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Abstract. In this paper, we propose a distributed algorithm for solving the h-out 
of-k mutual exclusion problem with the aid of a specific k-coterie  cohorts co-
terie. The proposed algorithm is resilient to node and/or link failures, and has 
constant message cost in the best case. Furthermore, it is a candidate to achieve 
the highest availability among all the algorithms using k-coteries. We analyze the 
algorithm and compare it with other related ones. 

1   Introduction 

A distributed system consists of interconnected, autonomous nodes which communi-
cate with each other by passing messages. A node in the system may need to enter the 
critical section (CS) occasionally to access a shared resource, such as a shared file or a 
shared table, etc. The problem of controlling the nodes so that the shared resource is 
accessed by at most one node at a time, is called the mutual exclusion problem. If 
there are k, k≥1, identical copies of shared resources, such as a k-user software license, 
then there can be at most k nodes accessing the resources at a time. This raises the k-
mutual exclusion problem. On some occasions, a node may require to access h (1≤h≤k) 
copies out of the k shared resources at a time; for example, a node may need h disks 
from a pool of k disks to proceed efficiently. How to control the nodes to acquire the 
desired number of resources with the total number of resources accessed concurrently 
not exceeding k is called the h-out of k-mutual exclusion problem or the h-out of-k 
resource allocation problem [10]. 
 

There are at least four distributed h-out of-k mutual exclusion algorithms proposed 
in the literature. Raynal proposed the first algorithm in [10] and then three algorithms 
using k-arbiters, (h, k)-arbiters, and k-coteries are proposed in [2], [9], and [5], respec-
tively. Among the four algorithms, only Jiang’s algorithm using k-coteries is fault-
tolerant. It can tolerate node and/or network link failures even when the failures lead 
to network partitioning. Furthermore, it is shown in [5] to have lower message cost 
than others. The basic idea of Jiang’s algorithm is simple: a node should collect enough 
permissions from some set of nodes to enter CS. However, there raise some problems 
when a node fails to collect enough permissions repeatedly. 



In this paper, we proposed another h-out of-k mutual exclusion algorithm using a 
specific k-coterie  cohorts coterie to eliminate the problems of Jiang’s algorithm. A 
cohorts coterie [4] is a k-coterie [3], which is a collection of sets (called quorums) 
satisfying the intersection, the non-intersection and the minimality properties. As we 
will show, the proposed algorithm has constant message cost in the best case and is a 
candidate to achieve the highest availability, the probability that a node can gather 
enough permissions to enter CS in an error-prone environment, among all the algo-
rithms using k-coteries. 

The rest of this paper is organized as follows. In Section 2, we introduce some re-
lated work. In Section 3, we propose the h-out of-k mutual exclusion algorithm using 
cohorts coteries. In Section 4, we analyze the proposed algorithm and compare it with 
related ones. And finally, we give some concluding remarks in Section 5. 

2   Related Work 

In [10], Raynal proposed the first distributed h-out of-k mutual exclusion algorithm. 
Raynal’s algorithm is extended from Ricart and Agrawala’s algorithm [11]. It demands 
a node u to send request messages to all other nodes and wait for replies to estimate 
the number of unoccupied resources. A node v replies that there are k unoccupied 
resources if it is neither using nor requesting shared resources, or if it has lower prior-
ity than the requester (in terms of logical clock [7] order). On the other hand, node v 
replies that there are k−h unoccupied resources if v is using h resources or if v is re-
questing h resources with higher priority. For such a case, node v should later reply 
again that there are h resources released after it leaves CS. From all the replies, if node 
u finds that the estimated number of unoccupied resources is larger than the number of 
requested resources, it can enter CS. Raynal’s algorithm has message complexity be-
tween 2(n−1) and 3(n−1), where n is the number of nodes. It is not fault-tolerant since 
a node cannot gather replies from all other nodes if there is any failing node. 

In [1], Baldoni proposed the concept of arbiter sets to solve the h-out of-k mutual 
exclusion problem. Every node is associated with an arbiter set (request set), and any k 
arbiter sets should have at least one common member. A node should send request 
messages with parameter h (h≤k) to all members of its arbiter set to gather permissions 
to access h resources. Every node keeps the number of unoccupied resources, which is 
initially k and is decreased by h after granting a request for accessing h resources. The 
total number of resources concurrently being accessed is guaranteed to be no more 
than k because the common member of any k+1 arbiter sets can serve as the arbiter, 
which grants its permission only when the number of unoccupied resources is no less 
than the number of requested resources. The algorithm using arbiter sets has the mes-
sage complexity O(q), where q is the size of arbiter sets. Baldoni proved that arbiter 
sets have the size lower bound of O(nk/k+1) if all arbiter sets have the same size and 
every node appears in the same number of arbiter sets. 

The concept of the arbiter set was further formalized as the k-arbiter by Baldoni et 
al. in [2]. A k-arbiter is a collection of minimal arbiter sets (called quorums) where any 
k+1 quorums have at least one common member. Two k-arbiters were proposed in [2]: 



(k+1)-cube and uniform k-arbiters, with quorum sizes (k+1)⋅nk/(k+1) and � �
1)1/( ++⋅ knk , repectively. In [9], Manabe and Tajima further generalized k-arbiters 

with (h,k)-arbiters and proposed (k+1)-cube and uniform (h,k)-arbiters with quorum 
size (k+2−h)⋅n(k+1−h)/(k+1)  and � � 1)/( ++⋅ hknk , respectively. 

The h-out of-k mutual exclusion algorithms [1, 2, 9] using arbiter sets are not fault-
tolerant in the sense that a node just selects a quorum and waits for all the members of 
the quorum to reply. If any member of the selected quorum fails, a node may fail to 
gather permissions to enter CS. In [5], Jiang proposed a fault-tolerant distributed h-out 
of-k mutual exclusion algorithm using k-coterie. A k-coterie [3] is a collection of sets 
(called quorums) satisfying the following properties:  
 
1. Intersection Property: There are at most k pairwise disjoint quorums. 
2. Non-intersection Property: For any h (< k) pairwise disjoint quorums Q1,...,Qh, 

there exists a quorum Qh+1 such that Q1,...,Qh+1 are pairwise disjoint.  
3. Minimality Property: Any quorum is not a super set of another quorum. 
 

In Jiang’s algorithm, a node u requesting to access h resources should randomly se-
lect h pairwise disjoint quorums and send request messages to the members of the h 
quorums. On receiving a request message, a node v grants its permission by replying a 
grant message. Node u can enter CS after it gathers permissions from members of h 
pairwise disjoint quorums. The correctness of h-out of-k mutual exclusion is guaran-
teed since every node grants its permission to only one at a time and there are at most 
k pairwise disjoint quorums. Jiang’s algorithm is fault-tolerant in the sense that a node 
can reselect h pairwise disjoint quorums for sending incremental request messages 
when the node does not gather enough permissions after a timeout period. However, 
Jiang’s algorithm has the following problems: First, it does not explicitly specify how 
to efficiently select and reselect h pairwise disjoint quorums. Second, it is difficult to 
determine the timeout value. 

3   The proposed algorithm 

In this section, we propose an h-out of-k mutual exclusion algorithm using a specific k-
coterie  cohorts coterie [4]. The proposed algorithm does not use timeout mecha-
nism and does not require a node to reselect h pairwise disjoint quorums. As we will 
show, the proposed algorithm has constant message complexity in the best case and is 
a candidate to achieve the highest availability among those using k-coteries. 

Before presenting the proposed algorithm, we first introduce the cohorts k-coterie 
[6], which is constructed with the aid of cohorts structures. A cohorts structure Coh(k, 
m)≡(C1,...,Cm), m≥k, is a list of sets, where each set Ci is called a cohort. The cohorts 
structure Coh(k, m) should observe the following three properties: 

 
 P1. |C1| = k. 
 P2. ∀i: 1< i ≤ m : |Ci | > 2k−2, for k>1 ( |Ci |>1, for k=1). 



 P3. ∀i, j: 1≤i, j≤m, i≠j: Ci∩Cj=∅. 
 
To sum up, a cohorts structure Coh(k, m) has m pairwise disjoint cohorts with the 

first cohort having k members and the other cohorts having more than 2k−2 members 
(or more than one member when k=1). For example, ({ 1, 2} , { 3, 4, 5} , { 6, 7, 8, 9, 10} ) 
is Coh(2,3) since it has three pairwise disjoint cohorts with the first cohort and the 
other cohorts having 2 (=k) and more than 2 (=2k−2) members, respectively. 

A set Q is said to be a quorum under Coh(k, m) if some cohort Ci in Coh(k, m) is 
Q's primary cohort, and each cohort Cj, j > i, is Q's supporting cohort, where a cohort 
C is Q's primary cohort if |Q∩C|=|C|−(k−1) (i.e., Q contains exactly all except k−1 
members of C), and a cohort C is Q's supporting cohort if |Q∩C|=1 (i.e., Q contains 
exactly one member of C). 

The family of all quorums under Coh(k, m) is called a cohorts coterie, which has 
been shown to be a k-coterie in [4]. For example, the following sets are quorums under 
Coh(2, 2)≡({ 1, 2} , { 3, 4, 5} ): Q1={ 3, 4} , Q2={ 3, 5} , Q3={ 4, 5} , Q4={ 1, 3} , Q5={ 1, 
4} , Q6={ 1, 5} , Q7={ 2, 3} , Q8={ 2, 4}  and Q9={ 2, 5} . Quorums Q1,...,Q3 take { 3, 4, 5}  
as their primary cohort and no supporting cohort is needed, and quorums Q4,...,Q9 
take { 1, 2}  as their primary cohort and { 3, 4, 5}  as their supporting cohort. It is easy 
to check that these nine sets constitute a 2-coterie. 

In [6], the cohorts coterie is shown to be nondominated (ND). Let �  and �  be two 
distinct k-coteries. �  is said to dominate �  if and only if every quorum in �  is a super 
set of some quorum in �  (i.e.,∀Q, ∃Q′: Q∈� , Q′∈� : Q′⊆Q). Obviously, the dominat-
ing one ( � ) has more chances than the dominated one ( � ) to have available quorums 
in an error-prone environment, where a quorum is said to be available if all of its 
members (nodes) are up. Since an available quorum implies an available entry to CS, 
we should always concentrate on ND k-coteries that no other k-coterie can dominate. 
The algorithm using ND k-coteries, for example the proposed algorithm, is a candidate 
to achieve the highest availability. 

The core of the proposed algorithm is a permission gathering procedure, which is 
named Get_Quorum shown in Figure 1. For a distributed system with n nodes organ-
ized as a cohorts structure Coh(k, m)≡(C1,...,Cm), a node requesting h out of k re-
sources should invoke Get_Quorum(h, k, (C1,...,Cm)). The node can access h resources 
after Get_Quorum returns. 

The function Probe(Ci, g) evoked in Get_Quorum performs the task of probing all 
the nodes in set Ci for their permissions. It returns a set of nodes of Ci that reply grant 
messages for the following three cases. (It will not return if none of the cases stands.) 
Case 1: If i>1 and there are more than |Ci|−(k−1)+(g−1) nodes replying grant messages, 
the returning set will be a set of |Ci|−(k−1)+(g−1) replying nodes. 
Case 2:  If i>1 and there are more than g but less than |Ci|−(k−1)+(g−1) nodes reply-
ing grant messages, the returning set will be a set of g replying nodes. (Note that 
|Ci|−(k−1)+(g−1)>g because |Ci| > 2k−2 for k>1, or |Ci| > 1 for k=1.) 
Case 3: If i=1 and there are more than g nodes replying grant messages, the returning 
set will be a set of g replying nodes. (Note that because |C1|=k, only one node can 
make C1 the primary cohort of a quorum. Thus, g replying nodes can make C1 be the 
primary cohorts of g quorums.) 



 
Function Get_Quorum( h, k: Integer; (C1,...,Cm): Cohorts Structure):Set; 
   Var R, S: Set; 
   Var g: Integer; 
    g = h;    //g: Storing the number of primary cohorts needed 
    R = ∅;  //R: The set of replying nodes that will be returned 

For (i =m,...,2 ) Do 
S=Probe(Ci, g); 
If |S| = |Ci|−(k−1)+(g−1) 
Then { R=R∪S; g=g−1; If g=0 Then Return R;}  
/*Ci can be the primary cohort of one quorum,  
   and be the supporting cohorts of g−1 quorums          * / 
Else If |S|=g Then R=R∪S; 
/*Ci can only be the supporting cohorts of g quorums * / 

EndFor 
    S=Probe(C1, g); 
    Return R∪S;   //C1 is the primary cohort of g quorums 
End Get_Quorum 

 
Figure 1. The permission gathering procedure – Get_Quorum 

 
The procedure Get_Quorum uses no timeout mechanism and can return a set of 

nodes of h pairwise disjoint quorums efficiently. It is clear that no two nodes can si-
multaneously gather permissions from h1 and h2 pairwise disjoint quorums by invoking 
Get_Quorum if h1+h2>k. Thus, the proposed algorithm guarantees the safety property 
of h-out of-k mutual exclusion that there are no more than k resources being accessed 
concurrently. To ensure the liveness (i.e., deadlock and starvation-free) property, we 
could rely on the well known conflict resolution mechanism of Meakawa’s algorithm 
[8]. However, we omit the details for simplicity. 

4   Analysis and Comparison 

The reader can check that if a node calls the function Get_Quorum when there is no 
failing node and no request conflict, then Get_Quorum will return a set of the union of 
h pairwise disjoint quorums which take Cm,…,Cm−h−1 respectively as their primary 
cohorts, with Cm being the supporting cohorts of h−1 quorums,…, and Cm−h being the 
supporting cohort of one quorum. For such a case, the node has to send request mes-
sage to c⋅h nodes if we assume all cohorts (including Cm,…,Cm−h−1) are of the same 
size c, c > 2k−2. However, if there are failures and/or request conflicts, then some of 
the h quorums may take Cm−h−2,…,C1 as their primary cohorts. In an extreme case, 
some quorums may take C1 as their primary cohorts. In such a case, the node has to 
send request messages to all the n system nodes. 

Like other quorum-based algorithms [1, 2, 5, 9], the proposed algorithm is a Meak-
awa-type algorithm [8], which relies Lamport’s logical clock concept [7] and five 



types of messages, namely request, grant, release, inquire and relinquish messages, to 
avoid deadlock and starvation. In the best case, a node u needs 3c⋅h messages to ac-
cess h, h≤k, resources. The best case occurs when u sends request messages to all 
members of Cm,…,Cm−h−1, receives grant messages from all members of Cm,…,Cm−h−1, 
and at last sends release message to all members of Cm,…,Cm−h−1 on leaving CS. In the 
worst case, the message complexity is 6n. It occurs when u sends request messages to 
each node u, u sends inquire message to some node w, w sends relinquish message to u, 
u sends grant message to v, v sends release message to u (after v leaves CS), and at 
last u sends grant message to w. The worst case message complexity can be reduced by 
the following mechanism. We can set a probability p for a node to decide whether or 
not to further probe nodes in cohorts Cm−h−2,…,C1 after it has probed nodes in Cm,…, 
Cm−h−1. The probability p makes the worst case message complexity to be 6f⋅n, where f 
is a constant between 0 and 1. With p, we can trade fault-tolerance for message-
efficiency. The reader can check that larger p will lead to higher message complexity 
and higher degree of fault-tolerance. 

As shown in [10], Raynal’s algorithm has message complexity between 2(n−1) and 
3(n−1). The message complexities of the algorithms using k-arbiters and (h,k)-arbiters 
have been analyzed in [5]. Both the algorithms have the message complexity 3q in the 
best case and (3h+3)q in the worst case, where q is the quorum size of the k-arbiter or 
the (h,k)-arbiter. As shown in [5], Jiang’s algorithm has message complexity 3h⋅q in 
the best case and 6e⋅n in the worst case, where q is the quorum size of the k-coterie 
and 0<e≤1. Table 1 shows the comparison of Raynal’s algorithm [10], the algorithms 
using k-arbiters [2] and (h,k)-arbiters [9], Jiang’s algorithm [5], and the proposed 
algorithm. 
 

Table 1. The comparison of various distributed 
h-out of-k mutual exclusion algorithms 

 
Algorithm Message complexity Quorum 

reselection 
Timeout 
mechanism 

Fault- 
Tolerance  

Raynal’s algorithm 
[10] 

between 2(n−1) and 3(n−1) no no no 

The algorithm using 
k-arbiters [2] 

between 3q to (3h+3)q, where q=(k+1)⋅nk/(k+1) 
for the (k+1)-cube arbiter and 
q= � � 1)1/( ++⋅ knk  for the uniform k-arbiter 

no no no 

The algorithm using 
(h,k)-arbiters [9] 

between 3q to (3h+3)q, where 
q=(k+2−h)⋅n(k+1−h)/(k+1) for the (k+1)-cube 
(h,k)-arbiter and q= � � 1)/( ++⋅ hknk  for the 

uniform (h,k)-arbiter 

no no no 

Jiang’s algorithm 
[5] 

between 3h⋅q and 6e⋅n, where q is the quo-
rum size of the k-coterie used, and 0<e≤1 

yes yes yes 

The proposed 
algorithm 

between 3c⋅h and 6f⋅n, where c > 2k−2 and 
0<f≤1 

no no yes (maybe of 
the highest 
availability) 

*n stands for the number of nodes, and h stands for the number of requested resources. 



5   Conclusion 

In this paper, we have proposed a distributed h-out of-k mutual exclusion algorithm 
using a specific k-coterie  cohorts coterie. The proposed algorithm becomes a k-
mutual exclusion algorithm for k>h=1, and becomes a mutual exclusion algorithm for 
k=h=1. It is resilient to node and/or link failures and has constant message cost in the 
best case. Furthermore, it is a candidate to achieve the highest availability among all 
the algorithms using k-coteries since the cohorts coterie is ND. We have compared the 
proposed algorithm with Raynal’s algorithm [10], the algorithms using k-arbiters [2] 
and (h,k)-arbiters [9], and Jiang’s algorithm [5] to show its superiority. 
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