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Abstract 
This paper proposes MUREX, a mutable replica control scheme, to keep one-copy 

equivalence for synchronous replication in structured P2P storage systems. For synchronous 

replication in P2P networks, it is proper to adopt crash-recovery as the fault model; that is, nodes 

are fail-stop and can recover and rejoin the system after synchronizing their state with other 

active nodes. In addition to the state synchronization problem, we identify other two problems to 

solve for synchronous replication in P2P storage systems. They are the replica acquisition and the 

replica migration problems. On the basis of multi-column read/write quorums, MUREX conquers 

the problems by the replica pointer, the on-demand replica regeneration, and the leased lock 

techniques. We prove the correctness of MUREX, analyze and also simulate it in terms of 

communication cost and operation success rate. 

 

1. Introduction 

    Peer-to-peer (P2P) systems are based on self-organizing, decentralized overlay networks, in 

which participating peer nodes play symmetric roles ⎯ both servers and clients. P2P systems are 

usually designed to accommodate a large number of nodes and to adapt to dynamic node joining 

and leaving. The most well-known application of P2P systems is the storage data sharing over 

Internet, as typified in P2P music file sharing [13, 17]. However, file sharing is only one of the 
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functions that a storage system can support. Following the great success of P2P file sharing, a 

natural next step is to develop wide-area, P2P storage systems to aggregate idle storage across the 

Internet to be a huge storage space. 

P2P storage system has been an active research topic and many systems have been proposed 

[2, 6-8, 10, 16, 19, 21, 24]. Some systems adopt the unstructured P2P approach [2, 6], in which 

there is no restriction on the interconnection of the nodes. Unstructured P2P storage systems are 

easy to build and maintain, but it is difficult to guarantee the quality in accessing the stored data 

[18]. Many P2P storage systems [7-8, 10, 16, 19, 21, 24] are thus built on top of structured P2P 

networks [18, 20, 22, 25]. 

Structured P2P storage systems rely on a hashing scheme (viz., a hash function mapping) to 

name the peer nodes. With the hashed ID, the peer nodes can be linked with a certain 

interconnection structure, such as a ring, a torus, or a hypercube. The data objects to be stored in 

the storage system are also named with the same hash function. A data object with the hashed key 

k is published to and managed by the peer node whose hashed key (or ID) is “closest” to k. To 

fetch a data object with hashed key k, a request is routed according to the interconnection 

structure until the node with the closest hashed ID is reached. In this way, any data object in the 

storage system can be located and accessed within a certain bound of message relays, no matter 

where the request is initiated. This in essence builds a distributed hash table (DHT) across the 

participating nodes. 

With the distributed hash table, structured P2P systems can handle dynamic node joining 

and leaving. Note that according to the data allocation scheme described above, any given key in 

the hash table will have a node taking charge of the corresponding entry. Even after that node 

leaves, the underlying routing scheme will always send requests for that key to the node currently 

having the closest ID to the key. In this way, the leaving node is substituted and the keys 

managed by it are taken over by the substituting node. Please refer to Fig. 1 for such a scenario 

(node p substitutes leaving node q). Similarly, when a node newly joins the network, it will 

partially substitute a certain node to manage the keys that are now closest to its ID. Please refer to 

Fig. 1 for such a scenario (newly joining node u partially substitutes node v). 

Although the underlying P2P routing can adapt to dynamic node joining and leaving, there 
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is a problem that the data object stored in nodes will be lost when nodes fail or leave. A common 

solution to this problem is to replicate the data objects among nodes to provide high data 

availability. If the data objects are read-only (or non-mutable), then the P2P storage system will 

only need to consider where to replicate the data objects [7-8, 10]. The system becomes much 

complicated if the data objects are mutable [16, 19, 21, 24]. In this paper, we concentrate on 

mutable P2P storage systems because they are desirable by most practical applications. 

 

 

 

 

 

 

 

 

 

 

Figure 1. The scenarios of node joining and leaving. 

 

In mutable P2P storage systems, data replication must obey the criteria of one-copy 

equivalence to ensure data consistency. There are two types of mechanisms to achieve such a 

criterion: synchronous replication and asynchronous replication. The former requires that each 

write operation should finish updating all replicas before the next write operation proceeds. The 

latter regards a local write operation as complete once data object is written to the local replica; 

data object is then asynchronously written to other replicas. The synchronous replication can 

ensure data consistency strictly, but may have long operation latency. On the other hand, the 

asynchronous replication may violate data consistency, but has shorter latency. However, when 

data inconsistency occurs, complex log-based mechanisms should be invoked to roll back the 

system to a consistent state. In this paper, we adopt synchronous replication since we take data 

consistency as the most significant factor and we regard that there may not be available storage 
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for storing logs for system roll-back in asynchronous replication. 

For synchronous replication in P2P networks, it is proper to adopt crash-recovery as the 

fault model. In a crash-recovery system, nodes are fail-stop and can recover and rejoin the system 

after synchronizing their state with other active nodes. In addition to the state synchronization 

problem, we have two more problems to solve for synchronous replication in P2P storage systems. 

First, in P2P environments, an active node p may substitute some failing/leaving node q in the 

recovery process. Thus, node p must acquire the replicas hosted by node q somehow. Below, we 

call this the replica acquisition problem. Second, a newly joining node u will partially substitute 

an active node v to share v’s load by hosting part of v’s replicas. Thus, part of v’s replicas should 

be migrated to node u. Below, we call this the replica migration problem. 

In this paper, we propose MUREX, a mutable replica control scheme, to keep one-copy 

equivalence for synchronous replication in structured P2P storage systems. On the basis of 

multi-column read/write quorums, MUREX conquers the problems mentioned by the replica 

pointer, the on-demand replica regeneration, and the leased lock techniques. We will prove the 

correctness of MUREX, analyze and also simulate it in terms of communication cost and 

operation success rate. 

The rest of the paper is organized as follows. Preliminaries are given in Section 2. In 

Section 3, we discuss the problems encountered in realizing synchronous replication for P2P 

mutable storage systems. We then in Section 4 show how MUREX solves the problems, and 

analyze and simulate MUREX in Section 5. Some related works are introduced in Section 6, and 

concluding remarks are drawn in Section 7. 

 

2. Preliminaries 

As a replica control scheme, MUREX needs to ensure data consistency. In this paper, we 

adopt the one-copy equivalence consistency criteria, which states that the set of replicas must 

behave as if there were only a single copy. Conditions to ensure one-copy equivalence are 

(1) no pair of write operations can proceed at the same time, 

(2) no pair of a read operation and a write operation can proceed at the same time, 

(3) a read operation always returns the replica that the last write operation writes. 
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Quorum-based schemes are popular mechanisms to enforce one-copy equivalence for 

synchronous replication since they render relatively high data availability and low 

communication cost. The basic concept of such schemes is described as follows. Each data object 

has n replicas, each of which is associated with a version number. A read operation should 

read-lock and access a read quorum of replicas and return the replica owning the largest version 

number. On the other hand, a write operation should write-lock and access a write quorum of 

replicas and then updates them with the new version number, which is one more than the largest 

version number just encountered. If we restrict the write-write exclusion and the write-read lock 

exclusion, and restrict that any pair of a read quorum and a write quorum, and any two write 

quorums have a non-empty intersection, then one-copy equivalence is guaranteed. 

There are several mechanisms proposed in the literature for forming read and write 

quorums, such as tree quorums [1], majority quorums [9, 23], grid quorums [4], and 

multi-column quorums [12], etc. MUREX adopts the multi-column quorums, which have the 

smallest quorums (constant-sized quorums in the best case) among the mechanisms. It is noted 

that smaller quorums imply few accesses of replicas, which in turn imply lower communication 

cost. Furthermore, as shown in [12], multi-column quorums are candidates to achieve the highest 

availability, which is the probability for a quorum to be formed in an error-prone environment. 

Multi-column quorums are constructed with the aid of the multi-column structure 

MC(m)≡(C1,...,Cm), which is a list of pairwise disjoint sets of replicas. Each set Ci is called a 

column and must satisfy |Ci|>1 for 1≤i≤m. For example, ({r1, r2}, {r3, r4, r5}, {r6, r7, r8, r9}) and 

({r1, r2, r3, r4, r5}, {r6, r7}, {r8, r9}) are multi-column structures, where r1,...,r9 are replicas of a 

data object. 

     By organizing data replicas as multi-column structure MC(m)≡(C1,...,Cm), the write and the 

read quorums are defined as follows: 

A write quorum under MC(m) is a set that contains all replicas of some column Ci, 1≤i≤m (note 

that i=1 is included), and one replica of each of the columns Ci+1,...,Cm. 

A read quorum under MC(m) is either 

Type-1: a set that contains one replica of each of the columns C1,...,Cm. 

 or 
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Type-2: a set that contains all replicas of some column Ci, 1<i≤m (note that i=1 is excluded), and 

one replica of each of the columns Ci+1,...,Cm. 

For example, under MC(2)=({r1, r2, r3}, {r4, r5}), the possible write quorums are {r4, r5}, 

{r1, r2, r3, r4}, {r1, r2, r3, r5}, and the possible read quorums are {r1, r4}, {r1, r5}, {r2, r4}, {r2, r5}, 

{r3, r4}, {r3, r5} (of type-1) and {r4, r5} (of type-2). Note that the write quorum definition and the 

type-2 read quorum definition are identical except that the latter does not include the sets 

composed of all replicas in C1 and one replica from each of C2,...,Cm. 

As we have mentioned, multi-column quorums have constant size in the best case. Below, 

we discuss the sizes for quorums under the multi-column structure MC(m) whose columns all 

have the size s, where m>s. It is noted that we will denote such a multi-column structure as 

MC(m, s) in the following context. The write quorum under MC(m, s) has constant size s in the 

best case and s+m-1 in the worst case. The read quorum under MC(m, s) has constant size s in the 

best case and size s+m-2 in the worst case. 

 

3. The Problems 

In this section, we identify three problems encountered in enforcing synchronous replication 

for structured P2P storage systems. The three problems are replica migration, replica acquisition, 

and state synchronization. Below, we elaborate the problems one by one. 

 Replica Migration: When a node u newly joins the system and partially substitutes another 

node v to host some replicas, node v should transfer the replicas to u immediately. However, in a 

constantly changing P2P environment, the cost of transferring replicas may be too high. We need 

an efficient mechanism to allow replicas to migrate from substituted node to substituting node. 

 Replica Acquisition: When an active node p substitutes a failing/leaving node q, node p needs 

to acquire all replicas hosted by q. The problem is that node q has no idea about which replicas 

are hosted by p. Thus, we need a mechanism to make node p know which replicas are hosted by 

node q and to acquire the replicas efficiently. 

 State Synchronization: Suppose an active node p substitutes a failing/leaving node q, and p 

has acquired a replica r hosted by q previously. To make replica r effective, we have to 

synchronize r’s state, i.e., to ensure that all the participating nodes have the same view with 
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respect to r’s states. We must ensure the acquired replica r is an up-to-date copy. Furthermore, 

since there may be a node that has locked replica r to make r in the locked state, we need a 

mechanism to ensure that the locked state is not violated after p acquires replica r. 

 

4. The Proposed Scheme and the Correctness 

In this section, we introduce the proposed scheme ⎯ MUREX, which uses the read/write 

quorum, the replica pointer, the on-demand replica regeneration, and the leased lock techniques 

to solve the three problems mentioned in the last section. We also show in this section that 

MUREX can ensure the one-copy-equivalence criterion for synchronous replication in P2P 

storage systems. Below, we first give an overview of MUREX and then elaborate its details. 

 

4.1 Overview 

    For a data object, there are n replicas with hashed keys k1,…,kn, where k1=HASH1(data 

object name), …, kn=HASHn(data object name). The replicas are disseminated to the nodes 

whose hashed ID are nearest to k1,…,kn, respectively. Please refer to Fig. 2 for the illustration of 

the replica dissemination. Each replica has a version number which is 0 initially and will increase 

gradually. MUREX organizes the n replicas into a multi-column structure to help form read and 

write quorums. A quorum is a subset of the nodes storing the n replicas; it should satisfy the 

intersection property that any pair of a read quorum and a write quorum, and any two write 

quorums have at least one common member. MUREX provides the following operations: 

 

 publish(CON, DON): to place n replicas at the nodes associated with k1,…,kn for the object 

of name DON (standing for Data Object Name) with content CON (standing for CONtent) 

and version number 0. 

 read(DON): to acquire the up-to-date replica of the object of name DON by locking all 

replicas of a read quorum. 

 write(CON, DON): to update all the replicas of a write quorum with content CON for the 

object of name DON. 

 



 8

 

 

 

 

 

 

 

 

 

 

Figure 2. The dissemination of n replicas of a data object. 

 

4.2 Read/Write Quorum Construction 

Initially, a data object owner publishes the data object of name DON with content CON by 

calling publish(CON, DON). Afterwards, any participant can call read (or write) operation to 

read (or write) the data object by issuing RLOCK (or WLOCK) messages. With the help of the 

DHT and the multi-column structure, the messages will reach all members of a read (or write) 

quorum. The two functions Get_Read_Quorum and Get_Write_Quorum in Figure 3 try to issue 

RLOCK and WLOCK messages to nodes in a last-to-first column-wise manner to return 

respectively the read and the write quorums under a multi-column structure. It is noted that below 

we use the words “node” and “replica” interchangeably since a replica must be hosted by a node. 

Below, we also use LOCK message to stand for WLOCK message or RLOCK message. 

When a node receives a LOCK message to request for locking a data object, it sends a 

MISS message to the requester if it does not own a replica of the data object. As we will show, 

the MISS message will cause the requester to send an up-to-date replica of the data object later. It 

is noted that a node has at most one pending MISS message for each replica. A MISS message is 

said to be pending if there is no replica sent in response to it. When a node has a pending MISS 

message for a replica and further receives LOCK message for locking the replica, it will send 

WAIT message to the requester. On the other hand, if the node owns the replica when it receives 
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a LOCK message for a data object, it then checks if there is a lock conflict. We say that there is a 

lock conflict if a read-locked replica receives a write-lock request, or if a write-locked replica 

receives a write-lock or a read-lock request. If there is no lock conflict, the node locks the replica 

and then replies with OK message containing the replica version number. On the contrary, if there 

is a lock conflict, the node replies with WAIT message. 

 
Function Get_Write_Quorum((C1,...,Cm): MC Structure): Set; 

   Var R = ∅: Set; 
   For (i =m,...,1) Do 
     Send WLOCK to all nodes in Ci and enter “wait period” for getting replies; 
     If all nodes in Ci reply with WAIT or MISS 
       Then {Send UNLOCK to nodes in C1∪…∪Ci; Exit;} 
     If all nodes in Ci reply with OK Then Return R∪Ci; 
     Else If a node u replies OK Then R=R∪{u};  //note: NO Return here 
   EndFor 
End Get_Write_Quorum 
 
Function Get_Read_Quorum((C1,...,Cm): MC Structure): Set; 
   Var R = ∅: Set; 
   For (i =m,...,1) Do 
     Send RLOCK to all nodes in Ci and enter “wait period” for getting replies; 
     If all nodes in Ci reply with WAIT or MISS 
       Then {Send UNLOCK to nodes in C1∪…∪Ci; Exit;} 
     If i≠1 and all nodes in Ci reply with OK Then Return R∪Ci; 
     Else If i≠1 and a node u replies with OK Then R=R∪{u}; //note: NO Return here 
     Else If i=1 and a node u replies with OK Then Return R∪{u}; 
   EndFor 
End Get_Read_Quorum 

Figure 3. Two functions that can properly return a read and a write quorum, respectively. 

 

After sending LOCK messages, a node enters the “wait period”, which is of the length of a 

turn-around time. During the wait period, if a node has got any WAIT message, it can conclude 

that there is lock contention. For such a case, the node sends UNLOCK messages to all the nodes 

that it has sent LOCK messages. Only after a random backoff time, can the node start over again 
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to send LOCK messages for locking replicas of a quorum. The random backoff concept is 

borrowed from Either Net [5]. It is used to avoid continuous conflicts among contending nodes. 

After Get_Write_Quorum or Get_Read_Quorum function returns a write quorum or a read 

quorum, it means that all replicas in the quorum have been locked. The node calling the function 

can then execute the desired operation. After the operation is finished, a node sends UNLOCK 

messages to all nodes that it has sent LOCK messages to unlock the replicas. A read operation in 

MUREX reads the replica of the largest version number from the read quorum. On the other hand, 

a write operation always writes all replicas of a write quorum with the version number one more 

than those ever encountered. 

 

4.3 Replica Pointers 

    When a node u newly join the system to share part of the load of node v by managing 

replicas of keys from k to k′, the replicas of keys from k to k′ should migrate from v to u. To 

reduce the cost of transferring all the replicas, MUREX transfers replica pointers instead of the 

actual replicas. A replica pointer is a five-tuple of the form: 

<hashed key, data object name, version number, lock state, actual storing location>. 

It is produced when a replica is generated and can be used to locate the actual replica. When node 

v owns the replica pointer of replica r, it is regarded as r’s host, which can reply to the lock 

request for r. On the other hand, when node v sends out the replica pointer of replica r, it is no 

more the host of r and cannot reply to the lock request for r (even if it stores the actual replica of 

r). 

    The replica pointer is a lightweight mechanism for transferring replicas; it can be propagated 

from node to node in a very low cost. When a node u owing the replica pointer of r receives a 

lock request for r, it should check whether the node actually storing r is still alive. If so, u can 

behave as host of r. Otherwise, u regards itself as having no replica r. It is noted that every 

transfer of replica pointer between two nodes, say from v to u, should be recorded locally by v so 

that later messages, such as UNLOCK message, destined to v for replica r can be sent to the last 

node having the replica pointer. 
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4.4 On-Demand Replica Regeneration 

When a node q fails/leaves and another node p substitutes node q, it is needed for node p to 

acquire all replicas hosted by p. However, we have the problem that node p has no idea about 

which replicas are hosted by q. Below, we show how the replicas can be acquired in an 

on-demand manner. The term “on-demand” means that node p only acquire requested replicas. 

When node p receives from node u LOCK message for locking a replica, it should send MISS 

message if it does not own the replica. Node p is assumed to have no replica r if the following 

conditions hold: 

1. p does not have the replica pointer of r 

2. p has the replica pointer of r and the pointer indicates that w stores r, but w is not alive. 

After obtaining (resp., generating) the newest replica by executing a read (resp., write) 

operation, node u should send the replica to node p. It is noted that a node has at most one 

pending MISS message for a replica. Furthermore, when a node has a pending MISS message for 

a replica and further receives a lock request for the replica, it will send WAIT message to the 

requester. In such a manner, we can ensure that a node will only receive one replica in response to 

MISS message. 

By the on-demand replica regeneration technique, node p passively acquires replicas only 

when the replicas are requested. For the replicas never requested, there is no need to acquire them 

to keep the overhead as low as possible. However, the number of replicas of a data object may 

decrease gradually and influence the persistency of the data object. Fortunately, the bad influence 

does not occur for replicas that are accessed frequently. Moreover, we can allow the publisher of 

a data object to periodically perform the “dummy read operation” for the data object, which will 

be described later. We even can demand each participating node to periodically perform the 

dummy read operation for rarely-accessed data object replica hosted by it. When a replica of a 

data object is not accessed for a specific period of time, the dummy read operation is performed 

once. The dummy read operation is similar to the read operation and plays the role of checking if 

replicas of the data object are still alive; it does not read the replica in practice and thus only 

incurs little overhead. When some replicas of the data object are missed, the node initiating the 

dummy read operation can re-disseminate the replica to the proper node. The persistency of the 
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data object can thus be ensured. 

 

4.5 Leased Locks 

When a replica r of a data object is re-disseminated to some node, we must ensure that all 

participating nodes have the same view with respect to the replica. We first need to ensure the 

replica is up-to-date. If the replica is re-disseminated due to a node’s receiving MISS message, 

the replica is surely up-to-date. This is because a node re-disseminates the replica only after it has 

executed the read (or write) operation to acquire (or generate) the up-to-date replica. On the other 

hand, if the replica is re-disseminated due to a node’s performing a dummy read operation, the 

node is demanded to first obtain the up-to-date replica and then to re-disseminate the replica. 

The second thing for all participating nodes to agree with is the state of replica r. Since there 

may be some node that has locked replica r to make r in the lock state, we need to ensure that the 

lock state is not violated. To achieve this, each lock is assumed to be a leased lock that has a 

leased period of L. That is to say, after a replica is locked, it becomes unlocked automatically 

after a period of L. Assume that the critical section (CS) of a read or a write operation takes C 

time to complete. A node should release any obtained lock if it still has no chance to enter the CS 

and H>L-C-D holds, where H is the holding time of the lock and D is the propagation delay for 

transmitting the lock. Please see Figure 4 for the relationship among H, L, C and D. The 

condition of H>L-C-D can ensure a node to complete the desired operation before any lock 

expires. 

 

 

 

 

Figure 4. The relationship among H, L, C and D. 

 

When a node detects that a lock of a specific replica is expiring (i.e., H>L-C-D is going to 

hold), it is possible that the locks of other replicas will also expire in the near future. Thus, we 

demand a node to release all locks and start over to acquire the locks again. In this manner, 
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MUREX can avoid deadlock and starvation. Furthermore, we demand a node to wait for a 

random backoff time before acquiring the locks next time. This can alleviate the chance of 

repeatedly occurrence of contention-then-release-all-locks situation. 

Now, we describe how to make all participating node have the same view for the lock state 

by the concept of leased locks. Suppose a node p substitutes a failing/leaving node q to host 

replica r, and node p has received the up-to-date replica of r at time T. After receiving the 

up-to-date replica, node p generates a replica pointer for r and can start to reply to LOCK 

message for locking r at time T+L, where L is the leased period of the lock. In this manner, all 

participating nodes have the same view with respect to r’s lock state. 

 

4.6 Correctness 

By now, we have elaborated the details of MUREX. Below, we show the correctness of 

MUREX by the following theorems. 

 

Theorem 1. (Safety Property) MUREX ensures the one-copy equivalence consistency criteria. 

Proof: 

    In MUREX, a read operation read-locks and accesses a read quorum of replicas, and returns 

the replica owning the largest version number. A write operation write-locks and updates a write 

quorum of replicas with the version number which is one more than the largest version number 

encountered. As shown in [12], multi-column quorums satisfy the intersection property: any pair 

of a read quorum and a write quorum, and any two write quorums have a non-empty intersection. 

By the read-write and write-write lock exclusions and the intersection property, a read operation 

always returns the replica with the largest version number, which is the most up-to-date. 

Furthermore, by the replica pointer, on-demand replica regeneration, and leased lock techniques, 

a replica can neither be locked by more than two write lock requests, nor be locked by a read lock 

request and a write lock request simultaneously. Thus, neither two write operations nor a write 

and a read operation can proceed at the same time. We can therefore conclude that one-copy 

equivalence is guaranteed.    � 
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Theorem 2. (Liveness Property) There is neither deadlock nor starvation in MUREX. 

Proof: 

MUREX demands a node to relinquish all locks when any lock is going to expire. This 

eliminates the condition of hold and wait, which is necessary for a deadlock to occur. Thus, there 

will be no deadlock. Furthermore, there will be no starvation since the random backoff 

mechanism demands a node to wait for a random delay before reissuing lock requests. Thus, a 

node can eventually acquire enough locks to perform the desired operation, which means that no 

starvation will occur.        � 

 

5. Analysis and Simulation 

In this section, we analyze and simulate MUREX for evaluating its performance. We first 

analyze the communication cost of MUREX for the case of no contention. In MUREX, a node 

sends request messages for locking replicas in a last-column-to-first-column order. For an MC(m, 

s) multi-column structure, an operation needs 3s messages in the best case: one LOCK, one OK 

and one UNLOCK messages sent to/by each member of the last column Cm. 

When failures occur, the communication cost increases gradually. In the worst case, a node 

sends LOCK messages to all n replicas. Thus, the communication cost will be O(n) in the worst 

case. Fortunately, since MUREX demands a node to send LOCK messages to members of the last 

column first, the best case communication cost occurs much more frequently than the worst case. 

When there are contending nodes, the communication cost also increases. This is because 

when a node receives WAIT message, it will release all the locks obtained, and start over again to 

send LOCK messages after a random backoff time. Fortunately, the random backoff mechanism 

can scatter the resending of LOCK messages and thus some node will complete its operation 

successfully. Consequently, the communication cost will not go too high. 

We conduct a simulation for MUREX with regard to success rates of operations for the 

purpose of evaluating the influence of different multi-column quorums. An operation is 

considered to be successful if it can finish before any leased lock expires. The simulation 

assumes that the underlying DHT is Tornado [11], which is developed by ourselves. We adopt 

four multi-column structures, namely MC(5, 3), MC(4, 3), MC(5, 2) and MC(4, 2), for the 



 15

construction of read/write quorums. When we simulate the case for MC(m, s), the leased period is 

assumed to be m×(turn-around time). We also assume that there are totally 2000 nodes in the 

system. There are three experiments in our simulation. For each experiment, we perform the 

simulation for 3000 seconds, during which 10000 operations are requested, half for reading and 

half for writing. Each request is assumed to be destined for a random file (data object); thus, 

when the number of files increases, the degree of contention decreases. 

In the first experiment, we assume there are 200 nodes that may join or leave the system 

randomly during the experiment. In Figure 5, we can see that the success rate increases as the 

number of files increases. This is because the degree of contention decreases when there are more 

files. Among the four multi-column structures, we can see that MC(5, 3) achieve the best 

performance and MC(4, 2) achieves the worst, while MC(4, 3) and MC(5, 2) achieve in-between 

and resembling performances. From this experiment, we can check that lower contention renders 

higher success rates. 

In the second experiment, we assume there are 250 files in the systems and 0, 50, 100 or 200 

nodes may leave during the experiment. In Figure 6, we can see that the success rate decreases as 

the number of leaving nodes increases. This is because more leaving nodes can cause more 

unsuccessful lock requests. Among the four multi-column structures, we can see that MC(5, 3) 

renders the best performance and MC(4, 2) renders the worst, while MC(4, 3) and MC(5, 2) 

render in-between and resembling performances. From this experiment, we can see that higher 

node leaving rates cause worse performances. 

In the third experiment, we assume that no node joins or leaves. In Figure 7, we can see that 

the success rate increases as the number of files increases. This is because the degree of 

contention decreases when there are more files. We can also see that the performances for the 

four multi-column structures are resembling. By this experiment, we can see that the degree of 

contention is a dominant factor in the success rate. 
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Figure 5. Simulation results for the 2nd experiment, in which 200 nodes may join or leave randomly. 
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Figure 6. Simulation results for the 2nd experiment, in which 0, 50, 100, or 200 nodes may leave. 
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Figure 7. Simulation results for the 3rd experiment, in which no node join or leave during the experiment. 

 

6.  Related Work 

As far as we know, there are four existent mutable P2P storage systems: Ivy [16], Eliot [21], 

Oasis [19], and Om [24]. The key concepts of these systems are P2P logs, replicated metadata 

service, dynamic quorum membership, and replica membership reconfiguration, respectively. In 

additional to these four systems, we also review a scheme called “Sigma Protocol” [15], which 
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intelligently collect replica states to achieve mutual exclusion among replicas. The scheme can be 

used as the basis of replica locking control and is thus worth investigating.  

Below, we first introduce Ivy [16], which stores a set of logs with the aid of DHTs. Ivy 

keeps, for each participant, a log storing all its updates, and maintains data consistency 

optimistically by performing conflict resolutions among all logs. The logs should be kept 

indefinitely and a participant must scan all the logs associated with a file for the up-to-date data. 

Thus, Ivy is only suitable for small groups of participants. 

Eliot [21] relies a reliable, fault-tolerant, and read-only P2P storage substrate ⎯ Charles to 

store data blocks, and uses an auxiliary metadata service (MS) for storing mutable metadata. It 

supports NFS-like write-through consistency semantics; however, the traffic between MS and the 

client is high for such semantics. It also supports AFS-like open-close consistency semantics; 

however, this semantics may cause the problem of lost updates. The MS service is provided by a 

conventional replicated database, which may be unfit for dynamic P2P environments. 

Oasis [19] is based on Gifford’s weighted voting quorum concept and allows dynamic 

quorum membership. It spreads versioned metadata along with data replicas over the P2P 

network. To complete an operation on a data object, a client must first find a metadata related to 

the object to figure out the total number of votes, required votes for a read and a write operation, 

replica list, and so on. It then forms a quorum according to the acquired metadata. Data 

consistency may be violated if a node happens to use a stale metadata. 

Om [24] is based on the concepts of automatic replica regeneration and replica membership 

reconfiguration. The data consistency is maintained by two quorum systems: a read-one-write-all 

quorum system for accessing replicas, and a witness-based quorum system for reconfiguration. 

Om forwards all writes to the primary replica to serialize them, and uses a two-phase procedure 

to propagate the writes to all secondary replicas. In this manner, Om allows replica regeneration 

from a single replica. However, the primary replica may become a bottleneck and the overhead 

incurred by the two-phase procedure may be too high. Furthermore, the reconfiguration by 

witness-based quorum system has the probability of violating data consistency. 

The Sigma protocol [15] uses Byzantine agreement algorithm [3, 14] to achieve mutual 

exclusion among replicas for P2P storage systems. The basic concept of the protocol is described 
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as follows. A node u wishing to be the winner of the mutual exclusion should send a timestamped 

request to all n replicas (n=3k+1, where k stands for the maximum number of nodes that may 

leave the system) and waits for replies. On receiving a request from u, a node v should put u’s 

request in a local queue in accordance with the timestamp order, takes the node as the winner 

whose request is in the front of the queue, and replies the winner ID to u. When the number of 

replies received by u exceeds 2k+1, u acts according to the following conditions: (1) if more than 

2k+1 replies take u as the winner, then u is the winner. (2) if more than 2k+1 replies take w (w≠u) 

as the winner, then w is the winner and u just keeps waiting. (3) if no node is regarded as the 

winner by more than 2k+1 replies, then u sends YIELD message to cancel its request temporarily 

and then resends its request again. In this manner, one node can eventually be elected as the 

winner even when communication delay variance is large. However, Sigma protocol requires a 

node to send timestamped requests to all replicas and to receive advantaged replies from a large 

portion (≥2/3) of replicas to be the winner of the mutual exclusion. This may incur large overhead; 

the overhead will even be larger under an environment of high contention. 

 

7. Conclusion 

In this paper, we have identified three problems for synchronous replication in DHT-based 

mutable P2P storage systems. The problems are replica migration, replica acquisition and state 

synchronization. We have proposed MUREX, a mutable replica control scheme, to solve these 

problems by the concepts of multi-column read/write quorums, replica pointers, on-demand 

replica regeneration and leased locks. We have proved that MUREX guarantees one-copy 

equivalence and causes no deadlock. Furthermore, we have analyzed and simulated MUREX. As 

we have shown, MUREX has constant communication cost in the best case and has good 

operation success rate. 
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