k shared resources at a time; for example, a node may need h disks
from a pool of k disks to proceed efficiently. How to control the nodes to acquire the
desired number of resources with the total number of resources accessed concurrently
not exceeding k is called the h-out of k-mutual exclusion problem or the h-out of-k
resource allocation problem [10].

There are at least four distributed h-out of-k mutual exclusion algorithms proposed
in the literature. Raynal proposed the first algorithm in [10] and then three algorithms
using k-arbiters, (h, k)-arbiters, and k-coteries are proposed in [2], [9], and [5], respec-
tively. Among the four algorithms, only Jiang’s algorithm using k-coteries is fault-
tolerant. It can tolerate node and/or network link failures even when the failures lead
to network partitioning. Furthermore, it is shown in [5] to have lower message cost
than others. The basic idea of Jiang’s algorithm is simple: a node should collect enough
permissions from some set of nodes to enter CS. However, there raise some problems
when a node fails to collect enough permissions repeatedly.

In this paper, we proposed another h-out of-k mutual exclusion algorithm using a
specific k-coterie  cohorts coterie to eliminate the problems of Jiang’s algorithm. A
cohorts coterie [4] is a k-coterie [3], which is a collection of sets (called quorums)
satisfying the intersection, the non-intersection and the minimality properties. As we
will show, the proposed algorithm has constant message cost in the best case and is a
candidate to achieve the highest availability, the probability that a node can gather
enough permissions to enter CS in an error-prone environment, among all the algo-
rithms using k-coteries.

The rest of this paper is organized as follows. In Section 2, we introduce some re-
lated work. In Section 3, we propose the h-out of-k mutual exclusion algorithm using
cohorts coteries. In Section 4, we analyze the proposed algorithm and compare it with
related ones. And finally, we give some concluding remarks in Section 5.

2 Related Work

In [10], Raynal proposed the first distributed h-out of-k mutual exclusion algorithm.
Raynal’s algorithm is extended from Ricart and Agrawala’s algorithm [11]. It demands
a node u to send request messages to all other nodes and wait for replies to estimate
the number of unoccupied resources. A node v replies that there are k unoccupied
resources if it is neither using nor requesting shared resources, or if it has lower prior-
ity than the requester (in terms of logical clock [7] order). On the other hand, node v
replies that there are k−h unoccupied resources if v is using h resources or if v is re-
questing h resources with higher priority. For such a case, node v should later reply
again that there are h resources released after it leaves CS. From all the replies, if node
u finds that the estimated number of unoccupied resources is larger than the number of
requested resources, it can enter CS. Raynal’s algorithm has message complexity be-
tween 2(n−1) and 3(n−1), where n is the number of nodes. It is not fault-tolerant since
a node cannot gather replies from all other nodes if there is any failing node.

In [1], Baldoni proposed the concept of arbiter sets to solve the h-out of-k mutual
exclusion problem. Every node is associated with an arbiter set (request set), and any k
arbiter sets should have at least one common member. A node should send request
messages with parameter h (h≤k) to all members of its arbiter set to gather permissions
to access h resources. Every node keeps the number of unoccupied resources, which is
initially k and is decreased by h after granting a request for accessing h resources. The
total number of resources concurrently being accessed is guaranteed to be no more
than k because the common member of any k+1 arbiter sets can serve as the arbiter,
which grants its permission only when the number of unoccupied resources is no less
than the number of requested resources. The algorithm using arbiter sets has the mes-
sage complexity O(q), where q is the size of arbiter sets. Baldoni proved that arbiter
sets have the size lower bound of O(nk/k+1) if all arbiter sets have the same size and
every node appears in the same number of arbiter sets.

The concept of the arbiter set was further formalized as the k-arbiter by Baldoni et
al. in [2]. A k-arbiter is a collection of minimal arbiter sets (called quorums) where any
k+1 quorums have at least one common member. Two k-arbiters were proposed in [2]:

(k+1)-cube and uniform k-arbiters, with quorum sizes (k+1)⋅nk/(k+1) and � �
1)1/(++⋅ knk , repectively. In [9], Manabe and Tajima further generalized k-arbiters

with (h,k)-arbiters and proposed (k+1)-cube and uniform (h,k)-arbiters with quorum
size (k+2−h)⋅n(k+1−h)/(k+1) and � � 1)/(++⋅ hknk , respectively.

The h-out of-k mutual exclusion algorithms [1, 2, 9] using arbiter sets are not fault-
tolerant in the sense that a node just selects a quorum and waits for all the members of
the quorum to reply. If any member of the selected quorum fails, a node may fail to
gather permissions to enter CS. In [5], Jiang proposed a fault-tolerant distributed h-out
of-k mutual exclusion algorithm using k-coterie. A k-coterie [3] is a collection of sets
(called quorums) satisfying the following properties:

1. Intersection Property: There are at most k pairwise disjoint quorums.
2. Non-intersection Property: For any h (< k) pairwise disjoint quorums Q1,...,Qh,

there exists a quorum Qh+1 such that Q1,...,Qh+1 are pairwise disjoint.
3. Minimality Property: Any quorum is not a super set of another quorum.

In Jiang’s algorithm, a node u requesting to access h resources should randomly se-
lect h pairwise disjoint quorums and send request messages to the members of the h
quorums. On receiving a request message, a node v grants its permission by replying a
grant message. Node u can enter CS after it gathers permissions from members of h
pairwise disjoint quorums. The correctness of h-out of-k mutual exclusion is guaran-
teed since every node grants its permission to only one at a time and there are at most
k pairwise disjoint quorums. Jiang’s algorithm is fault-tolerant in the sense that a node
can reselect h pairwise disjoint quorums for sending incremental request messages
when the node does not gather enough permissions after a timeout period. However,
Jiang’s algorithm has the following problems: First, it does not explicitly specify how
to efficiently select and reselect h pairwise disjoint quorums. Second, it is difficult to
determine the timeout value.

3 The proposed algorithm

In this section, we propose an h-out of-k mutual exclusion algorithm using a specific k-
coterie  cohorts coterie [4]. The proposed algorithm does not use timeout mecha-
nism and does not require a node to reselect h pairwise disjoint quorums. As we will
show, the proposed algorithm has constant message complexity in the best case and is
a candidate to achieve the highest availability among those using k-coteries.

Before presenting the proposed algorithm, we first introduce the cohorts k-coterie
[6], which is constructed with the aid of cohorts structures. A cohorts structure Coh(k,
m)≡(C1,...,Cm), m≥k, is a list of sets, where each set Ci is called a cohort. The cohorts
structure Coh(k, m) should observe the following three properties:

 P1. |C1| = k.
 P2. ∀i: 1< i ≤ m : |Ci | > 2k−2, for k>1 (|Ci |>1, for k=1).

 P3. ∀i, j: 1≤i, j≤m, i≠j: Ci∩Cj=∅.

To sum up, a cohorts structure Coh(k, m) has m pairwise disjoint cohorts with the

first cohort having k members and the other cohorts having more than 2k−2 members
(or more than one member when k=1). For example, ({ 1, 2} , { 3, 4, 5} , { 6, 7, 8, 9, 10})
is Coh(2,3) since it has three pairwise disjoint cohorts with the first cohort and the
other cohorts having 2 (=k) and more than 2 (=2k−2) members, respectively.

A set Q is said to be a quorum under Coh(k, m) if some cohort Ci in Coh(k, m) is
Q's primary cohort, and each cohort Cj, j > i, is Q's supporting cohort, where a cohort
C is Q's primary cohort if |Q∩C|=|C|−(k−1) (i.e., Q contains exactly all except k−1
members of C), and a cohort C is Q's supporting cohort if |Q∩C|=1 (i.e., Q contains
exactly one member of C).

The family of all quorums under Coh(k, m) is called a cohorts coterie, which has
been shown to be a k-coterie in [4]. For example, the following sets are quorums under
Coh(2, 2)≡({ 1, 2} , { 3, 4, 5}): Q1={ 3, 4} , Q2={ 3, 5} , Q3={ 4, 5} , Q4={ 1, 3} , Q5={ 1,
4} , Q6={ 1, 5} , Q7={ 2, 3} , Q8={ 2, 4} and Q9={ 2, 5} . Quorums Q1,...,Q3 take { 3, 4, 5}
as their primary cohort and no supporting cohort is needed, and quorums Q4,...,Q9
take { 1, 2} as their primary cohort and { 3, 4, 5} as their supporting cohort. It is easy
to check that these nine sets constitute a 2-coterie.

In [6], the cohorts coterie is shown to be nondominated (ND). Let � and � be two
distinct k-coteries. � is said to dominate � if and only if every quorum in � is a super
set of some quorum in � (i.e.,∀Q, ∃Q′: Q∈� , Q′∈� : Q′⊆Q). Obviously, the dominat-
ing one (�) has more chances than the dominated one (�) to have available quorums
in an error-prone environment, where a quorum is said to be available if all of its
members (nodes) are up. Since an available quorum implies an available entry to CS,
we should always concentrate on ND k-coteries that no other k-coterie can dominate.
The algorithm using ND k-coteries, for example the proposed algorithm, is a candidate
to achieve the highest availability.

The core of the proposed algorithm is a permission gathering procedure, which is
named Get_Quorum shown in Figure 1. For a distributed system with n nodes organ-
ized as a cohorts structure Coh(k, m)≡(C1,...,Cm), a node requesting h out of k re-
sources should invoke Get_Quorum(h, k, (C1,...,Cm)). The node can access h resources
after Get_Quorum returns.

The function Probe(Ci, g) evoked in Get_Quorum performs the task of probing all
the nodes in set Ci for their permissions. It returns a set of nodes of Ci that reply grant
messages for the following three cases. (It will not return if none of the cases stands.)
Case 1: If i>1 and there are more than |Ci|−(k−1)+(g−1) nodes replying grant messages,
the returning set will be a set of |Ci|−(k−1)+(g−1) replying nodes.
Case 2: If i>1 and there are more than g but less than |Ci|−(k−1)+(g−1) nodes reply-
ing grant messages, the returning set will be a set of g replying nodes. (Note that
|Ci|−(k−1)+(g−1)>g because |Ci| > 2k−2 for k>1, or |Ci| > 1 for k=1.)
Case 3: If i=1 and there are more than g nodes replying grant messages, the returning
set will be a set of g replying nodes. (Note that because |C1|=k, only one node can
make C1 the primary cohort of a quorum. Thus, g replying nodes can make C1 be the
primary cohorts of g quorums.)

Function Get_Quorum(h, k: Integer; (C1,...,Cm): Cohorts Structure):Set;
 Var R, S: Set;
 Var g: Integer;
 g = h; //g: Storing the number of primary cohorts needed
 R = ∅; //R: The set of replying nodes that will be returned

For (i =m,...,2) Do
S=Probe(Ci, g);
If |S| = |Ci|−(k−1)+(g−1)
Then { R=R∪S; g=g−1; If g=0 Then Return R;}
/*Ci can be the primary cohort of one quorum,
 and be the supporting cohorts of g−1 quorums * /
Else If |S|=g Then R=R∪S;
/*Ci can only be the supporting cohorts of g quorums * /

EndFor
 S=Probe(C1, g);
 Return R∪S; //C1 is the primary cohort of g quorums
End Get_Quorum

Figure 1. The permission gathering procedure – Get_Quorum

The procedure Get_Quorum uses no timeout mechanism and can return a set of

nodes of h pairwise disjoint quorums efficiently. It is clear that no two nodes can si-
multaneously gather permissions from h1 and h2 pairwise disjoint quorums by invoking
Get_Quorum if h1+h2>k. Thus, the proposed algorithm guarantees the safety property
of h-out of-k mutual exclusion that there are no more than k resources being accessed
concurrently. To ensure the liveness (i.e., deadlock and starvation-free) property, we
could rely on the well known conflict resolution mechanism of Meakawa’s algorithm
[8]. However, we omit the details for simplicity.

4 Analysis and Comparison

The reader can check that if a node calls the function Get_Quorum when there is no
failing node and no request conflict, then Get_Quorum will return a set of the union of
h pairwise disjoint quorums which take Cm,…,Cm−h−1 respectively as their primary
cohorts, with Cm being the supporting cohorts of h−1 quorums,…, and Cm−h being the
supporting cohort of one quorum. For such a case, the node has to send request mes-
sage to c⋅h nodes if we assume all cohorts (including Cm,…,Cm−h−1) are of the same
size c, c > 2k−2. However, if there are failures and/or request conflicts, then some of
the h quorums may take Cm−h−2,…,C1 as their primary cohorts. In an extreme case,
some quorums may take C1 as their primary cohorts. In such a case, the node has to
send request messages to all the n system nodes.

Like other quorum-based algorithms [1, 2, 5, 9], the proposed algorithm is a Meak-
awa-type algorithm [8], which relies Lamport’s logical clock concept [7] and five

types of messages, namely request, grant, release, inquire and relinquish messages, to
avoid deadlock and starvation. In the best case, a node u needs 3c⋅h messages to ac-
cess h, h≤k, resources. The best case occurs when u sends request messages to all
members of Cm,…,Cm−h−1, receives grant messages from all members of Cm,…,Cm−h−1,
and at last sends release message to all members of Cm,…,Cm−h−1 on leaving CS. In the
worst case, the message complexity is 6n. It occurs when u sends request messages to
each node u, u sends inquire message to some node w, w sends relinquish message to u,
u sends grant message to v, v sends release message to u (after v leaves CS), and at
last u sends grant message to w. The worst case message complexity can be reduced by
the following mechanism. We can set a probability p for a node to decide whether or
not to further probe nodes in cohorts Cm−h−2,…,C1 after it has probed nodes in Cm,…,
Cm−h−1. The probability p makes the worst case message complexity to be 6f⋅n, where f
is a constant between 0 and 1. With p, we can trade fault-tolerance for message-
efficiency. The reader can check that larger p will lead to higher message complexity
and higher degree of fault-tolerance.

As shown in [10], Raynal’s algorithm has message complexity between 2(n−1) and
3(n−1). The message complexities of the algorithms using k-arbiters and (h,k)-arbiters
have been analyzed in [5]. Both the algorithms have the message complexity 3q in the
best case and (3h+3)q in the worst case, where q is the quorum size of the k-arbiter or
the (h,k)-arbiter. As shown in [5], Jiang’s algorithm has message complexity 3h⋅q in
the best case and 6e⋅n in the worst case, where q is the quorum size of the k-coterie
and 0<e≤1. Table 1 shows the comparison of Raynal’s algorithm [10], the algorithms
using k-arbiters [2] and (h,k)-arbiters [9], Jiang’s algorithm [5], and the proposed
algorithm.

Table 1. The comparison of various distributed
h-out of-k mutual exclusion algorithms

Algorithm Message complexity Quorum

reselection
Timeout
mechanism

Fault-
Tolerance

Raynal’s algorithm
[10]

between 2(n−1) and 3(n−1) no no no

The algorithm using
k-arbiters [2]

between 3q to (3h+3)q, where q=(k+1)⋅nk/(k+1)
for the (k+1)-cube arbiter and
q= � � 1)1/(++⋅ knk for the uniform k-arbiter

no no no

The algorithm using
(h,k)-arbiters [9]

between 3q to (3h+3)q, where
q=(k+2−h)⋅n(k+1−h)/(k+1) for the (k+1)-cube
(h,k)-arbiter and q= � � 1)/(++⋅ hknk for the

uniform (h,k)-arbiter

no no no

Jiang’s algorithm
[5]

between 3h⋅q and 6e⋅n, where q is the quo-
rum size of the k-coterie used, and 0<e≤1

yes yes yes

The proposed
algorithm

between 3c⋅h and 6f⋅n, where c > 2k−2 and
0<f≤1

no no yes (maybe of
the highest
availability)

*n stands for the number of nodes, and h stands for the number of requested resources.

5 Conclusion

In this paper, we have proposed a distributed h-out of-k mutual exclusion algorithm
using a specific k-coterie  cohorts coterie. The proposed algorithm becomes a k-
mutual exclusion algorithm for k>h=1, and becomes a mutual exclusion algorithm for
k=h=1. It is resilient to node and/or link failures and has constant message cost in the
best case. Furthermore, it is a candidate to achieve the highest availability among all
the algorithms using k-coteries since the cohorts coterie is ND. We have compared the
proposed algorithm with Raynal’s algorithm [10], the algorithms using k-arbiters [2]
and (h,k)-arbiters [9], and Jiang’s algorithm [5] to show its superiority.

References

1. Baldoni, R.: An O(NM/(M+1)) Distributed Algorithm for the k-out of-M Resources Allocation
Problem. 14th IEEE International Conference on Distributed Computing Systems, (1994) 81-
88

2. Baldoni, R., Manabe, Y., Raynal M., Aoyagy, S.: k-Arbiter: A Safe and General Scheme for
h-out of-k Mutual Exclusion. Theoretical Computer Science, 193 (1998) 97-112

3. Huang, S.-T., Jiang, J.-R., Kuo, Y.-C.: k-Coteries for Fault-Tolerant k Entries to a Critical
Section. 13th IEEE International Conference on Distributed Computing Systems, (1993) 74-
81

4. Jiang, J.-R., Huang, S.-T., Kuo, Y.-C.: Cohorts Structures for Fault-Tolerant k Entries to a
Critical Section. IEEE Trans. on Computers, 48 (1997) 222-228

5. Jiang, J.-R.: Distributed h-out of-k Mutual Exclusion Using k-Coteries. 3rd International
Conference on Parallel and Distributed Computing, Application and Technologies
(PDCAT’02), (2002) 218-226

6. Jiang, J.-R.: On the Nondomination of Cohorts Coteries. IEEE Trans. on Computers, 53
(2004) 922-923

7. Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed System. Communica-
tions of ACM, 21 (1978) 558-565

8. Meakawa, M.: A � N Algorithm for Mutual Exclusion in Decentralized Systems. ACM
Trans. Comp. Sys., 3 (1985) 145-159

9. Manabe, Y., Tajima, N.: (h-k)-Arbiter for h-out of-k Mutual Exclusion Problem. Theoretical
Computer Science, 310 (2004) 379-392

10. Raynal, M.: A Distributed Solution for the k-out of-m Resources Allocation Problem. Lec-
ture Notes in Computer Sciences, Vol. 497. Springer Verlag (1991) 599-609

11. Ricart, G., Agrawala, A. K.: An Optimal Algorithm for Mutual Exclusion in Computer
Networks. Communications of ACM, 24 (1981) 9-17

